

Measurement of ν_{μ} -CC (π^{0}) on Hydrocarbon using MINERvA

 $\nu_{\mu} + CH \rightarrow \mu^{-} + \pi^{0} + nucleon(s)$

Ozgur Altinok

MINERvA Neutrino Experiment

July 7, 2017

$\nu_{\mu} + CH \rightarrow \mu^{-} + \pi^{0} + nucleon(s)$ Example: $\nu_{\mu} + \{n\}_{C} \rightarrow \mu^{-} + \pi^{0} + p$ $\longrightarrow \pi^{0} \rightarrow 2\gamma$ -28 **EM Shower 1** -26 EM Shower 2 ø ·24 -22 -20 -1분 γ_2 γ_1 HCAL νμ μ -16 -14 -12 proton -10 -8 -6

ν_{μ} -CC (π^{0}) Production: Component Processes

Baryon Resonance Production Δ⁺(1232), higher-mass N*

Non-Resonant Production and Deep Inelastic Scattering

Why ν_{μ} -CC (π^0) Production?

Importance to Neutrino Oscillation Experiments

- $CC(\pi)$ production gives significant rate in neutrino oscillation experiments
- v_{μ} -CC (π^0) provides insight on v_{μ} -NC (π^0) background to v_e appearance
- Oscillations depend on L/E $_v$ and accurate E $_v$ estimation requires knowledge of final states
- Knowledge of $CC(\pi)$ production constrains systematics for resonance and non-resonant models

Example: NOvA Neutrino Oscillation Experiment

[•] NOvA Leading Interaction is CC(1π)

comes from RES and DIS

NOvA Detector Material

• Liquid Scintillator (CH)

My Measurement is ν_{μ} -CC $(1\pi^{0})$ on Hydrocarbon (CH) $1.5 < E_{\nu} < 20$ GeV

 $CC(1\pi)$ -- Important for DUNE too!

Jeremy Wolcott - Tufts University, NuInt 2017

Why ν_{μ} -CC (π^0) Production?

Interesting as a scattering process

- $\operatorname{CC}(\pi^0)$ production rates for
 - $\Delta^+(1232)$ and N* states
 - Non-resonant production
- Physics of Δ⁺(1232) rich sample
 - Proton-Pion invariant mass
 - $\Delta^+(1232)$ polarization
- Isospin relates $\mathsf{CC}(\pi^0)$ to other $\mathsf{CC}(\pi)$ channels
- Pion Final State Interactions in Carbon

Carbon

n

Low Energy Neutrino Beam ($\langle E_{\nu} \rangle = 3.5 \text{ GeV}$)

Phys. Rev. D 94, 092005 (2016)

- Data Collection: March 2010 April 2012
- Protons on Target (P.O.T) Used: 3.33e20

NuMI Neutrino Beam

Nucl. Instrum. Meth. A806, 279 (2016).

MINERvA (Main INjector ExpeRiment: v-A)

The MINERvA international collaboration consists of 65 particle and nuclear physicists from 21 institutions

- Uses high-intensity beam to study neutrino and antineutrino reactions with different nuclei (Scintillator(CH), Carbon, Iron, Lead)
- Neutrino and Antineutrino induced CC Single Pion Production Cross Sections
 - PRD 94, 052005 (2016), PRD 92, 092008 (2015), PLB 749, 130-136 (2015)

Published
$$\nu_{\mu}$$
-CC (π^+)
 $\bar{\nu}_{\mu}$ -CC (π^0) Published

MINERvA (Main INjector ExpeRiment: v-A)

The MINERvA international collaboration consists of 65 particle and nuclear physicists from 21 institutions

- Uses high-intensity beam to study neutrino and antineutrino reactions with different nuclei (Scintillator(CH), Carbon, Iron, Lead)
- Neutrino and Antineutrino induced CC Single Pion Production Cross Sections
 - PRD 94, 052005 (2016), PRD 92, 092008 (2015), PLB 749, 130-136 (2015)

Published ν_{μ} -CC (π^{+}) This Work ν_{μ} -CC (π^{0}) $\bar{\nu}_{\mu}$ -CC (π^{0}) Published

MINERvA (Main INjector ExpeRiment: v-A)

The MINERvA international collaboration consists of 65 particle and nuclear physicists from 21 institutions

- Uses high-intensity beam to study neutrino and antineutrino reactions with different nuclei (Scintillator(CH), Carbon, Iron, Lead)
- Neutrino and Antineutrino induced CC Single Pion Production Cross Sections
 - PRD 94, 052005 (2016), PRD 92, 092008 (2015), PLB 749, 130-136 (2015)

Published ν_{μ} -CC (π^+) $\bar{\nu}_{\mu}$ -CC (π^-) In Progress This Work ν_{μ} -CC (π^0) $\bar{\nu}_{\mu}$ -CC (π^0) Published

Aim is to complete the set of dominant $CC(1\pi)$ channels.

