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Lightning facts

Lightning strikes the Earth about 4 million times every day.
Lightning costs the US about $4-5 billion per year in losses and damages.

Every year lightning kills about 100 people in the US alone, more than
hurricanes or tornados.




Lightning 101

Charles Alison @ 2007
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Despite 1ts familiarity, lightning remains a mystery

Big question #1: What microphysical processes are responsible for
thunderstorm electrification?

Big question #2: How does lightning get started with the relatively low
electric field strengths inside thunderstorms?

Big question #3: How does lightning travel through tens of kilometers of
air?



Since we are still struggling to understand how lightning works
250 years after Franklin’s kite experiment, perhaps we are
missing something important. ...

Runaway Electrons



25 MeV electron moving through air at 1 atm
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25 MeV electron moving through air at 1 atm
in a 3 kV/cm electric field
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Energy loss and gain experienced by an electron 1n air
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Extensive air showers trigger lightning?

For a typical thunderstorm
electric field A ~ 100 m.

If the high field region has a depth
of 2000 m then exp(20) ~ 108
runaway electrons are produced
for each energetic seed particle

An extensive air shower with

107 particles passing through such
a thunderstorm would produce

1013 relativistic electrons and many
more low energy electrons

Maybe extensive air showers
and runaway breakdown
initiate lightning

A = Runaway electron avalanche (e-folding) length
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The average energy of
runaway electrons is 7 MeV

The runaway breakdown threshold
electric field £, = 284 kV/m at STP



Relativistic Breakdown
due to x-ray and
positron feedback.

The central avalanche is due
to the injection of a single, 1
MeV seed electron. All the
other avalanches are
produced by x-ray and
positron feedback. The top

panel 1s for times, t < 0.5 us.

The middle panel 1s for
t <2 us, and the bottom
panel is for t < 10 ps.
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Relativistic Breakdown limits the electric field that can be
achieved 1n air and prevent large avalanche multiplication
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Does runaway breakdown actually occur?

One signature of runaway breakdown is x-ray emission.

Many researchers have searched for such x-rays associated with thunderstorms
and lightning.

Experiment Location X-rays in X-rays in
thunderstorms? lightning?

Fishman et al. (1994) Yes (sprites?)

Moore et al. (2001) mountain (3288 m)



Rocket-triggered lightning
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Instrument used to measure x-rays from lightning at the
UF/Florida Tech International Center for Lightning Research and
Testing (ICLRT) at Camp Blanding, FL
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X-ray mstruments 1n front of rocket launch tower
used to trigger lightning







Triggering lightning
Method 2




Rocket-triggered lightning




Rocket-triggered lightning
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Rocket Triggered Lightning -- slow motion




Rocket Triggered Lightning—slow motion




Signal amplitude (V)

Signal amplitude (V)
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X-rays from rocket-triggered lightning dart leaders
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X-Rays from Lightning

New research shows that lightning
is a surprisingly complex and
mystifying phenomenon

By Joseph R. Dwyer

ng htnlﬂg is a particularly unsettling product of bad

weather. It causes more deaths and injuries in the U.S, than either hurricanes

or tornadoes do, and it strikes without warning, sometimes with nothing but
blue sky overhead. In central Florida, where I live, thunderstorms are a daily
occurrence during the summer, and so, ironically, people in the Sunshine State
often spend their afternoons indoors to avoid the risk of death from the sky.

Worldwide, lightning flashes about four million times a day, and bolts have
even been observed on other planets. Yet despite its familiarity, we still do not

NATURE'S X-RAY MACHINE: Recent studies show that lightning emits

burstsofx-rays as it carvesits jagged conductive channels through know what causes lightning. It is a misconception that Benjamin Franklin
the atmosphere. The energies of the x-rays extend to 250,000

electron valts, or about twice the energy of a chestx-ray solved the }')UZth’ when he conducted his famous kite experiment in 15527

64 SCIENTIFIC AMERICAN MAY 2005 www.sciam.com SCIENTIFIC AMERICAN 65
COPYRIGHT 2005 SCIENTIFIC AMERICAN, INC COPYRIGHT 2005 SCIENTIFIC AMERICAN, INC.

Credit: J. R. Dwyer, Sci. American, May, 2005




signal amplitude (V)

signal amplitude (V)

Energy of x-rays from triggered lightning
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X-rays from natural cloud-to-ground lightning
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TERA at the UF/Florida Tech International Center for Lightning
Research and Testing (ICLRT) at Camp Blanding, FL
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TERA Instrument Design




TERA 1nstrument
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X-rays from triggered lightning using TERA
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Detector response fits to x-ray pulse from lightning
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Radial fall-off of the x-rays from the triggered lightning channel

Radial energy distribution
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Schematic of Monte Carlo simulation
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Model fits to x-ray data for different runaway electron energies

Isotropic electron source
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Deposited energy ( keV/m")
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Deposited energy (keV/m?)

Model fits to x-ray data for different lightning leader altitudes
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Luminosity (electrons/sec)

Energetic electron luminosity from lightning
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Energy (MeV)
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A ground level gamma-ray flash observed during the
initial stage of rocket-triggered lightning
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CGRO/BATSE Terrestrial Gamma-ray Flash (TGF)
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Terrestrial Gamma-Ray Flash (TGF) spectrum and results
of Monte Carlo simulation for different source altitudes
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Monte Carlo simulation showing runaway electron trajectories,
injected by lightning, inside a thundercloud at 5 km altitude.
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The effective dose produced by one lightning leader inside a
thundercloud and a TGF versus the radius of the energetic
electron beam.
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Future Work:

Schematic of XL-cam
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[1lustration of XL-Cam




Simulated movie of lightning made with x-rays.
25 microsecond of data shown. The lightning leader channel from a high speed
optical camera 1s superimposed. For this simulation the emission is assumed
to come from the bottom of the newly formed leader segment.
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Conclusions

Lightning 1s not simply a conventional discharge.

It involves an exotic kind of discharge called runaway
breakdown, during which electrons are accelerated to nearly
the speed of light and large numbers of x-rays are created.

Since the standard models of lightning do not include runaway
breakdown nor do they predict x-ray emission, clearly we need
to revisit these models.

How lightning works has remained a great mystery. Perhaps
runaway breakdown is the missing pieces that we need to solve
the puzzle.

Finally, x-rays give us a new way to look at lightning.
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