

the animated GeV sky by Fermi

Isabelle Grenier Université Paris Diderot & CEA Saclay

on behalf of the Fermi-LAT collaboration

FermiLab, 1/4/09

Fermi instruments

Iaunched in June 2008

- lifetime 5 + 5 years
- Large Area Telescope (LAT)
 - 20 MeV 300 GeV
- GLAST Burst Monitor (GBM)
 - 8 keV 30 MeV
 - all sky not occulted by Earth

Y-ray bursts

Y-ray bursts

a short one

- so far: > 160 GBM events, > 5 LAT events
 GRB081024B
 - first short GRB with γ > GeV
 - delayed and longer-lasting emission at high energy
 - single Band spectrum
 - $\gamma + \gamma \rightarrow e^{\pm}$ constraints
 - $\Gamma > 150 \text{ at } z = 0.1$
 - Γ > 900 at z = 3.0
 - origin of lasting HE γ rays? why with 2nd GBM peak?
 - why delayed after sub-MeV?

a long one

GRB080916C: $z = 4.35 \pm 0.15$ (GROND)

- delayed and 23mn-lasting γ rays
- Band spectrum E_γ ≤ 13 GeV (E_{rest} ≤ 170 GeV)
- $E_{iso} = 8.8 \ 10^{47} \ J = 4.9 \ M_{\odot}c^2$
- beamed: Γ > 890 ± 20
- X-ray afterglow after 17h

a long one

GRB080916C: $z = 4.35 \pm 0.15$ (GROND)

- delayed and 23mn-lasting γ rays
- Band spectrum E_γ ≤ 13 GeV (E_{rest} ≤ 170 GeV)
- $E_{iso} = 8.8 \ 10^{47} \ J = 4.9 \ M_{\odot}c^2$
- beamed: Γ > 890 ± 20
- X-ray afterglow after 17h

the animated GeV sky

the LAT telescope

PSF HWHM

- for E⁻² source
- 0.1-1 GeV band: 0.6°
- 1-100 GeV: 0.05°

2.4 sr (20% sky)

with old EGRET eyes

sharper Fermi eyes

Solution: Cygnus region: 0.1-1 GeV, 3 months

energy-dependent eyes

better localization

◎ 0FGL sources, 95% error circles

twinkling sky

Gamma-ray

0.8

source detection

wavelet detection

- max-likelihood: TS evaluation, spectrum characterization
- interstellar emission model needs improvement

205 bright sources

 \Im significance > 10 σ (point-sources, not flux limited)

- compared to 31 3EG sources > 10 σ over 9 years
- 1/3 sources at |b|<10° (inner Galaxy), 2/3 off the plane
- \sim weekly flux measurements and X² test (Δ F/F_{pulsar} \leq 3%)
 - 1/3 variable sources, mostly off the plane (P_{chance} < 1%) +90

Fermi versus EGRET

- 40% LAT sources off the plane with no EGRET counterpart = variable
- \bigcirc better LAT PSF \Rightarrow less confusion with ISM and neighbours in the

plane

205 bright sources

LAT PSF \Rightarrow localization > 2.4' and 6'-20' near threshold

\Rightarrow multi- λ studies

active galactic nuclei

Fermi AGN at |b|>10°

106 high-confidence (> 90%) associations

57 FSRQ, 42 Bl Lac, 5 uncertain

 $[\]theta_{95} \sim 0.14^\circ~(\text{EGRET}~0.62^\circ)$

Gamma-ray Space Telescope

SED with blazar type

Fermi AGN

- flux and hardness
 - \Rightarrow many more soon
 - trend for fainter, harder Bl Lacs

red and blue blazars

spectral curvatures

IC curvature showing up for bright sources

PRELIMINARY

3C454.3

- spectral break at E = 2.4 ± 0.3 GeV
 - not a cooling break ($\Delta \alpha > 0.5$)
 - γ + γ_{disc} or γ_{corona} → e[±] unlikely (very close to BH and no cascading in X rays detected)

intrinsic electron break?

blazars with redshift

PRELIMINARY

blazar evolution?

FSRQ variability

- PKS1502+106 (z = 1.84)
- rapid variability
- multi-λ campaign
 - γ-X: correlated no time lag
 - UV-opt: 4-day lag
 - mm: 1 month lag?
 - radio: 3 month lag?

MJD [days]

PKS1502+106

short flare, γ and X co-spatial, $E_{rest frame} \leq 140 \text{ GeV}$, $\tau_{\gamma\gamma} \propto \delta^{-5} L/\Delta t \Rightarrow \delta...$

- after ejection of VLBI core knot
- and E-field ordering
- ExC (disc, BLR) emission or SSC...