MINERvA Detector

Nucl. Instrum. Methods Phys. Res., Sect. A 743, 130 (2014). Nucl. Instrum. Methods Phys. Res., Sect. A 789, 28 (2015).

Neutral Pion (π^0) detection inside MINERvA

- Due to the 40 cm radiation length in scintillator, photons convert away from vertex
 - Vertex activity is not included in showers
- According to the simulation ≈80% of the showers convert inside the MINERvA detector

Detector Region	Material	Radiation Length
Active Tracker	Scintillator (CH)	40 cm
ECAL	Lead	0.5 cm
HCAL	Steel	1.7 cm

Simulation Software

- Neutrino Interactions are simulated via **GENIE Event Generator** v2.8.4 with Tuning
- Particle propagation through matter is simulated using GEANT4 v9.4.2

	GENIE v2.8.4	NuWro v17.01
Resonance	Modified Rein-Sehgal	Adler, Δ(1232)
Non-Resonant	Scaled Bodek-Yang	Scaled Bodek-Yang
Nuclear Model	Relativistic Fermi Gas	Local Fermi Gas
FSI Model	Effective Cascade	Salcedo-Oset, Full Cascade

Resonance Models

- **GENIE:** Rein-Sehgal, but neglects muon mass and does not include resonance interference
- **NuWro:** Explicit $\Delta(1232)$ with background added incoherently as a fraction of DIS.

Refinements to GENIE v2.8.4

- Recent analyses show that GENIE v2.8.4 has some shortcomings
 - Δ⁺⁺(1232) anisotropy is included
 - Phys. Rev. D 92, 092008 (2015).
 - Down-weighted Non-Resonant pion production based on fits to $v_{\mu}D_2$ bubble chamber data
 - We updated/reduced model systematics in GENIE based on current information
 - Eur. Phys. J. C 76, 8, 474 (2016).
 - We added an additional sample of CCQE-like two-particle two-hole (2p-2h) events
 - Valencia model, Phys. Rev. D 88, 113007 (2013).
 - MINERvA-Tuned, Phys. Rev. Lett. 116, 071802 (2016).

Signal Definition

$$\boldsymbol{\nu}_{\mu} + \mathrm{CH} \rightarrow \boldsymbol{\mu}^{-} + \boldsymbol{\pi}^{0} + \mathrm{nucleon}(\mathbf{s})$$
$$(\boldsymbol{\nu}_{\mu} + \{n\}_{c} \rightarrow \boldsymbol{\mu}^{-} + \boldsymbol{\pi}^{0} + p)$$

- 1. CC Muon Neutrino Interaction
- 2. Vertex inside Fiducial Volume
- 3. Muon Angle is less than 25 degrees

Signal Definition

$$\nu_{\mu} + CH \rightarrow \mu^{-} + \pi^{0} + nucleon(s)$$
$$(\nu_{\mu} + \{n\}_{c} \rightarrow \mu^{-} + \pi^{0} + p)$$

- 1. CC Muon Neutrino Interaction
- 2. Vertex inside Fiducial Volume
- 3. Muon Angle is less than 25 degrees
- 4. 1 π⁰ out-of-nucleus
- 5. No other particles out-of-nucleus (except nucleons)

π

Signal Candidate in Data

- Data Event: 2021/23/449
 - $E_{\gamma 1} = 618 \text{ MeV} \ E_{\gamma 2} = 140 \text{ MeV}$

Event Selections: Vertex

1. Event Vertex inside fiducial volume of the MINERvA Detector

Event Selections: Muon Track

2. Muon is Matched with MINOS detector and charge selection applied

Event Selections: Short Tracks

3. All Short Tracks are proton like (dE/dX profile of the track)

Event Selections: Distant Showers

4. Find two distant (>14cm) showers pointing towards vertex

Event Selections: Kinematics Selection

5. Estimate Neutrino Energy using all final state particles + vertex & extra energy

Event Selections: Kinematics Selection

Event Selections: Kinematics Selection

7. Final Analysis Efficiency & Purity

Data vs Simulation w/o Background Constraint

- Data Events
- Simulation Prediction
 - Signal: u_{μ} –CC (π^{0})
 - Background with π^0
 - Background zero meson (QE Like)
 - Background with charged meson(s)
 - Background Other ($\overline{\nu}_{\mu}$)

