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How often does science explore something really new? 

  400 years ago: Galileo’s telescope 

  Today (soon!): gravitational waves 
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Gravitational Waves: a New Science 

  Telescopes extend the human sense of sight 

  Gravitational wave detectors extend hearing 

  Light: electromagnetic radiation from accelerating 
particles 

  Gravitational radiation: spacetime vibrations from 
accelerating mass-energy 

  (Not the main subject of this talk!) 
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Gravitational waves: Spacetime Vibrations  

  Caused by motions of mass and energy 

  Waves are detected by their effect on 
distance between bodies 
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Gravitational waves are hard to detect 

  Even with large energy, distortions of spacetime by faraway 
motions are very small 

  fractional stretching of distance in plane of wave: 

R= size, D= distance, M= mass, h= dimensionless strain amplitude 

  Pattern, frequency correspond to projection of time-varying 
quadrupole moment of distant source 

  Strong sources have frequencies <1000 Hz 

  Requires a new technology that is now maturing: interferometry 

€ 

h = ΔL /L ≈ (GM /Rc2 )2(R /D)
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New technology of interferometers 

LIGO/GEO600: Relative positions of massive bodies 
now measured to ~10-18 m, over a distance of ~103 m 
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Supersensitive microphones: interferometers  
measure subatomic motions over large distances 
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         GEO-600 (Hannover, Germany) 
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audio frequencies (10 to 1000 Hz) 

Last gasps (minutes) of dying stars:  
neutron stars, black holes, supernovae 

LIGO: Hanford, WA  and Livingston, LA 
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Future LISA mission: 5 million kilometers, ultra bass notes (mHz) 
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Interferometers might also probe new unification physics 

  Spacetime is measured using mass-energy 

  Interferometers measure macroscopic distances between 
masses (mirrors) to very high precision 

  may sense new physics of unification, not just gravity  

  Not the same as gravitational waves 
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Unification: relationship of spacetime to the stuff within it 

  Standard physics:   

–  Mass-energy quantum particles/waves move in 
spacetime, follow metric 

–  Spacetime  curves in response to mass-energy 

–  Spacetime is smooth, infinitely divisible  

  New physics of unification: 

–  Spacetime and mass-energy both emerge from 
something different (strings, matrices,…?) 

–  At some small scale, they blend together 

–  Under extreme magnification, spacetime no longer 
looks like spacetime 

–   there is a minimum time/ maximum frequency 
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Planck scale: spacetime merges with mass-energy 

  Quantum gravity suggests a minimum (Planck) time, 

  ~ particle energy 1016 TeV: out of reach? 

seconds 
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Consequences of a minimum time/maximum frequency 

  Old idea: “quantum foam”, breakdown of physics with a UV cutoff 
at the Planck scale 

  New idea: bandwidth limit of reality 

  Nature: the ultimate internet service provider 

  Shannon/Nyquist sampling theorem: any function with a 
maximum frequency is completely specified by two numbers per 
wavelength 

   limit on relationship of one place to another: Planck carrier wave 

  Consequences  more radical than quantum foam localized at the 
Planck scale 
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Two approaches to the Planck scale 
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Two technologies: small things vs precision distances 
CERN/Fermilab: TeV-1~10-18 m: particle interactions  

LIGO/GEO600: ~10-18 m, over ~103 m: 
Positions of massive bodies  
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         A new phenomenon?: holographic noise 

  The Planck limit may affect interferometers 

  uncertainty much larger than Planck scale in a particular 
interpretation of  unification 

  New universal random jitter: “Holographic Noise” 

  This is not gravitational radiation: no metric distortion 

  Instead, a time-varying violation of the equivalence 
principle 

“Planck diffraction limit” at L 

is >> Planck length 

€ 

Δx ~ λL
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 Planck frequency limit causes larger scale indeterminacy:  
transverse position wavefunction at longitudinal distance L  

€ 

L

€ 

λ
€ 

Lλ
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phase change in Planck wavefront spans 
a much larger transverse distance 



