

First Active to Sterile Neutrino Search from NOvA using the Antineutrino Beam

Mike Wallbank, University of Cincinnati for the NOvA collaboration

Joint Experimental-Theoretical Physics Seminar October 18, 2019

Outline

- NOvA
- NOvA Physics: Neutrino Oscillations
- Sterile Neutrinos, 3+1 Mixing
- Sterile Neutrino Searches
- NOvA Long-Baseline Neutral-Current Disappearance Analysis
- Results in Context

NOvA

NOvA

- The NOvA (NuMI Off-Axis *v_e* Appearance) experiment is a long-baseline neutrino oscillation experiment based here at Fermilab.
- Rich physics program:
 - Precision Standard Model measurements, mass ordering, leptonic CPV: v_{μ} , \overline{v}_{μ} disappearance, v_e , \overline{v}_e appearance.
 - Sterile neutrino searches: NC disappearance, short-baseline studies.
 - Other searches: supernovae, exotics, cross-sections.

The NOvA Experiment

- Two functionally-identical detectors placed in an accelerator-produced neutrino beam, 1 km and 810 km from the source.
 - 14.6 mrad off-axis to produce a more monochromatic energy spectrum, peaked around 1-3 GeV.
 - Use Fermilab's NuMI beam, dominated by \overline{v}_{μ} .

The NOvA Detectors

- Low Z tracking calorimeter composed of alternating horizontal and vertical planes of liquid filled scintillator, read out out by photodiodes.
- Near Detector (ND) 100 m underground, Far Detector (FD) on surface of Earth.

Near Detector

16 m x 4.1 m x 4.1 m

214 layers, ~20,000 channels

300 tons

Far Detector

Detector

IL

Far Detector 14 kton 60 m x 15.6 m x 15.6 m 896 layers, ~344,000 channels

Cell

200 collaborators, 7 countries, 33 theses (and counting!)

۲

Most recent paper published last week! https://novaexperiment.fnal.gov/publications/

۲

PHYSICAL REVIEW LETTERS 123, 151803 (2019)

First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

200 collaborators, 7 countries, 33 theses (and counting!)

Neutrino Oscillations

Neutrino Oscillations

- Neutrino created in one flavor state (v_{μ}) may be detected in another (v_e) .
- Flavor state isn't an eigenstate of the Hamiltonian, rather the mass states are.

Neutrino oscillations are driven by the difference in mass between the neutrino mass eigenstates -> require neutrinos to have mass.

• Mass splitting drives the frequency of the oscillations, the mixing angle describes the magnitude.

Standard 3-Flavor Neutrino Mixing

• Assume three neutrino flavor states and three neutrino mass states (standard picture):

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from whith Antineutr. E 2019)

3-Flavor Neutrino Mixing

- Increasingly precise measurements of the parameters governing 3-flavor oscillations over recent years.
- Relatively large mixing in the leptons!

 $P(\nu \to \nu) \stackrel{?}{=} P(\bar{\nu} \to \bar{\nu})$

- Other neutrino unknowns which can't be probed using oscillations:
 - absolute mass scale, Dirac or Majorana, mechanism of neutrino mass.

More Than 3 Flavors?

- Most results from neutrino oscillation experiments can be described by mixing in a 3-flavor framework.
- However, anomalous results from LSND and MiniBooNE have observed an excess of $v_e(\overline{v}_e)$ events in $v_\mu(\overline{v}_\mu)$ beams.
- In order to describe these data using oscillations, require a mass splitting $\Delta m^2 \sim O(1) \text{ eV}^2$, much larger than the known values of the 3-flavor mass differences.
 - Need a fourth neutrino with the correct mass splitting.

Excess Events/MeV

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from NOvA with Antineutrinos (JETP, Oct 2019)

Sterile Neutrinos

- Measurements of the width of the Z decay from the LEP experiments constrained the number of light neutrinos ($M_v < M_Z/2$) participating in the weak interaction to be exactly 3.
- Any additional neutrinos must be *sterile*, and not couple to any Standard Model charge.

• Could participate in oscillations with active flavors: $v_e \rightarrow v_s, v_\mu \rightarrow v_s, v_\tau \rightarrow v_s$.