BI Lac variability

- PKS2155-304 (z = 0.12) in a low state
 - 12-day multi- λ campaign
- SSC single zone, 3 power-law electron spectrum
 - $E_{e}(X) > 120 \text{ GeV}$
 - $10 < E_e(GeV-TeV) < 120 GeV$
 - TeV is K-N dominated
 - \Rightarrow X- γ time correlation
 - none expected, none seen E²dN/dE
 - unlike in flare state
- opt-TeV time correlation
 - none expected, but seen
 - \Rightarrow not SSC optical seeds
- ⇒ muti-zone model

radio-loud Seyfert in Y rays!

- PMN J0948+0022 (Sey1 lines + radio-loud variable core, z = 0.58)
 - $\delta > 2.5$ and $\theta < 22^{\circ}$
- SED similar to FSRQ
 - confirms jet presence
 - Γ = 10, δ = 18
 - exC on BLR dominates
 - Iow-power FSRQ
- low-mass black hole
 - \Rightarrow low power
- high L/L_{Edd} = 0.4
 - \Rightarrow active jet

any other?

NGC1275

- nearby radiogalaxy (alias Perseus A or 3C84) in the Perseus cluster
 - with blazar-like radio core
- piercing jets

NGC1275

detected by LAT

stable over 4 months, but variable between COS-B, EGRET, and LAT

- γ-ray source = AGN, not the Perseus cluster or dark matter
- γ rays at large angle from slow+fast beams or decelerating jet
 - Ghisellini '05 and Georganopoulos & Kazanas '03
 - enhanced IC emission from the interaction of the two zones

pulsars

EGRET pulsars in a few days

the pulsing sky

- pulsars: > 25 radio-loud (\supset 7 ms psr), > 14 radio-quiet
- identified pulsars = 40% of the bright sources at low latitude

blind search: CTA I

P = 316.86 ms

Gamma-ray Space Telescope

close peaks $\Delta \mathbf{\varphi} \sim$ 0.2, as

in PSR B1706-44

age ≈ 10 kyr consistent with SNR and X-ray PWN

identified sources

3EG J0631+0642

30 20 1.8 2 Phase 3EG J1741-2050

3EGJ2020 Y Cyg

new Fermi J0357+32

new Fermi J2238+58

1INARY

Cygnus region

ms pulsars

- many nearby ms pulsars detected
 - \Rightarrow large beaming fraction
 - J0218+4232 at 3.2 kpc confirmed
- 6 with D < 500 pc, large Ė/D²
- a variety of shapes

accelerator sites

Vela: simple exponential cut-off (b = 1, b = 2 rejected at 16.5 σ)

- ⇒ no evidence for γ + B → e[±]
- ⇒ medium- to high-altitude accelerator gap

geometry & radiation pattern

sharp caustic peaks

2

multi- λ sub-structures

Gamma-ray Space Telescope

phase separation and shifts

-) a variety of $\Delta \phi$ (γ peaks) and $\Delta \phi$ (radio-γ)
 - with age, luminosity...
 - ex: J2229+6114

on its way...ex: dragonfly

Dermi

population studies

simulations of 10⁶ pulsars for polar, slot, outer gap

confrontation to observations

pulsar wind nebulae

on-going search for extended emission around pulsars
 also toward IC 443, W44, W28...

erm

other Galactic sources

inner Galaxy

inner Galaxy

Dermi

unidentified source in Westerlund 2

Gamma-ray Space Telescope

> other WR coincidences toward crowded and confused Gal. center and Carina regions

WR 140 & WR 147 not bright sources

LMC and 30 Doradus

- extended source + hot spot
 on 30 Doradus
- extension correlated with HI

Y-ray binaries

LSI +61°303 source

• modulated \Rightarrow identified

LSI +61°303

47 Tuc

- PRELIMINARY

counts/pixel

0.20

0.15

0.25

0.30

0.10

Solution of the second seco

fast transients

- bright & fast transients
 - released by ATels
 - <u>http://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/</u>
 - 2 bright transients detected at low latitude (ATels 1771 & 1788)
- Swift, Chandra, and VLA follow-up observations in place

the stable GeV sky: the Milky Way

interstellar emission

80% of LAT photonsno GeV excess

erm

IR emission $\rightarrow N_{dust}$: temperature correction

IR emission \rightarrow N_{dust} : temperature correction

dark gas

dark gas

dark gas

dark gas

log(N(H)) in the HI phase (H cm⁻²)

Comparable N(H)column-densitiesin the 3 phases

Problems with linear combination of ISM tracers in the Galactic plane...

more tomorrow

Fermi Science Support Center (<u>http://fermi.gsfc.nasa.gov/ssc/</u>)

W28

