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Some of the  BIG questions
dcp , n mass hierarchy

Where cross sections play a 
role

Simulating the nucleus and 
interactions with neutrinos

Previous MINERvA quasi-elastic 
(QE) and inclusive results

What did we learn?

New result today!

m
nm
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Neutrino Oscillations and big 
questions

 Do neutrinos violate CP?
 Contribution to the baryon asymmetry seen in 

the universe.

7
http://www.dunescience.org/

DUNE



What do you need?
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First and foremost you need an accurate measure of the rate

Ingredients:
1. Flux predictions

• Different between the near and far detector

Width O(1km)
Width = O(1m)

Near detector Far detector…

<1 km

p+

100s of km



What do you need?
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First and foremost you need an accurate measure of the rate

Ingredients:
1. Flux predictions

• Different between the near and far detector

Almost all nm

Mix of nm,ne,nt
a function of En!

p+

100s of km

<1 km



What do you need?
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First and foremost you need an accurate measure of the rate

Ingredients:
2. Precise cross sections of background and signal processes

T2K Uncertainties
PRL 116, 181801 (2016)



What do you need?
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First and foremost you need an accurate measure of the rate

Ingredients:
3. Precise understanding of acceptance

Is your model only constrained by a 2p detector 
and you have a 4p detector?
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First and foremost you need an accurate measure of the rate

Ingredients:
3. Nuclear effects and A-dependence?
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What do you need?
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First and foremost you need an accurate measure of the rate

Ingredients:
1) Flux prediction
2) Precise cross sections of background and signal processes
3) Precise understanding of acceptance
4) Nuclear effects and A-dependence



What else do you need?
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What is En?

Typically not visible
(decay particles might be!)

n l
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Cherenkov Detectors “Fully-active” Detectors
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See Kevin McFarland’s office 



Well, let’s break some rules!
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See Kevin McFarland’s office 



Nucleons are not free and independent 
particles!

 Bound and definitely not independent from their fellow 
nucleons

 So what… we simulate the nucleons as a Relativistic 
Fermi Gas (RFG)
 Quasi-free nucleons in a mean field
 Includes Fermi motion, binding energy, Pauli Blocking

17

Will refer to the multi-nucleon 
effects generically as 2p2h



Nuclear Screening

 Polarization of the nucleus screens electroweak 
coupling of the W

18

 A common analogy is screening 
of electric charge in a dielectric

 Calculated using Random 
Phase Approximation (RPA)

 Effect on cross section: 
Suppression at low four 
momentum transfer Q2



Final State Interactions

 Signal <-> Background migrations
 Energy sharing between pions and nucleons
 Particles in the detector, and thus energy 

deposited, is modified 19



Three General Types of Interactions

20

N N Incre
asing W



MINERvA Detector

21

Neutrino Beam  
Thanks AD!!

Thanks MINOS 
for your near 
detector data!!

m

Thank you CD 
for the computing 
resources!!



What does MINERvA say about 
quasi-elastic processes?

 Strategy 1 – Use summed hadronic energy
Selection based on cutting out high recoil events 
constrain background using the hadronic recoil energy

22
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What does MINERvA say about 
quasi-elastic processes?

 Strategy 1 – Use summed hadronic energy
Selection based on cutting out high recoil events 
constrain background using the hadronic recoil energy
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Q2
QE = 0.11 GeV2

Hadronic Recoil = 460 MeV
Rejected by selection



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits

27



Our first QE Results 
(updated to latest flux)

28

Both results prefer a model with a 2p2h-like enhancement

TEM – Transverse Enhancement Model is an empirical model fit to electron-
nucleon scattering

nmnm

Strategy 1

Phys. Rev. Lett. 111, 022501 (2013)Phys. Rev. Lett. 111, 022502 (2013)

TEM: Eur.Phys.J. C71, 1726 (2011)
NuWro: 



Our first QE Results 
(updated to latest flux)

29

Both results prefer a model with a 2p2h-like enhancement

• Fills in low Q2 RPA suppression
• Increases cross section in the 0.1<Q2<1 GeV2 region
• Does not increase like the modified MA curve does at high Q2

nmnm

Strategy 1

Phys. Rev. Lett. 111, 022501 (2013)Phys. Rev. Lett. 111, 022502 (2013)