3+1 Neutrino Mixing

- Simplest model is to add a single new neutrino mass state with correct mass difference.
- PMNS mixing matrix increases from 3x3 to 4x4.

3+1 Neutrino Mixing

- When parameterized using rotation matrices, adds:
 - Three new mixing angles θ_{14} , θ_{24} , θ_{34} ;
 - Two new CP-violating phases δ_{14} and δ_{24} ;
 - In addition to the new mass splitting Δm_{41}^2 .
- In this parameterization, $U_{\mu4} = \cos^2\theta_{14}\sin^2\theta_{24}$, $U_{\tau4} = \cos^2\theta_{14}\cos^2\theta_{24}\sin^2\theta_{34}$.

 m_4

Sterile Neutrino Searches

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from NOvA with Antineutrinos (JETP, Oct 2019)

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from NOvA with Antineutrinos (JETP, Oct 2019)

Searches for Sterile Neutrinos

- Searching for v_e/\overline{v}_e appearance, $v_{\mu} \rightarrow v_e$:
 - Sensitive to θ_{14} , θ_{24} .
- Allowed regions for short-baseline *v*_e-appearance oscillations.
- LSND and MiniBooNE results require oscillations driven by a relatively large mass difference.
- These short-baseline observations will be probed further by the Short Baseline Neutrino (SBN) program at Fermilab.

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from NOvA with Antineutrinos (JETP, Oct 2019)

Searches for Sterile Neutrinos

- Can also probe using disappearance of *v*_μ/ *ν*_μ in accelerator-based experiments:
 - $v_{\mu} \rightarrow v_{\mu}: \theta_{14}, \theta_{24};$
 - $v_{\mu} \rightarrow v_s$ (NC disappearance): θ_{14} , θ_{24} , θ_{34} .
- Long-baseline disappearance searches have found no evidence of oscillations outside of a 3-flavor mixing framework.
 - Tension between these results and short-baseline appearance suggested by LSND and MiniBooNE.

Searches for Sterile Neutrinos

- Atmospheric neutrino experiments can use long-baseline v_{μ} disappearance to search for evidence of oscillations outside of 3-flavor mixing.
 - $v_{\mu} \rightarrow v_{\mu}: \theta_{14}, \theta_{24};$
 - MSW effects θ_{34} .
- SuperKamiokande and IceCube have seen no evidence of sterile neutrino mixing and have set limits in the |U_{τ4}|²-|U_{μ4}|² parameter space.
 - Directly comparable measurement to this analysis.

Long-Baseline Neutral-Current Disappearance

- Neutral Current (NC) interaction rate is the same for the 3 active neutrino flavors — insensitive to 3flavor oscillations.
- Oscillations to sterile neutrino states will result in deficit in the NC interaction rate.
- Interpreting in 3+1 framework, sensitive to mixing parameters θ₂₄, θ₃₄, Δm²₄₁, δ₂₄ (assuming small θ₁₄, δ₁₄).

Approximate disappearance probability (Exact formalism used in the fit)

$\Delta m^2_{41} < 0.5 \ \mathrm{eV^2}$

- Region $0.05 < \Delta m^{2}_{41} (eV^{2}) < 0.5;$
 - No significant ND oscillations,
 - Rapid oscillations in FD independent of Δm^{2}_{41} .

$\Delta m^2{}_{41} < 0.5 \ \mathrm{eV^2}$

- Region $0.05 < \Delta m^{2}_{41} (eV^{2}) < 0.5;$
 - No significant ND oscillations,
 - Rapid oscillations in FD independent of Δm^{2}_{41} .

$\Delta m^{2}_{41} < 0.5 \text{ eV}^{2}$

- Region $0.05 < \Delta m^{2}_{41} (eV^{2}) < 0.5;$
 - No significant ND oscillations,
 - Rapid oscillations in FD independent of Δm^{2}_{41} .

$\Delta m^{2}_{41} > 0.5 \text{ eV}^{2}$

- $\Delta m^2_{41} > 0.5 \text{ eV}^2;$
 - ND oscillations become significant,
 - Dependence on Δm^{2}_{41} .
- In this analysis, we don't consider the possibility of oscillations in the Near Detector limit parameter space to smaller values of the mass splitting Δm^2_{41} .