Background Constraint using Side Bands (4 in Total)

- Side Bands are specific sub-samples
 - Rejected during event selections
 - Contains mostly background Events
- Two Side Bands on π^0 Invariant Mass
 - Events with $m_{\gamma\gamma} < 60 \text{ MeV}$
 - Events with $m_{\gamma\gamma} > 200 \text{ MeV}$
- Constrain Background Normalizations
 - Background with π^0
 - Background zero meson (QE Like)
 - Background with charged meson(s)

3rd Side Band: Low Proton Score

• Events with a short track whose dE/dX profile is similar to π^{\pm}

4th Side Band: Michel Electron

- Stopping π^+ in the detector decays to a μ^+ and ν_{μ}
- This $\mu^{\scriptscriptstyle +}$ decays to a positron and two neutrinos

Background Constraint using 4 Side Bands

- **1. Low Invariant Mass:** $m_{\gamma\gamma} < 60 \text{ MeV}$
- **2. High Invariant Mass:** $m_{\gamma\gamma} > 200 \text{ MeV}$
- **3. Low Proton Score**
- **4. Michel Electron Detected**

Minimize the global χ^2 in all side bands at once

Side Band Fitting – Before and After

Before Fit $\chi^2/dof = 13.40$

After Fit $\chi^2/dof = 1.80$

Cross Section Calculation

$$\left(\frac{d\sigma}{dP_{\mu}}\right)_{i} = \frac{1}{\Phi_{\nu}T_{N}} \frac{1}{\left(\Delta P_{\mu}\right)_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bckg}\right)}{\epsilon_{i}}$$

1. Obtain Data Distribution after the event selections

Cross Section Calculation

$$\left(\frac{d\sigma}{dP_{\mu}}\right)_{i} = \frac{1}{\Phi_{\nu}T_{N}} \frac{1}{\left(\Delta P_{\mu}\right)_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bckg}\right)}{\epsilon_{i}}$$

- 1. Obtain Data Distribution after the event selections
- 2. Subtract Background

Cross Section Calculation

$$\left(\frac{d\sigma}{dP_{\mu}}\right)_{i} = \frac{1}{\Phi_{\nu}T_{N}} \frac{1}{\left(\Delta P_{\mu}\right)_{i}} \frac{\sum_{j} \boldsymbol{U}_{ij} \left(N_{j}^{data} - N_{j}^{bckg}\right)}{\epsilon_{i}}$$

- 1. Obtain Data Distribution after the event selections
- 2. Subtract Background
- 3. Unfold Data to remove reconstruction effects

Cross Section Calculation

$$\left(\frac{d\sigma}{dP_{\mu}}\right)_{i} = \frac{1}{\Phi_{\nu}T_{N}} \frac{1}{\left(\Delta P_{\mu}\right)_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bckg}\right)}{\epsilon_{i}}$$

- 1. Obtain Data Distribution after the event selections
- 2. Subtract Background
- 3. Unfold Data to remove reconstruction effects
- 4. Correct for Efficiency to remove acceptance effects

Cross Section Calculation

$$\left(\frac{d\sigma}{dP_{\mu}}\right)_{i} = \frac{1}{\boldsymbol{\Phi}_{\boldsymbol{\nu}}\boldsymbol{T}_{N}} \frac{1}{\left(\boldsymbol{\Delta}\boldsymbol{P}_{\mu}\right)_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bckg}\right)}{\epsilon_{i}}$$

- 1. Obtain Data Distribution after the event selections
- 2. Subtract Background
- 3. Unfold Data to remove reconstruction effects
- 4. Correct for Efficiency to remove acceptance effects
- 5. Divide by **neutrino flux** and **number of targets**
- 6. Present cross section as **bin-width normalized**

Systematic Uncertainty Categories

Cross-Section Model Uncertainties

- Form factors used to calculate Resonance Cross Sections
- Predicted event rate for Non-Resonant Pion Production
- Detector Response Uncertainties
 - Electro-magnetic (EM) energy scale or muon angle
- Final State Interactions (FSI) Model Uncertainties
 - Pion Absorption or charge exchange inside the nucleus
- Flux Uncertainties
 - Hadron interaction models and beamline geometry
- Other
 - Side Band Fit: Bckg constraint