         GEO-600 (Hannover): best displacement sensitivity 
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“Mystery Noise” in GEO600 

Prediction: CJH, arXiv:0806.0665 
(Phys Rev D.78.087501) 

Data: S. Hild (GEO600) 

Total noise: not fitted 

zero-parameter prediction for 
holographic noise in GEO600 
(equivalent GW strain) 

€ 

tPlanck /π
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Measurement of holographic noise 

  Interpretation of holographic unification predicts a new detectable 
effect: "holographic noise” 

  Not the same as zero-point field mode fluctuations 

  Spectrum and spatial character predicted with no parameters 

  It may already be detected 

  An experimental program is motivated  

    CJH: arXiv:0806.0665    Phys Rev D.78.087501 (2008) 

    CJH: arXiv:0712.3419   Phys Rev D.77.104031 (2008) 

    CJH and M. Jackson:arXiv:0812.1285 PhysRevD.79.124009 

  CJH: arXiv:0905.4803  
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“This is what we found out about Nature’s 
book keeping system: the data can be written 
onto a surface, and the pen with which the 
data are written has a finite size.” 

-Gerard ‘t Hooft 

Everything is written on 
2D surfaces moving at 
the speed of light 

Bold idea from black hole physics:  the world is a hologram 
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Are there experimental consequences of this idea? 



A holographic world is blurred by diffraction 

What does it look like 
"from inside”? 
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 Rayleigh  range and uncertainty of rays 

 Aperture D, wavelength λ : angular resolution λ/D 
 Size of diffraction spot at distance L: Lλ/D 
 path is determined imprecisely by waves 
 Minimum uncertainty at given L when 
  aperture size =spot size, or  

( ) D Lλ/D 

L 

€ 

D = λL
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Diffractive blurring in real holograms 

  If you "lived inside" a hologram, 
you could tell by measuring the 
blurring/indeterminacy 

  The blurring is much bigger than 
a wavelength of light: 

is the transverse resolution at a 
distance L 

•  (D is about 1mm for an optical 
hologram at L= 1m) 
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Similar examples from the world of optics 

 Hanbury Brown-Twiss 
interferometry: correlation of 
intensity from distant star in 
widely separated apertures 

 Michelson stellar interferometer: 
fringes from star 

 Diffraction in the lab: shadow of 
plane wave cast by edge or 
aperture 

All display similar optical 
examples of wave phenomena 
much larger than the waves 
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Movie made of holograms 

  Make holographic frames with short laser pulses 

  Each frame is locally sharp, blurred on transverse scale  

  Random phases: positions randomly wander from frame to 
frame, transversely 

   wander on longitudinal separation  scale         over a transverse 
distance bounded by 

  If reality is  a movie of Planck holograms, we should 
observe this kind of jitter  

  Sequence of frames= time in 2+1D, spacetime in 3+1D 
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Holographic geometry: interpretation of unified theory 

Fundamental theory (Matrix, string, loop,…) 

Holographic geometry  (paraxial waves, diffraction, transverse 
spacetime wavefunction, holographic uncertainty…) 

Observables in classical apparatus (effective beamsplitter 
motion, holographic noise in interferometer signals) 
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Holographic theory  
• Black holes: entropy=area/4 

• Black hole evaporation  

• Einstein's equations from heat flow 

• Universal covariant entropy bound 

• Exact state counts of extremal holes in large D 

• AdS/CFT type dualities: N-1 dimensional duals 

• Matrix theory 

• All suggest theory on 2+1 dimensional null surfaces 
with Planck frequency bound 

Beckenstein, Hawking, Bardeen et al., 
'tHooft, Susskind, Bousso, Srednicki, 
Jacobson, Padmanabhan, Banks, 
Fischler, Shenker, Unruh 
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Black Hole Thermodynamics 

  Beckenstein, Bardeen et al. (~1972): laws of black hole 
thermodynamics 

  Area of (null) event horizon, like entropy, always increases 

  Entropy is  identified with event horizon area in Planck units 
(not volume) 