- NOvA has sensitivity to the $3+1 \theta_{24}$ and θ_{34} mixing parameters through changes to the observable interactions following 4-flavor oscillations.
- θ₂₄ mostly affects the rate of events in the far detector compared to the near detector, especially in the high energy tail (>2 GeV) of the neutrino spectrum.
- θ₃₄ drastically alters the shape of the energy spectrum of observable events in the far detector.

- The CP-violating phase δ₂₄ shifts the disappearance maximum, compensating for θ₂₄ and θ₃₄ effects.
- Shifts are reversed between neutrinos and antineutrinos.
 - Analyzing both can provide additional constraints and help disentangle oscillations from systematics.

NOvA Antineutrino Dataset

- Thanks to Fermilab for fantastic beam!
- Previous analysis using the **neutrino** dataset.
- This analysis uses the full 12.5x10²⁰ POT **antineutrino** dataset.

NOvA Long-Baseline Sterile Searches

Neutrino Mode

- Previously NOvA has searched for disappearance of NC events using a neutrinodominated beam.
 - Similar selection and analysis technique to this analysis.
- No evidence for neutrino oscillations outside of 3-flavor framework.
- Set limits in θ_{34} - θ_{24} parameter space.

NOvA Antineutrino Sterile Search

M Wallbank (Cincinnati) First Active to Sterile Neutrino Search from NOvA with Antineutrinos (JETP, Oct 2019)

Event Topologies

Event Classification

- Utilize deep-learning techniques to perform event classification NOvA's **Convolutional Visual Network (CVN)**.
 - Multipurpose classifier used to identify v_{μ} CC, v_e CC, v_{τ} CC, NC and cosmic-induced events.
- Two tower Convolutional Neural Network architecture learns from the detector top and side views of each event independently first.
- First implementation of CNN on a HEP result.
- New this analysis:
 - Updated simulation, network optimizations.
 - Classify events using final states.
 - Separate neutrino and antineutrino training.

F. Psihas, Ph.

Indiana University, 2018,

Particle Identification

- CVN gives very good separation between NC signal and CC/cosmic backgrounds.
- Main particle identification used in this analysis.

Cosmic Rejection

Far Detector on surface, exposed to around 11 billion cosmic rays every day.

550 μ s event window

Color represents time

Cosmic Rejection

• Use high timing resolution to split the event into sections of correlated activity.

550 μ s event window

Cosmic Rejection

- Remove cosmic events by considering:
 - direction of showering particles in detector;
 - component of transverse momentum in the event;
 - activity in events close in space and time to candidate NC interactions.
- Also train a Boosted Decision Tree (BDT) on 13 shower variables which provide separation between signal beam events and cosmic backgrounds.
 - Good separation observed between signal prediction and cosmic-induced events.

Event Selection

NOvA Preliminary

- Assuming a mass-splitting such that there are no ND oscillations ($0.05 < \Delta m^2_{41}$ (eV²) < 0.5), can produce a FD 'prediction' using ND data.
- Constrain the ND simulation with data and convolve with the predicted ratio of the FD and ND distributions.
 - Take into account geometrical differences, beam dispersion and the effect of oscillations.
 - Partially cancels correlated systematic uncertainties between two detectors.

- Assuming a mass-splitting such that there are no ND oscillations ($0.05 < \Delta m^2_{41}$ (eV²) < 0.5), can produce a FD 'prediction' using ND data.
- Constrain the ND simulation with data and convolve with the predicted ratio of the FD and ND distributions.
 - Use migration matrix to convert reconstructed energy to true energy, apply oscillations and migrate back to reconstructed energy.

- Predict 122 events from the simulation and external background samples (78% purity).
 - 95 NC signal events, 18 CC beam backgrounds (12 v_{μ} , 4 v_e , 2 v_{τ}), and 9 cosmics backgrounds.
- Produce 3-flavor prediction at the NOvA Far Detector using global best-fit values taken from the PDG:
 - $\theta_{13} = 8.48^{\circ}, \ \theta_{12} = 33.6^{\circ}, \ \delta_{13} = 1.37\pi.$
 - Assume normal mass ordering, upper octant (most conservative): $\sin^2\theta_{23} = 0.542$, $\Delta m^2_{32} = +2.52 \times 10^{-3} \text{ eV}^2$.

