

EMPHATIC Results

Matej Pavin, on behalf of the EMPHATIC collaboration

JETP Seminar, Fermilab May 10, 2019

EMPHATIC

- Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland
- 15-20 people
- Hadron production measurements for neutrino experiments

Accelerator and atmospheric neutrino experiments

Neutrino beams in accelerator neutrino experiments

- T2K, NOvA, MINERvA, HK, DUNE
- Proton beam is directed toward a long target
 - Thickness: ~2 interaction lengths
- Produced hadrons are focused or defocused by a set of magnetic horns
- Neutrinos are produced from pion, kaon and muon decays
- Other particles are stopped in the beam dump

Accelerator

Neutrino beams in accelerator neutrino experiments

- Produced neutrino flux is difficult to measure
 - Near detectors measure flux®cross-section
 - \circ v-e scattering \Rightarrow low statistics
 - Direct measurement of produced hadrons is very challenging (high radiation area, complex geometry)
- Monte Carlo models are used to estimate the neutrino flux
 - \circ ~30% differences between models \rightarrow large systematic uncertainty
- Hadron production data is used to scale the models→ re-weighting procedure

Both approaches are necessary to completely constrain neutrino flux!

Hadron production measurements

- Measurements of cross-sections and hadron yields
 - HARP, MIPP, NA49, NA56/SPY, ...
 - Systematics and correlations are not understood
 - Limited phase space coverage
 - Significant differences between measurements
- Most of the hadron production data in the last decade was taken by NA61/SHINE at CERN SPS
 - Beam momenta cannot go below 15 GeV/c
 - $\circ~\pi/K$ and p/K separation is very limited between 5-8 GeV/c
 - TPC detectors are hard to calibrate long time between data-taking and released results

- Phys. Rev. C84, 034604 (2011).
 Phys. Rev. C85, 035210 (2012).
 Phys.Rev. C89 (2014) no.2, 025205
 Eur. Phys. J. C (2016) 76: 84
 N. Abgrall et al., Nucl. Instrum. Meth., A701:99, 2013.
 N. Abgrall et al., Eur.Phys.J. C79 (2019) no.2, 100
 N. Abgrall et al. Eur. Phys. J., C76(11):617, 2016.
 Phys.Rev. D98 (2018) no.5, 052001
- Hadron production remains the dominant neutrino flux uncertainty (5-10%)

Is flux uncertainty important?

- Next gen. experiments: DUNE and Hyper Kamiokande
 - limited by systematics
- Accelerator based neutrino oscillation measurements use far/near ratio → flux systematics mostly cancel out
- Both experiments will have broad near detector programme
 - Neutrino-nucleus cross-sections
 - Sterile neutrino/ non-standard interactions
 - 0 ...
- Single detector measurements → limited by neutrino flux systematics
- CP violation measurement with atmospheric neutrinos is limited by the flux

Measurement of $(anti)v_{\mu}$ charged current inclusive cross-sections

- Measurements with T2K off-axis near detector
- Limited by flux systematics

	Statistics [%]	Flux [%]	Cross-section model [%]	Detector [%]
σ(v)	0.87	9.14	1.16	2.63
σ(anti-v)	3.22	9.37	2.13	1.82
σ(anti-v)/σ(v)	3.22	3.58	1.56	1.11

Phys.Rev. D96 (2017) no.5, 052001

Flux uncertainty at T2K(T2HK) and DUNE

- T2K flux uncertainty at low energies is limited by the untuned interactions outside of the target (π^{\pm} + AI $\Rightarrow \pi^{\pm}$ + X, K^{\pm} + AI \Rightarrow K^{\pm} + X)
 - Untuned

 not covered by hadron production measurements
- Nearly 50% of wrong-sign neutrinos come from interactions outside of the target

10

Thin vs. replica target tuning

- T2K neutrino flux simulation with the NA61/SHINE replica target tuning predicts 5% lower flux
- Differences between thin vs. replica tuning were also observed when MIPP data was used at Fermilab
- Problems with interaction probability?

Uncertainty is dominated by differences between production cross-section measurements.

CP violation in atmospheric neutrino oscillations

- Small effect (~2%) in sub-GeV neutrino sample
- The uncertainty is dominated by hadron production below 15 GeV (π^+/π^- ratio)
- Only HARP data covers the important region

EMPHATIC physics goals

- Measurement of untuned interactions in the T2K neutrino beam simulation
- Hadron production measurements for atmospheric neutrinos
- Measurements for Booster neutrino programme
- Low momentum meson interactions in NuMI
- Cross-check of the NA61/SHINE measurements
- Resolve thin vs. replica target tuning issues
- High momentum measurements for NuMI beam simulation

• Preliminary beam test was done in January 2018

_p_b < 15 GeV/c

EMPHATIC data-taking in January 2018

- Fermilab Test Beam Facility (FTBF)
- 2 weeks
- 16 people, 7 institutions
- Goals:
 - Confirm that FTBF is suitable for hadron production measurements (beam quality)
 - Measure the angular resolution of silicon strip detectors
 - Test of the emulsion data-taking
 - Beam test of threshold aerogel Cherenkov detectors
 - Measurements of total, elastic and quasi-elastic cross-sections (best case scenario)