  Is there is  a deep reason connected with microscopic degrees 
of freedom of spacetime encoded on the surface? 
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 Black Hole Evaporation: a clue to unification 

  Hawking (1975): black holes slowly radiate particles, lose energy 

  They convert “pure spacetime” into normal particles like light 

  number of particles =  area of the surface in Planck units 

  A great idea--- but not observable 
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Black Hole Evaporation 

  black hole radiates thermal radiation, shrinks and disappears 

  evaporated quanta carry off degrees of freedom (~1 per 
particle) as area decreases 

  States on 2D event horizon completely account for information 
of evaporated states, assembly histories 

  Information of evaporated particles=entropy of hole= A/4   
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New: black hole evaporation obeys quantum mechanics if 
distant, nearly flat space has new transverse indeterminacy 

If the quantum states of the evaporated particles allowed relative  
transverse position observables with arbitrary angular precision, at 
large distance they would contain more information than the hole 
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  one particle evaporates per Planck area 
  position recorded on film at distance L    
  wavelength ~ hole size R 
  standard position uncertainty 

  Particle images on distant film:  must have fewer “pixels” than hole 

  Requires transverse uncertainty at distance L independent of  R 

 Uncertainty of flat spacetime  independent of black hole mass 
 Applies to number of position states of interferometer mirrors 

€ 

Δx > λL

Holographic uncertainty and black hole evaporation  

€ 

(L /Δx)2 < (R /λ)2

€ 

Δx > R€ 

Δx
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New “holographic” uncertainty of distant 
position….with or without a black hole 

This uncertainty may be measurable! 
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Nearly-flat spacetime 

  Unruh (1976): Hawking radiation seen by accelerating observer 

  Appears with any event horizon, not just black holes 

Jacobson: points=2D surfaces 
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Holographic Principle 

  't Hooft (1985): black holes are quantum systems 

  't Hooft, Susskind et al. (~1993): world is "holographic", 
encoded in 2+1D at the Planck scale 

  Black hole sets bound on entropy of any system; includes all 
quantum degrees of freedom 

  All physics within a 3D volume can be encoded on a 2D 
bounding surface ("holographic principle") 

  Bousso (2002): generalized to "covariant entropy bound” 

  Suggests that  3+1D geometry emerges from a quantum theory 
in 2+1D:  light sheets 
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Emergent flat 3+1D spacetime  

 3+1D from 2+1D 
 Light sheets: time= z space dimension 
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Holography and unification: String, Matrix theory  

  Strominger & Vafa (1996):  count degrees of freedom of 
extremal higher-dimension black holes using duality 

  All degrees of freedom accounted for 

  Agrees with Hawking/Beckenstein thermodynamic count 

  Unitary quantum system 

  Strong indication of a minimum length ~ Planck length 

  What do the degrees of freedom look like in a realistic system? 

  Maldacena, Witten et al. (1997…):  AdS/CFT correspondence 
–  N dimensional conformal field "boundary" theory dual to N+1 

dimensional "bulk" theory with gravity and supersymmetric field theory; 
highly curved space 

  Matrix theory: wavefunctions of transverse position Matrix 
Hamiltonian (CJH& M. Jackson) 
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Example of holographic unification: Matrix theory 

  Banks, Fischler, Shenker, & Susskind 1997: a candidate theory 
of everything 

  Fundamental objects are 9 N x N  matrices, describing N “D0 
branes” (particles) 

  Dual relationship with string theory 

  Gives rise to 10 space dimensions, 1 compact, plus time 

R= radius of 
M dimension 

D0 branes= KK modes 

9 larger dimensions 
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Macroscopic interpretation of Matrix theory 

  Hamiltonian from Banks, Fischler, Shenker, & Susskind: 

  Notions of position, distance emerge on scales >>R 

  Two matrices encode macroscopic transverse spatial dimensions 

  local in 2+1 D, “incompressible” on Planck scale: holographic 

  Third dimension emerges holographically =  time 

  Center of mass position of macroscopic mass-energy, x= tr X 

  Conjecture: third, macroscopic longitudinal position encoded by 
first (kinetic) term, conjugate momenta to position matrices 
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Macroscopic wave equation from Matrix theory 

  Matrix Hamiltonian stripped to macroscopic essentials 

  Substitute wave operators for matrix operators 

8

where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)

7

Holographic Hypothesis: Paraxial Wave Equation

A specific way to formulate the holographic hypothesis is to posit that effective spacetime wavefunctions describing
macroscopic position states are solutions not of the 3D wave equation, but of the paraxial wave equation.