Phys. Rev. D 98, 030001 (2018)

Systematic Uncertainties

- Residual uncertainties following the data-driven extrapolation procedure and partial cancellation of correlated systematics.
- Even with low statistics, the analysis is already limited by the large experimental uncertainties. Reducing these is a focus for improvements going forward.

Sideband Studies

- Before examining the Far Detector data, use Near Detector data to produce data-driven predictions to compare to sideband regions.
- Choose region of low BDT response (< 0.55), which would fail cosmic rejection cuts.

Candidate Selected Beam Event

Far Detector Data

- Observe 121 events NC-like events in the Far Detector.
- Simulated 3-flavor prediction 122 ± 11 (stat.) ± 18 (syst.).

Far Detector Data

• Define model-independent 'R-ratio' to quantify the level of agreement between data and 3-flavor simulated prediction.

$$R_{NC} \equiv \frac{N_{Data} - \sum N_{Bkg}^{Pred}}{N_{NC}^{Pred}} = 0.99 \pm 0.12 (\text{stat.})_{-0.16}^{+0.14} (\text{syst.})$$

Consistent with oscillations in 3-flavor framework.

3+1 Model Limits

- Perform rate and shape-based fits to the 3+1 model to set limits on the allowed values of the mixing parameters using Feldman-Cousins approach:
 - Valid for $0.05 < \Delta m^{2}_{41}$ (eV²) < 0.5;
 - Profile over θ_{23} (0.520 < θ_{23} < 0.561; PDG constraint) and δ_{24} .
 - Assume $\theta_{14} = 0$ and $\delta_{14} = 0$ (solar and reactor constrains $\sin^2 \theta_{41} < 0.04$).
- 1D limits (90% C.L.):
 - $\theta_{24} < 24.7^{\circ};$
 - $\theta_{34} < 31.7^{\circ}$.

J. High Energ. Phys. (2018) 2018: 10

Phys. Rev. Lett. 117, 151802 (2016)

Profile over θ_{23} (0.520 < θ_{23} < 0.561; PDG

- Assume $\theta_{14} = 0$ and $\delta_{14} = 0$ (solar and reactor constrains $\sin^2\theta_{41} < 0.04$).
- 1D limits (90% C.L.):

constraint) and δ_{24} .

- $\theta_{24} < 24.7^{\circ};$
- $\theta_{34} < 31.7^{\circ}$.

3+1 Model Limits

- Perform rate and shape-based fits to the 3+1 model to set limits on the allowed values of the mixing parameters using Feldman-Cousins approach:
 - Valid for $0.05 < \Delta m^2_{41}$ (eV²) < 0.5;

50

Limits in Context

• Previous NOvA limits from the neutrino-dominated beam. The first analysis (2016) is very comparable to this result.

Limits in Context

- Limits at fixed Δm^{2}_{41} .
 - NOvA, MINOS/MINOS+: 0.5 eV², IceCube 0.3 eV², SuperK, T2K 0.1 eV², DeepCore 1.0 eV².

	θ_{24}	$ heta_{34}$	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
Accelerator $\overline{\nu} \longrightarrow \text{NOvA 2019} (\overline{\nu})$	24.7°	31.7°	0.175	0.276
NOvA 2017 (ν)	16.2°	29.8°	0.078	0.247
Accelerator $\nu \longrightarrow V$ NOvA 2016 (ν)	20.8°	31.2°	0.126	0.268
MINOS/MINOS+	4.4°	23.6°	0.006	0.160
Accelerator $v/\overline{v} \longrightarrow T2K$	18.4°	45.0°	0.1	0.5
SuperK	11.7°	25.1°	0.041	0.180
Atmospherics — IceCube	4.1°	-	0.005	-
LiceCube-DeepCore	19.4°	22.8°	0.11	0.150

Outlook

Two Detector Fit

- Oscillations in both ND and FD, can no longer treat Δm^2_{41} as constant.
- Must perform joint fit in both ND and FD to properly account for these effects.