Statistical and Systematic Uncertainties

MINERvA CC(π) Results for W < 1.8 GeV

Results are shown in this layout

$$\nu_{\mu} + CH \rightarrow \mu^{-} + \pi^{0} + nucleon(s)$$

- Semi-exclusive Process
- $1.5 < E_v < 20 \text{ GeV}$
- θ_{μ} < 25 degrees
- GENIE v2.8.4 with Tuning
- Isospin Composition: $A_{3/2}$, $A_{1/2}$

 $\nu_{\mu} + CH \rightarrow \mu^- + \pi^{\pm} + X$

- Semi-inclusive Process
- $1.5 < E_v < 10 \text{ GeV}$
- No constraint on θ_{μ}
- GENIE v2.6.2
- Isospin Compositions: $A_{3/2}$ and $A_{3/2}$, $A_{1/2}$

$\overline{\nu}_{\mu} + CH \rightarrow \mu^{+} + \pi^{0} + nucleon(s)$

- Semi-exclusive Process
- $1.5 < E_v < 10 \text{ GeV}$
- No constraint on θ_{μ}
- GENIE v2.6.2
- Isospin Composition: $A_{3/2}$, $A_{1/2}$

Muon Momentum

Muon Production Angle

Four-Momentum Transfer Squared Q²

Four-Momentum Transfer Squared Q²

Neutrino Energy

Final State Interaction (FSI) Model in GENIE v2.8.4

- FSI can modify Pion momentum and direction
 - Modifies measured cross section
- FSI can obscure Original Interaction Type
 - Changes event classification
- Feed Out (24.5%): Signal → Background
 - π^0 Absorption
 - $\pi^0 \rightarrow \pi^{\pm}$
 - $\pi^0 \rightarrow \text{Multi}-\pi$
 - Other Meson $(\pi^0 \rightarrow \pi^0 + X)$
- Net change for Signal Type = -3.6%

- Feed In (20.9%): Background → Signal
 - Multi $-\pi \rightarrow \pi^0$
 - $\pi^{\pm} \rightarrow \pi^{0}$
 - Zero $-\pi \rightarrow \pi^0$

Pion Kinetic Energy

Pion Production Angle

Hadronic Invariant Mass, W_{exp}

• W_{exp} is calculated using recovariables: $W_{exp} = \sqrt{m_n^2 + 2m_n(E_v - E_\mu) - Q^2}$

Proton-Pion Invariant Mass (Proton Reco sub-sample)

- pπ⁰ Invariant Mass is calculated using proton and pion 4-momentums
- Proton kinetic energy, T_p , is required to be greater than 0.1 GeV
- Size of background subtracted sample = 1522 data events (48.8% of original sample)

Δ⁺(1232) enriched sub-sample: Selections

- Δ⁺(1232) enriched sub-sample is obtained by
 - **Proton KE** > 0.1 GeV
 - **W** < 1.4 GeV
 - Whole analysis is repeated!
- Estimated sub-sample Content
 - 74% Δ⁺(1232) resonance
 - 10% other resonances
 - 16% non-resonant

- Size of background subtracted sample
 - 757 data events (24.3% of original sample)

Proton-Pion Invariant Mass

• Δ⁺ enriched sub-sample

pπ⁰ Invariant Mass is calculated using proton and pion 4-momentums

Search for Δ⁺(1232) Polarization

- Δ⁺⁺(1232) Polarization Angles were studied in deuterium-filled bubble chambers
 - ANL: Phys. Rev. D 25, 1161 (1982). and BNL: Phys. Rev. D 34, 2554 (1986).

The zenith (θ) and azimuthal (φ) angular distributions are observed to be non-isotropic.

- Angular Distributions:
 - $\cos(\theta)$ distribution $\approx Y_2^0$
 - ϕ distribution $\approx -\sin\phi$

Solid curves are Adler Model Predictions

Δ⁺(1232) Polarization – Coordinate Axes

- **1.** Boost all particles to Δ rest frame
- 2. Form z-axis along the momentum transfer direction
- 3. Form y-axis along the production plane normal
- 4. Form x-axis assuming the system is Right-Handed
- 5. Angle θ is between z-axis and \overrightarrow{P}_{π}
- 6. Angle ϕ is between x-axis and \overrightarrow{P}_{π} projection on x-y plane