In the emergent 3D space, the 2D light sheet appears as a wavefront moving at the speed of light. The state is thus
naturally described as deviations from the wavefronts of a periodic plane wave. The frequency of the carrier is the
fundamental frequency in some given lab frame.

Start with the standard 3D wave equation for a field with a single fixed frequency. In three dimensions, the 3D
wave equation for any field component can be written as the modulation of a carrier wave,

(∇2 + k2)E(!x) = 0. (4)

Here E(!x) is a complex phasor representing the amplitude and phase at each point. We use Euclidean coordinates
!x = x, y, z to denote positions in an arbitrary lab rest frame. A sinusoidal time dependence is built in, E ∝ sin(ωt),
where ω = ck = 2πc/λ. In holographic geometry the carrier is at the Planck frequency.

To derive the paraxial wave equation, we express the field in the form

E(x, z) = u(x, z)e−ikz. (5)

The field u now describes deviations from a plane wave normal to the z axis. For simplicity, we consider one transverse
dimension x and one longitudinal dimension z; identical and independent equations apply to y, z. In laboratory optics
applications, z corresponds the direction of a beam, and x to the width of a beam. In our holographic application z
corresponds to position in a particular direction that defines the normal axis of a holographic frame, and x to position
in a transverse dimension. The wave equation for u becomes

∂2u/∂x2 + ∂2u/∂z2 − 2ik∂u/∂z = 0. (6)

The paraxial approximation is to assume that the second term is negligible compared with the others:

∂2u

∂x2
− 2ik

∂u

∂z
= 0. (7)

This equation is proposed as an effective wave equation governing transverse position states of spacetime on macro-
scopic scales.

It should be emphasized that this phenomenological description is not a fundamental theory. The carrier field is
not a dynamical physical field, but a calculational tool. It is constructed to represent the holographic behavior in
a lab frame; thus, the wavefunction represents the slowly varying parts of the spatial behavior relative to a Planck
frequency plane wave. A true carrier field would not be invariant under boosts to another frame, and neither is this; the
wavefunctions are frame-dependent. Similarly, the expansion in paraxial coordinates makes sense if the fundamental
theory is built on 2D light sheets, even if the actual wavefronts are not the same in a different lab frame. The theory
accurately describes the kind of macroscopic geometrical information that is likely to survive in the classical limit,
and therefore is motivated as a proposal for an effective theory.

Relation to Matrix theory

It will be noticed that Eq. (7) is mathematically identical to the one dimensional nonrelativistic Schrödinger wave
equation, with z replacing time and −k replacing m/h̄. The interpretation of this equation as a wave equation
for spacetime also appears to be a natural consequence in a particular macroscopic interpretation of Matrix theory
proposed in ref.[11]. In this interpretation the single transverse coordinate operator x̂ refers to the center of mass of a
collection of N D0 branes or particles, described as the trace of a fundamental N×N matrix, one of nine matrices out
of which emerge nine spatial dimensions: x̂ = trX̂. The emergent 3D system has a maximum frequency equal to the
inverse periodicity R of the compactified M dimension, the only scale in the system, assumed in this interpretation
to be of order the Planck scale in any lab frame of the emergent spacetime. Modes in the 9 spatial dimensions that
emerge from the matrices are not independent on scale R, where the theory is strongly coupled, which indicates that
it obeys the holographic bound[4, 11]

The kinematic terms of the Banks et al.[4] Matrix Hamiltonian for the X̂ matrix can be written