- Use covariance matrix to track correlated systematics between two detectors, maintaining the cancellation of uncertainties.
- First analysis with neutrino dataset, before a joint analysis with antineutrinos.
- Also plan to fit additional samples, v_{μ} CC disappearance.

NOvA Test Beam Program

- Six-month test beam run scheduled December 2019 June 2020, currently commissioning at Fermilab Test Beam Facility.
- Use a scaled-down (30 ton) NOvA detector to sample beams of tagged electrons, muons, pions, and protons in the momentum range of 0.3 to 2 GeV and will further the NOvA physics reach by precisely measuring the detector's muon energy scale and electromagnetic and hadronic response.

- Performed first long-baseline sterile search using NC-disappearance with NOvA's antineutrino data sample.
- Using full NOvA antineutrino dataset, 12.5x10²⁰ POT, found no evidence of neutrino oscillations outside of a 3-flavor mixing framework for Δm²₄₁ < 0.5 eV².
 - $R \text{ ratio } 0.99 \pm 0.12(\text{stat.}) \pm 0.16(\text{syst.}).$
- Interpreting in a 3+1 model, set limits on the mixing angles:
 - $\theta_{24} < 24.7^{\circ}, \, \theta_{34} < 31.7^{\circ}.$
- Paper in preparation.
- Look out for exciting updates and new sterile neutrino searches from NOvA very soon!

Thank You!

http://novaexperiment.fnal.gov

3-Flavor Oscillations

Searches for Sterile Neutrinos: Reactors

- Reactor experiments have studied oscillations involving \overline{v}_e to search for evidence of sterile mixing.
- Looking for v_e/\overline{v}_e disappearance:
 - Sensitive to θ_{14} .
- No evidence observed has set strong limits on the θ_{14} mixing angle.

Unitarity Considerations

S Parke, M Ross-Lonergan, Phys. Rev. D 93, 113009 (2016)

- Constraints from unitarity considerations of the PNMS matrix, with current understanding of the mixing angles.
- Current bounds on normalization of rows and columns.
- 'e' row gives strong bounds on $|U_{e4}|^2$.

Flux Prediction

- FLUGG/FLUKA Monte Carlo simulation using GEANT4 beamline to simulate hadron production at targets. Technical Report CERN-2005-010 (2005)
- PPFX (Package to Predict the FluX) reweighing framework developed for MINERvA and applicable to the NuMI beamline.
 - Accounts for attenuation of particles passing through al NuMI materials, uses external data to constrain particle production.
 - Provides reweighing framework to handle systematic uncertainties in a multi-universe approach.

Neutrino Flux Prediction for the NuMI Beamline, Leonidas Aliaga Soplin Thesis, William & Mary (2016)

- Use GENIE 2.12.2 and add some additional effects to account for discrepancies seen in the hadronic energy at the ND.
- 'NOvA tune' used in the 3-flavor oscillation analyses. Tuned on v_{μ} , not NCs.
- Most reweighing affects CC or neutrinos only, so not relevant.
- Full MEC tune of Empirical MEC events based on NOvA data to account for extra processes between QE and Δ production. Fewer than one MEC event selected in our NC sample.

Event Classification

The topology of **neutrino** and **anti-neutrino** interactions is different on average.

Train on **neutrino** beam and **anti-neutrino** beam simulations separately.

Utilize differences in event topology.

$\bar{\nu}$ Efficiency Improvement						
Training Sample (ID > 0.9)						
$\bar{\nu}_e$ CC Signal	$\bar{\nu}_{\mu}$ CC Signal	$\bar{\nu}$ NC Signal				
14%	6%	10%				

Reconstruction Capabilities

- Nicely reconstructed π^0 mass peak, demonstrates ability to reconstruct NC events.
- Used as calibration cross-check.

Cosmic Rejection BDT

- Variables:
 - CVN cosmic,
 - Number of showers,
 - Leading shower direction,
 - Leading shower length,
 - Transverse momentum fraction,
 - Leading shower number of hits [4] (each view separately, sum and difference),
 - Leading shower number of hits (X-Y)/(X+Y) view,
 - Leading shower width,
 - Leading shower gap,
 - Number of MIP hits in slice,
 - 'Calorimetric energy' for leading shower.