$\Delta^+(1232)$ Polarization – cos(θ) and ϕ

- Δ⁺ enriched sub-sample
- GENIE assumes isotropic Δ⁺(1232) decay

$\Delta^+(1232)$ Polarization – cos(θ) and ϕ

- Δ⁺ enriched sub-sample
- GENIE and NuWro assume isotropic Δ⁺(1232) decay

Conclusion: New Measurements

 $\nu_{\mu} + CH \rightarrow \mu^{-} + \pi^{0} + nucleon(s)$

- Muon Momentum
- Muon Production Angle
- Pion Momentum
- Pion Kinetic Energy
- Pion Production Angle

- Four-momentum transfer squared, Q²
- Hadronic Invariant Mass, W
- Neutrino Energy
- Proton-pion Invariant Mass
- Δ⁺(1232) Decay Polarization Angles

These measurements provide a detailed view of the signal channel

Conclusion: Observed Data vs MC disagreements

These disagreements identify areas in need of improvement.

Conclusion: Behavior of hadronic system

• Δ⁺(1232) decay angles are measured for the first time!

• Provided information for pion FSI model constraints

Thank you!

MINERvA Collaboration

BACKUP

Tracking in MINERvA Detector

- Charged particle must traverse at least 4 planes (≈70mm)
 - Kinetic energy threshold for protons is 100 MeV
 - Tracking resolution is 3mm

Tracking in MINERvA Detector

- Each MINERvA plane is constructed with 127 triangular scintillators
 - An optical fiber is inserted to the center of the strips for signal read out.

- Single module in MINERvA Detector has two planes in different views (XU or XV)
 - This configuration guarantees scintillation signal in a minimum of two strips.

Nucl. Instrum. Methods Phys. Res., Sect. A 743, 130 (2014).

GENIE v2.8.4 with Tuning

- Refinements to GENIE Models
 1. Δ⁺⁺(1232) Anisotropic Decay
 Phys. Rev. D 92, 092008 (2015).
 - 2. Down-weight CC-NonRES 1π Channels
 - 3. Reduce $M_A^{RES} = 1.12 \rightarrow 0.94 \text{ GeV}$
 - 4. Increase CC-RES normalization
 - 5. Include sample of QE-Like 2p2h Events —> Phys. Rev. D 88, 113007 (2013).
- Changes to Systematic Uncertainties
 - 1. Reduce systematic error assignments
 - 2. Include new systematic for CC-RES Norm

Eur. Phys. J. C 76, 8, 474 (2016).

Eur. Phys. J. C 76, 8, 474 (2016).

π⁰ Shower Topology

- Single Region Showers* (64%)
 - **Tracker:** 45%
 - **ECAL:** 10%
 - Side ECAL: 9%
- Double Region Showers⁺ (36%)
 - Tracker + SCAL: 28%
 - Tracker + ECAL: 7%
 - ECAL + SCAL: <%1

37% showers have Side ECAL Energy

* Single Region Requirement: 80% Energy deposited in one region †Double Region Requirement: At least 20% Energy in BOTH regions

EM Energy Calibration

EM Energy Calibration

Event Selections

- Vertex inside Fiducial Volume
- MINOS Matched Muon
- No Michel Electron
 - Around Vertex
 - Around Track End Points
 - Around Shower End Points (applied after π^0 reconstruction)
- Proton Score
 - LLR > -10 for all Proton Candidates (plot on Backup)
- **PreFilter before Pi0 Reconstruction**
 - Unused Energy in Target < 20 MeV
 - Unused Energy in Detector > 50 MeV Cannot be a Pi0
 - Unused Energy in Detector < 2500 MeV DIS Events
- Pi0 Reconstruction
 - Require 2 EM Showers
 - Found EM Showers can be fitted to a line passing through vertex
- Pi0 Quality
 - Leading Gamma conversion distance > 14cm (plot on Backup)
 - 60 MeV < InvMass < 200 MeV

Particle Momentum Resolutions

Interaction Kinematics Resolutions

Side Band Fit – Low Proton Score

Before Fit

After Fit

Side Band Fit Michel

Before Fit

After Fit

Background Subtraction

- After event selections, the final sample purity is 50.7%
 - 1 out of 2 events is "not" signal (background)
- We subtract the GENIE estimation for the shape of the background distribution from data
 - Background Subtracted data is treated as 100% signal

Unfolding

- For the detected particles the momentum and direction estimations are not perfect
 - Partial Tracking or Wrong Calibration
- We use the GENIE estimation for the particle kinematic to correct our measurement