Ĥ =
R

2h̄
trΠ̂2, (8)
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)
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Macroscopic wave equation from Matrix theory 

becomes 

  Schrodinger equation, with z+ as time dimension and u(x) a 
wavefunction of one transverse position 

  Quantum mechanics without Planck’s constant 

  effective wave equation: “Bohr atom” for spacetime 

8

where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
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reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.
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signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
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Holographic Hypothesis: Paraxial Wave Equation
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The paraxial approximation is to assume that the second term is negligible compared with the others:

∂2u

∂x2
− 2ik

∂u

∂z
= 0. (7)

This equation is proposed as an effective wave equation governing transverse position states of spacetime on macro-
scopic scales.

It should be emphasized that this phenomenological description is not a fundamental theory. The carrier field is
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Relation to Matrix theory

It will be noticed that Eq. (7) is mathematically identical to the one dimensional nonrelativistic Schrödinger wave
equation, with z replacing time and −k replacing m/h̄. The interpretation of this equation as a wave equation
for spacetime also appears to be a natural consequence in a particular macroscopic interpretation of Matrix theory
proposed in ref.[11]. In this interpretation the single transverse coordinate operator x̂ refers to the center of mass of a
collection of N D0 branes or particles, described as the trace of a fundamental N×N matrix, one of nine matrices out
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The kinematic terms of the Banks et al.[4] Matrix Hamiltonian for the X̂ matrix can be written

Ĥ =
R

2h̄
trΠ̂2, (8)
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
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and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
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∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)
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∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)
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Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
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indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
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view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)
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Different limits of Matrix theory 

Fundamental theory (matrices) 

Particle states, localized 
collisions: field theory 

Collective, extended 
states: holographic modes  
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Wave Theory of Spacetime 

  Adapt wave optics to theory of 
“spacetime wavefunctions” 

  transverse indeterminacy from 
diffraction of Planck waves 

  Allows calculation of holographic 
noise  with no parameters 
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Paraxial wave equation 

  phasors in wavefronts: wavefunction relative to carrier 

   wave equation in each transverse dimension x 

  Basis of laser wave optics 

  Same as wave equation from Matrix theory 

  Solutions display diffraction: e.g. laser cavities 

  reinterpret as a position wavefunction of mass-energy 

8

where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)
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Gaussian Beam solutions of paraxial wave equation 
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Indeterminacy of a Planckian path 

 Classical spacetime manifold defined by paths and events 

 path~ ray approximation of wave 

 Indeterminacy of geometry reflects limited information content 
of band-limited waves 
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 holographic approach to the classical limit  

  Angles are indeterminate at the Planck scale, and become 
better defined at  larger separations: 

  But uncertainty in relative transverse position increases at 
larger separations: 

  Not the classical limit of field theory 

  Indeterminacy and nonlocality persist to macroscopic scales 
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Holographic Noise in Interferometers 

  Nonlocality:  uncertainty in relative transverse positions at  
macroscopic separation 

  Effective jitter in position relative to classical geodesics 

  Random variation in arm length difference appears in signal 
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Measurement of holographic uncertainty requires coherent  
transverse position measurement over macroscopic distance 

CERN/FNAL: TeV-1~10-18 m, 
                       local  

LIGO/GEO600: ~10-18 m,                   
            over ~103 m 
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Interferometer with Planck radiation 

No “better measurement” of position is possible 
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Quantum limit of a Planck wave interferometer 

Uncertainty of mirror position and photon momentum 

Uncertainty of position from measured phase 

Minimum total uncertainty  € 

Δx1 > h /Δp

€ 

Δx2 > L(Δp / p)

€ 

Δxtotal > λPL
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Signal phase~ difference of 
integrated distance along two 
orthogonal arms  

z 

Beamsplitter 

Beamsplitter and signal in Michelson interferometer 
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Signal: random phase difference 
of reflection events from 
indeterminate position difference 
of beamsplitter at the two events 

reflection 
events at two 
times 
separated by 
2L/c 

Holographic noise in the signal of a Michelson interferometer 
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Holographic uncertainty of positions of beamsplitter 