Total	NC	Vμ	Ve	ντ	Cosmics		
132.16	95.50	25.52	2.40	0	8.73		
	No oscillations						
Total	NC	V	Va	Vz	Cosmics		
Iotai		νµ	ve	νt	Cosmics		
122.29	95.50	12.20	3.63	2.23	8.73		
With oscillations							

Systematics

- Calibration:
 - Shift calibration normalization by 5% to account for level of agreement with the dE/dx distributions and π^0 mass peak.
 - Shape calibrations from the discrepancy of number of calibrated PEs/cm with dE/dx from simulation.
- Detector response:
 - Scintillation light level normalization; 10% to account for differences between MC/data for the number of photoelectrons/cm detected in through-going cosmics (shift absolute calibration in the opposite direction to avoid canceling effects);
 - Scale the parameters describing the production of Cherenkov light to the extremes where no change is observed in muons but would improve agreement in dE/dx distributions in QE-like ND events between data and MC.

Systematics

- Neutrino interactions:
 - GENIE reweighting;
 - 60% v_{τ} interaction uncertainty;
 - effect of removing the 'NOvA tune' cross-section central values.
- Beam:
 - Beam transport uncertainties, including all parts of modeling the target, decay volume, etc.
 - Uncertainties in modeling the flux using the reweighting framework included in PPFX.
 - Additional 30% uncertainty on neutrinos from kaon decay in the high energy tail of beam.
- Neutron: systematic variation accounting for differences in reconstructed energy between data and simulation for CCQE events with one muon and a single additional object identified as coming from neutron interactions. Low energy neutron depositions scaled up to higher energies.

Limits

Events / 1 GeV / 12.5 \times 10²⁰ POT

40

30

20

10

0

5

- Oscillations driven by θ_{34} at the peak of the spectrum and by θ_{24} in the tail.
- Strong limits in θ_{34} from the excess in the bins at the peak; weaker limit in θ_{24} from the overall deficits in the tail.

Candidate Selected Event

(More) Far Detector Distributions

Cosmic Events

Cosmic Events

Cosmic Events

Effect of θ_{14}

Energy Reconstruction

- Determine 'calorimetric energy' based on calibrated charge collected in detector.
- Use simulation to convert reconstructed energy into 'true deposited energy' in the event.
- Final energy resolution ~25%.

90% World Limits

	θ_{24}	θ_{34}	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
NOvA 2019 $(\bar{\nu})$	24.7°	31.7°	0.175	0.276
NOvA 2017 (ν)	16.2°	29.8°	0.078	0.247
NOvA 2016 (ν)	20.8°	31.2°	0.126	0.268
MINOS/MINOS+	4.4°	23.6°	0.006	0.160
T2K	18.4°	45.0°	0.1	0.5
SuperK	11.7°	25.1°	0.041	0.180
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.150

- NOvA 2017: unpublished, e.g. DPF 2017 proceedings (<u>https://arxiv.org/abs/1710.01280</u>)
- NOvA 2016: Phys. Rev. D 96, 072006 (2017)
- MINOS/MINOS+: Phys. Rev. Lett. **122**, 091803 (2019)
- T2K: Phys. Rev. D **99**, 071103 (2019)
- SuperK: Phys. Rev. D **91**, 052019 (2015)
- IceCube: Phys. Rev. Lett. **117**, 071801 (2016)
- IceCube-DeepCore: Phys. Rev. D **95**, 112002 (2017)

Phys. Rev. D **99**, 071103 (2019)

IceCube NH 99% C.I

IceCube NH 90% C.L

IceCube IH 99% C.L.

IceCube IH 90% C.L.

2K NH/IH 99% C.L.

[2K NH/IH 90% C.L.

SK NH 99% C.L.

SK NH 90% C.L.

0.9

0.8

0.7

T2K 2019

NOvA Short-Baseline Sterile Searches

- Two short-baseline analyses using the NOvA Near Detector.
- With sterile neutrino oscillations, electron neutrino and tau neutrino appearance must be consistent with muon neutrino disappearance.
- Joint analysis of v_e , v_τ appearance with v_μ disappearance allows partial cancellation of systematics.
- Short-baseline oscillations at the NOvA near detector covers L/E range of LSND and allows searching for high-energy v_{τ} s in the tail above the beam peak.