Fermilab Test Beam Facility (FTBF)

- Primary and secondary beams 0.2 120 GeV/c
 - Momentum resolution: 2%
- Silicon strip and pixel detectors
- Gas Cherenkov detectors for beam PID
- Lead glass calorimeter

	е	μ	Π	K	р
p _{min} [GeV/c]	0.01	1.8	2.4	8	15

- Working in FTBF is an amazing experience
- Experiment setup time 1-2 days
- Many thanks to
 - Mandy Rominski and Todd Nebel for help with the organization and the setup of the detectors
 - Lorenzo Uplegger and Ryan Rivera who stayed until 3 am to help with the silicon strip and pixel DAQ

EMPHATIC data-taking in January 2018

Room MT6.1-B

Lead glass calorimeter

Aerogel Cherenkov

Targets and beam

- Graphite, aluminum, steel and empty targets
- Emulsion targets with graphite
- The same graphite is used in T2K
- Beam momentum: 2, 10, 20, 30, 120
 GeV/c
- Beam composition:
 - p < 10 GeV/c → fraction of e[±] > 50%
 - p = 30 GeV/c → fraction of p
 ~45%, K ~3%, π ~ 50%, e⁺ ~2%

for $\pi/\mu/e$

profiles

What can we do with the data?

- p + C @ 20, 30, 120 GeV/c data
- Measurement of total, elastic and quasi-elastic cross section

Differential cross-section measurement

- No PID or momentum measurement -> contamination from secondary particles and production events
- $p + C \Rightarrow p + X$, $K + C \Rightarrow K + X$
- p or K are leading hadrons (highest momentum particle)
 - This definition minimizes MC corrections

SSD efficiency and angular resolution

- Pitch 60 μ m, 3.8 \otimes 3.8 cm²
- Efficiency and angular resolution are estimated from the empty target data
- Angular resolution above 20 GeV/c is limited by position resolution, multiple scattering becomes significant below 20 GeV/c

Monte Carlo simulation

- Geant4.10.03.p02 simulation of the EMPHATIC setup
 - FTFP_BERT
 - QGSP_BERT
- FLUKA 2011.2x
- Beam profile and divergence distributions from the data are used to generate beam particles
- Simulation includes silicon strip planes, pixel planes, trigger scintillator, and the target
- Good agreement between angular resolution in the data and Monte Carlo (<4%)

Differential cross-section measurement

- N_{pot}
 - number of particles on target
 number of measured tracks after the target
- → number density ⊗ target thickness
- → four momentum bin size
 - → bin number

Ν

 $\left(\frac{a\sigma}{dt}\right)_i = \frac{1}{N_{\text{pot}}} \frac{N_i}{nd\Delta t_i}$

Measures number of particles on the target

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)
- Beam profile cut

Remove upstream interactions

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)
- Beam profile cu'

Remove upstream interactions

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)

Remove upstream interactions

28

Downstream selection

- Single downstream track
- Maximum number of clusters (6)
- Downstream track $\chi^2 < 4$
- δx and δy cuts → difference in upstream and downstream x(y) track position at target z position

Interactions in the pixel detector

30

Pixel interactions

- Selected pixel interactions → only in forward bins)
- Lost particles on target normalization correction

Secondary particles

- Secondary hadrons produced in the target and reconstructed in downstream layers
 - \circ $\,$ pions, kaons, and non-leading protons in p+C $\,$
 - \circ $\,$ pions, protons, and non-leading kaons in K+C $\,$

Systematic uncertainties

Strategy:

- Use data to estimate systematics
- If not possible use MC + largest difference between models

- 1. Beam contamination (kaons in proton beam) → negligible << 1% contamination
- 2. Upstream interactions in the trigger scintillator or SSDs negligible < 0.5%
- 3. Pixel interactions (shape) only forward bins negligible above t=0.01 GeV²
- 4. Secondary particles (not leading protons or kaons) <6%
- 5. Efficiency uncertainty (model dependance) <**3%**
- 6. Normalization (target thickness and density + pixel POT correction)
 - a. Dominated by density uncertainty (2%) + pixel normalization uncertainty (0.5%)

Bellettini et al., Nucl.Phys. 79 (1966) 609-624

dof = 14

43

Impact of the current results (I)

- Quasi-elastic cross-section measurements can significantly impact the flux uncertainty in NOvA
- Assuming 10% uncertainty on proton-nucleus quasi-elastic interactions

NOvA Simulation

NOvA Simulation

Impact of the current results

- Emphatic results can reduce thin target reweighting uncertainty in T2K
- Thin vs. replica differences (under investigation)

We need measurements of particle production!