  Position wavefunction 
widths of beamsplittter at 
reflection events given by 
Gaussian beamwidth 

  apparent arm length 
difference is a random 
variable, with variance 

 this is a new effect predicted with no parameters 

€ 

Lλ /π
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State of apparatus: squeezed in two directions   
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Holographic noise does not carry energy 

 flat space, no metric perturbations 
 No curvature,  no strain 
 Fluctuation in relative position of massive bodies 
 “Movement without Motion” 
 sampling or pixelation noise, not thermal noise 
 Bandwidth limit of spacetime relationships 
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Power Spectral Density of Noise 

At f=c/2L, shear fluctuations with power spectral density  

  dimensionless shear 
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 Universal Holographic  Noise 

  flat amplitude spectral density of shear perturbations: 

• spectrum with no parameters  
• spatial shear character:  different from strain 
• Amplitude spectral density of equivalent strain, at low 
frequencies, in folded Michelson interferometer: 

12

This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.
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Response of interferometers 

 Shear not strain: different from gravitational waves 
 Folded arms do not amplify effects of shear 
 GEO600  better than LIGO 
 Mimics bounded random walk of beamsplitter 
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GEO-600 (Hannover) 
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Large power 
cycles through 
beamsplitter, 
adds transverse 
holographic 
noise  K.Strain 
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 Noise in GEO600 over time 

H. Lück, S. Hild, K. Danzmann, K. Strain 

K.Strain 
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This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−1
√

4tP /π, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.
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“Mystery Noise” in GEO600 

Prediction: CJH, arXiv:0806.0665 
(Phys Rev D.78.087501) 

Data: S. Hild (GEO600) 

Total noise: not fitted 

zero-parameter prediction for 
holographic noise in GEO600 
(equivalent GW strain) 

€ 

tPlanck /π
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Why doesn't LIGO detect holographic noise? 

  LIGO design is less sensitive than GEO600 to transverse 
displacement noise, but more sensitive to gravitational waves 

  relationship of holographic to gravitational wave depends on 
details of the system layout 

GW effect on phase is 
amplified in FP cavities 
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Normal incidence optics: phase signal does not 
record the transverse position of a surface  

 But phase of beam-split signal is sensitive to transverse 
position of surface  

( ) 
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holographic noise prediction for LIGO in GW units:  
reduced by  ~arm cavity finesse 

About a factor of 100 

12

This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.

12

This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.
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• Beamsplitter position indeterminacy inserts holographic 
noise into signal 

• system with GEO600 technology can detect 
holographic noise if it exists  

• Signatures: spectrum, spatial shear  

Interferometers can detect quantum  
indeterminacy of holographic geometry 

CJH:  Phys. Rev. D 77, 104031 (2008);  arXiv:0806.0665  
CJH, arXiv:0905.4803 
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Current experiments: summary 

  Most sensitive device, GEO600, sees noise compatible with 
holographic spacetime indeterminacy 

  GEO600 paper in preparation after ~2 years of checking 

  GEO600 is operating at holographic noise limit 

  LIGO: current system not sensitive enough 

  LIGO H1/H2 correlation:  inconclusive? 

  No experiment has been designed to look for holographic noise 

  A definitive result is not possible with LIGO or GEO600: 
evidence is based on lack of other explanations 

  More convincing evidence: new apparatus, based on signature 
coherence of adjacent systems 
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Two nearby interferometers are correlated  

  Even with no physical connection,  matter on a given null 
wavefront “moves” together 

  wavefronts in adjacent interferometers, in the same direction at 
the same time, have almost the same transverse motion 

  Proof from considering null wavefronts in the plane of 
interferometers with small vertical separation 

  Displacements in nearby interferometers are nearly the same 

  Signals are correlated in a precisely known way 

  Nothing else would do this 
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Dedicated holographic noise experiment 

•  GEO600 evidence for holographic noise is based on apparatus 
model  (i.e., lack of another explanation) 