Muon Momentum

 π^0 Momentum

Efficiency Correction

- We can not detect "all" signal events, our detection efficiency is 8.4%
 - Particle out of acceptance (MINOS Match)
 - Particle Kinematics out of detector thresholds (low energy)
- We use GENIE estimation for "detected" signal events and "all" signal events

Systematics Grouping

(I)	(11)	(111)	(IV)	(V)
Detector Response	GENIE Cross Section	GENIE FSI	Flux	Other
EM_EnergyScale	GENIE_AhtBY	GENIE_AGKYxF1pi	Flux	WithPi0 Bckg Const.
Michel Fake	GENIE_BhtBY	GENIE_FrAbs_N		ChargedPion Bckg Const.
Michel True	GENIE_CCQEPauliSupViaKF	GENIE_FrAbs_pi		QELike Bckg Const.
Muon Momentum	GENIE_CV1uBY	GENIE_FrCEx_N		Unfolding
Muon Theta	GENIE_CV2uBY	GENIE_FrCEx_pi		
Muon Tracking	GENIE_EtaNCEL	GENIE_FrElas_N		
Neutron Response	GENIE_MaCCQE	GENIE_FrElas_pi		
Pion Response	GENIE_MaNCEL	GENIE_FrInel_N		
Proton Tracking	GENIE_MaRES	GENIE_FrInel_pi		
ProtonEnergy BetheBloch	GENIE_MvRES	GENIE_FrPiProd_N		
ProtonEnergy Birks	GENIE_NormDISCC	GENIE_FrPiProd_pi		
ProtonEnergy MassModel	GENIE_NormNCRES	GENIE_MFP_N		
ProtonEnergy MEU	GENIE_NormCCRES	GENIE_MFP_pi		
Target Mass	GENIE_Rvn1pi	GENIE_RDecBR1gamma		
	GENIE_Rvn2pi	GENIE_Theta_Delta2Npi		
	GENIE_Rvp1pi			
	GENIE_Rvp2pi			
	GENIE_VecFFCCQEshape			

FSI Feed In vs Feed Out

FSI Type decomposition for $d\sigma/dT_{\pi}$ and $d\sigma/d\theta_{\pi}$

W beyond 1.8 GeV

Correlation effects

Correlations can be **short range**...

- * Bodek-Ritchie tail to RFG
- Spectral functions

... medium range...

- Meson exchange currents
- Transverse enhancement model

... or long range... Random phase approximation

16

82

Q^2 Fit for Low E_v and High E_v

 $1.5 \le E_{\nu} < 4 \text{GeV}$

4. $0 \le E_{\nu} < 10 \text{GeV}$

Isospin Amplitudes for CC Interactions

Neutrino Antineutrino $\mathcal{A}(\nu_{\mu}p \to \mu^{-}p\pi^{+}) \equiv \mathcal{A}(\bar{\nu}_{\mu}n \to \mu^{+}n\pi^{-})$ $\mathcal{A}(\nu_{\mu}n \to \mu^{-}p\pi^{0}) \equiv \mathcal{A}(\bar{\nu}_{\mu}p \to \mu^{+}n\pi^{0})$ $\mathcal{A}(\nu_{\mu}n \to \mu^{-}n\pi^{+}) \equiv \mathcal{A}(\bar{\nu}_{\mu}p \to \mu^{+}p\pi^{-})$ $\mathcal{A}(\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}) = \sqrt{2}A_{3}$ $\mathcal{A}(\nu_{\mu}n \to \mu^{-}p\pi^{0}) = \frac{2}{2}(A_{3} - A_{1})$ $\mathcal{A}(\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}) = \frac{\sqrt{2}}{2}(A_{3} + 2A_{1})$

$\Delta^+(1232)$ Polarization – cos(θ) and ϕ

$\Delta^+(1232)$ Polarization – cos(θ) and ϕ

Search for 2p2h Contribution in u_{μ} –CC (π^0)

- We searched for 2p2h contribution in our background subtracted distributions.
- We defined a search area based on QE-like 2p2h prediction
 - 0.1 < q₀ < 0.8 GeV and 0.4 < q₃ < 1.1 GeV

We looked for a "Data Excess" in the search region

Observed an excess of 1.6% of total signal

Based upon this excess we calculated an <u>upper-limit</u>: 3.4% of total signal with 90% C.L.

Event Display: 2204/11/453

Event Display: 2037/17/807