Future upgrades

- Beam PID < 15 GeV/c
- Momentum resolution <10%
- Good particle ID (emphasis on kaons)
- Large phase space coverage (400 mrad)
- Low material budget
- Fast calibration and analysis

Measurement of particle production

- Based on Belle II RICH detector
- Advances in aerogel production (Chiba U.)
 - new lower index aerogel of n=1.02-1.03 (instead of Ο 1.04-1.05 for Belle II) with good transmittance is developed
- Beam test at TRIUMF in August
- $2\sigma \pi/K$ separation < 7 GeV/c
- $1\sigma \pi/K$ separation < 10 GeV/c

Separation (o)

5

Multigap Resistive Plate Chambers (MRPCs)

- Cooperation with E50 collaboration from Japan
 - Testing of RPCs in EMPHATIC Ο
- TOF measurement \rightarrow complementary to ARICH (particles below Cherenkov threshold)
- Timing resolution ~70 ps
- PID up to 1.5 GeV/c
- Acrylic Cherenkov start counter
 - 40 ps resolution (intrinsic + TDC) Ο

Magnet (Halbach array)

- Halbach array \rightarrow a special arrangement of the permanent magnets
 - Increases the field in the magnet bore 0
- Large acceptance \Rightarrow 400 mrad

Internal field: 1.44 T

Journal of Magnetic Resonance Vol. 277 (2017) 143

Silicon strip detectors (SSDs)

- Very precise tracking is crucial for momentum measurement in a small detector
- CMS technology
- Smaller SSDs upstream from the target and in front of the magnet
 - \circ Pitch: 60 μ m
 - $\circ \qquad 3.8 \otimes 3.8 \ cm^2$
- Large SSDs after the magnet
 - Pitch: 122 μm
 - $\circ \quad 30 \otimes 30 \ cm^2$

Threshold aerogel detector

- Beam PID at lower momenta not possible with gas Cherenkov detectors
- Aerogel threshold Cherenkov
- Beam test
 - $n = 1.004 \Rightarrow N_{p.e.} = 5.7$ (detection efficiency > 99%)

•
$$n = 1.012 \implies N_{n,e} = 16.8$$

○ n = 1.045
$$\Rightarrow$$
 N_{p.e.} = 41.0

n	π threshold [GeV/c]	K threshold [GeV/c]	p threshold [GeV/c]
1.004	1.6	5.5	10.5
1.012	0.9	3.2	6.0

Future EMPHATIC measurements

- 2 phases
- Phase 1 (FY 2020):
 - \circ $\,$ p, \pi, K + C, Al, Fe, @ 4, 8, 12, 20, 31 GeV/c $\,$
 - $\circ~~$ 5, 10 and 20% $\lambda_{_{\rm I}}$ C targets
 - First measurement of hadron yields (100k interactions for 5% λ_1 target \rightarrow data-taking 3 hours)
 - Beam aerogel Cherenkov
 - Magnet + TOF + Aerogel RICH
 - Calorimeter (lead glass)
- Phase 2 (2020/21):
 - \circ p, π, K + C, Al, Fe @ 4, 8, 12, 20, 31, 60, 120 GeV/c
 - Additional targets B, BN, B_2O_3 for atmospheric neutrinos
 - DAQ upgrades
 - RICH upgrade up to 15 GeV/c

Future impact of EMPHATIC

Assuming 10% uncertainty on future meason interaction measurements and quasi-elastic measurements

NOvA Simulation

Conclusions (I)

- Neutrino flux uncertainty is the limiting factor for single detector measurements (v-A cross section, sterile neutrino searches, CP violation measurements in atmospheric neutrinos)
- Additional data below 15 GeV/c is needed to further constrain neutrino flux
 - NA61/SHINE beam cannot go below 13 GeV/c
- Fermilab Test Beam Facility (FTBF)
 - Great asset for Fermilab
 - Fast setup of the experiment

Conclusions (II)

- EMPHATIC test beam in 2018
 - Proof of concept (beam quality, SSD resolution)
- Measurements of forward scattering
 - $\circ \quad p+C \twoheadrightarrow p+X @ 20, 30, 120 \ GeV/c$
 - \circ K + C \rightarrow K + X @ 30 GeV/c (measured for the first time)
 - Limited by statistics
 - None of the explored models accurately predict our results
 - The impact of the results is under investigation
- EMPHATIC upgrades
 - ARICH, RPCs $\Rightarrow 2\sigma \pi/K$ separation < 7 GeV/c
 - Permanent magnet + SSD \rightarrow momentum resolution < 10%
 - Beam PID with threshold aerogel detectors
- Future runs
 - Measurements of particle production and interaction probability

BACKUP

T2K neutrino flux re-weighting

Pixel interactions

- 1. Missed interactions (normalization correction)
 - a. Not in acceptance of the detector or missed by reconstruction
 - b. Estimated from empty target data
- 2. Removed interactions (normalization correction)
 - a. Events removed by the downstream selection
 - b. Estimated from the number of removed events by $\delta x(y)$ cuts and corrected for purity
- 3. Selected interactions (normalization and shape correction)
 - a. Selected pixel interaction
 - b. MC based correction

Pixel interactions

Downstream selection

- Single downstream track
- Maximum number of clusters (6)
- $\chi^2 < 4$
- δx and δy cuts → difference in upstream and downstream x(y) track position at target z position

$$|x_{\rm up} - x_{\rm down}| < n\sigma_x + \tan\left(n\sigma_{\theta_x}\right) \cdot |z_{\rm vert} - z_{\rm targ}|$$