• New concept: correlation signature of holographic noise 

 predicted cross-correlation of signals in nearby 
interferometers 

• Other noise sources are uncorrelated, average to zero 

• Allows detection of subdominant holographic component 

• shorter arms, higher frequency, easier suspension and optics 

•  Correlations modulated by reconfiguring  
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Correlation varies with configuration 
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With no overlap, 
correlation 
disappears 



Main noise at high frequency: photon shot noise 

 Cross correlation averages to zero with time 

 Trade between cavity power, size, integration time 

 Time for one sigma detection of holographic signal:  

15

above (Planck frequency bound, or holographic information bound) does not hold. A positive result of course opens
up a whole field of followup experiments that will illuminate the way that Planck-scale quantum physics maps onto
the macroscopic, quasi-classical world.

A new experiment is therefore motivated to test the holographic hypothesis, using the predicted correlation between
two close but not connected interferometers. For two aligned interferometers with a fractionally small displacement, a
cross correlation in the holographic noise displacement is robustly predicted on general theoretical grounds. The two
interferometers can be in separate cavities and Faraday isolated to exclude other sources of in-common noise in the
relevant band. The dominant noise source, photon shot noise, is uncorrelated between the two and averages in time
to zero, while the holographic noise is in common and averages to a definite known value. This allows an experiment
on a much smaller scale (and higher frequencies) than the interferometric gravitational wave detectors, even though
the photon shot noise dominates by a large factor at high frequencies.

Consider a pair of adjacent and aligned power-recycled interferometers. The time required for the cross correlation
from holographic noise to equal the photon shot noise at frequency c/2L is[15]

tγ× ≈
[
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] [
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P

] [
hP

Popt

]2

(41)

where λopt and Popt refer to the wavelength and power of the laser cavity, hP is Planck’s constant, and L is the arm
length. This becomes

tγ× ≈ 375 s (Popt/1000w)−2(L/40m)−3. (42)

Thus there is a trade between system size and laser power. The optimum appears to be a system with arms some tens
of meters in length; for shorter arms, the large required power in the cavity and smaller waist size cause significant
heating in the optics. For a system with 40m arms, the characteristic frequency is c/2L = 3.5 MHz. With 1000 watt
cavities, the correlated power matches the photon shot noise power after about tγ× ≈ 5 minutes. The significance
of a detection after time t is about (t/tγ×)1/2 standard deviations. Modern experimental techniques can sample and
correlate data rapidly enough to study both time and frequency domain correlations in this regime.

For small fractional displacement between instruments, the predictions here are motivated on general grounds, but
they become less reliable as the displacement approaches the apparatus size. If two close interferometers yield a
positive result, a followup experimental program with different experimental geometries would inform this aspect of
the theory.

I am grateful for discussions and correspondence with many colleagues, including particularly A. Chou, H. Grote,
S. Hild, M. Jackson, H. Lück, G. Müller, B. Schutz, J. Steffen, S. Waldman, R. Weiss, S. Whitcomb, G. Woan, and
other participants in the Hannover workshop on holographic noise. This work was supported by the Department of
Energy.
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Two ~40m Michelson 
interferometers in 
coincidence 

~1000 W cavity 

DC sampling at ~30MHz 

Simple mounts, optics 

holographic noise= laser 
photon shot noise in ~6 
minutes (1 sigma) 

Conceptual Design by Rainer Weiss 
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Power-recycled Michelson Interferometer

Use recycling mirror to re-use the 

laser beam by forming a double cavity 

between RM-M1 and RM-M2.

Free spectral range ! 4 MHz.

M1, M2, BS losses ! 100 ppm

Dominant loss is the RM transmission 

! 10-3 (overcoupled cavity)

Cavity Finesse ! 3000, 

Transmission bandwidth ! kHz

Various optics to match laser mode to cavity mode
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Status of the Fermilab Holographic Interferometer 

  Developing Weiss concept for correlated interferometers 

  Team:  Fermilab (CJH, A. Chou, W. Wester, J. Steffen, 
E.Ramberg, C. Stoughton, R. Tomlin, J. Ruan, C. Bhat); MIT 
(R.Weiss, S.Waldman), Caltech (S. Whitcomb), UC (S. Meyer), 
UMich (R. Gustafson), includes LIGO experts 

  S. Meyer & A. Chou: UC/FNAL collaborative grant 

  Building tabletop prototype in Ray Tomlin’s lab 
  Proposed to Fermilab PAC as new experiment, June 2009 

  Estimated cost: ~ $2.3 M 

  More detail at http://holometer.fnal.gov/index.html 
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Locked interferometer at Fermilab, 6/24/09 

84 Craig Hogan, Fermilab colloquium, July 2009 



Goals for the  Fermilab Holographic Interferometer 
1.  Measure spatiotemporal cross correlation of displacement to sub-

Planck precision  

2.  Design apparatus to provide convincing evidence for universal 
Planckian noise, or an upper limit to constrain holographic 
theories 

–  Signatures: frequency spectrum,  time domain correlation, 
modulation by reconfiguring apparatus 

–  This has not been attempted before 
3.  Develop cavity technology at Fermilab for  future axion 

regeneration experiment 
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Other experiments 

  Serious attention from AEI Hannover and Golm 
(Directors Danzmann, Allen, Schutz) 

  Hannover Workshop on Holographic Noise (May 
19-20, 2009, AEI): theory  and experiment reviewed 
http://www.aei.mpg.de/~grote/agenda.html 

  followup with GEO-600: see talk by Stefan Hild,
http://www.aei.mpg.de/~grote/
holographic_noise_experiments_GEO600.pdf 

  First paper on mystery noise in preparation, likelihood 
analysis for holographic contribution 

  Major modifications to GEO-600 or LIGO impractical 

  Possible Hannover followup experiment in 2010+, with 
signal-recycled cavity design, ~10m scale 
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Science of Holographic Uncertainty 

  If noise is not there, constrain interpretations of unified theory: 

–  Position wavefunctions include >Planck frequencies 
–  Configuration space violates holographic entropy bounds 

  If it is detected, explore unification physics in the lab: 
–  Evidence for holographic layer  

–  Measure  all  physical degrees of freedom: explore physics “from 
above” 

–  Study holographic relationship between spacetime and mass-
energy, emergence of spatial dimensions  

–  Precisely compare noise spectrum with Planck time derived from 
Newton’s G:  test fundamental theory 

–  Test predictions for spectrum, spatial correlations: properties of 
holographic geometry 

–  Fundamental Planck limit on bandwidth, communication 
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Holographic modes: clue to new dark energy physics? 

  Holographic blurring is ~0.1mm at the Hubble length 

  ~(0.1mm)^-4 is the dark energy density 

  “Nonlocality length” for dark energy is holographic 
displacement uncertainty, scaled to Hubble length 

  (literature on “holographic dark energy” centers on same 
numerology) 

  Does not “explain” dark energy! 

  But experiments might shed light on relevant unification physics 
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Homework for theorists: partial list 

  Clarify relationship of holography to particles and fields 

  Create operator formalism for observables 

  Calculate cross correlations for general configurations 

  Find similar macroscopic limits for string, loop theories 

  Estimate higher order corrections 

  Estimate holographic effects on particle interactions 

  Estimate effect on below-Planck-mass bodies (atom interferometers) 

  Calculate effect for other kinds of interferometers, eg, LISA 

  Generalize to curved spacetime backgrounds, connect with known 
holographic duals in eg AdS spacetime 

  Analyze basis change of particles in black hole evaporation states 

  Find a bulletproof calibration argument from black hole physics 

90 Craig Hogan, Fermilab colloquium, July 2009 



Cover story | 

 Can you see a 3D world in this 

2D image? If not, turn to page 27

www.newscientist.com 17 January 2009 | NewScientist | 25

91 Craig Hogan, Fermilab colloquium, July 2009 