A more inclusive approach

30

Unlike the other analyses this 
analysis uses information of the 
lepton and hadronic system 
together



Selected Events – Nominal GENIE 
w/ reduced p

31

GENIE: [Nucl.Instrum.Meth.A614 (2010) 87-104], arXiv:1510.05494[hep-ph]
2p2h: PRC 70, 055503 (2004); PRC 83, 045501 (2011)
RPA: PRC 70, 055503 (2004); PRD 88, 113007 (2013)
Reduced pion: Eur. Phys. J. C (2016) 76: 474

Phys. Rev. Lett. 116, 071802 (2016)



Selected Events – Nominal GENIE 
w/ reduced p

32

Phys. Rev. Lett. 116, 071802 (2016)



Selected Events 
Add in Nuclear Screening
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Phys. Rev. Lett. 116, 071802 (2016)



Selected Events 
Add in Nuclear Screening
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Phys. Rev. Lett. 116, 071802 (2016)



Selected Events
Add in 2p2h
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Phys. Rev. Lett. 116, 071802 (2016)



Takeaway

 Nuclear screening and 2p2h 
go a long way to explain the 
data

 BUT, not enough. 
 The dip region between QE 

and resonant pion 
production still show the 
simulation is not 
representing the data.

 So, what to do….
36

“Dip” region



The low recoil fit

 Fit a 2D Gaussian in true (q0,q3) as a reweighting function to the 
2p2h contributions to get the best agreement

 Does not scale true QE or resonant production.
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Back to exclusives!

 We now have a modified simulation which 
represents our inclusive data quite well

 Revisit the anti-neutrino result shown at JETP 
seminar June 17th, 2016

 Unveil the new neutrino result

38



Double Differential in PtP||

39

Strategy 1

Antineutrino Result 



Double Differential in PtP||

40
Excess at ~0.5 GeV Pt roughly maps back to the excess regions 
in the inclusive NEUTRINO analysis – oh that’s interesting

Strategy 1



Apply the reweight

41

The reweight from the inclusive neutrino fit
gives improved agreement in the anti-neutrino result!

Strategy 1

MINERvA Preliminary



New Neutrino
Results for today

Double Differential ptp|| cross section
Differential cross sections in En,QE and Q2

QE

42



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits
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Track that stub!

Isolated energy deposit



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits
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dE/dX PID. Is it proton-like?

Isolated energy depositCount these



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits

46

Ask how much energy is not tracked
AND not in the vertex region
Make a very loose cut



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits

47

Look for Michel electrons at later 
times to veto p+



An aside.

 Much harder for an anti-neutrino analysis
 Anti-neutrino interactions produce predominantly 
p- which decay to m- which typically capture

 Therefore, no Michel electrons, bummer.

48



What does MINERvA say about 
quasi-elastic processes?

 Strategy 2 –Track pions and protons
 Select events based on particle identification
 Constrain pion background using side band fits

49

Q2
QE = 0.11 GeV2

Hadronic Recoil = 198 MeV
No Michel electrons
Only 1 isolated energy deposit
PID all proton-like
Candidate!!!



Signal definition
 QE-Like – Defined by particles exiting the nucleus

 Any number of nucleons of all energy
 No pions, heavy baryons etc

 Additional constraints
 True muon angle <20.0 degrees because of the 

MINERvA-MINOS acceptance

50



PID broken down by particle

51

Cut region depends on Q2
QE

Looser cuts as Q2
QE increases

Integrated over Q2
qe

• This is applied to all tracks 
which are not the muon

• Loosen cut as Q2
QE

increases because protons 
are harder and interact more



Hadronic Recoil
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 Very loose cut on the untracked energy outside the vertex region.
 Sample here passes the rest of the selection.

MINERvA Preliminary
Data POT: 3.30e20
All track samples No background 

tuning applied



Also….

 Reject events with Michel electrons
 Reject events with 2 or more isolated clusters 

of energy

 In addition:
 MINOS restricts our acceptance to  about 20 

degrees. Make a cut rejecting the VERY few events 
with angles greater than 20 degrees.

53

The Sidebands



Number of Michel Electrons
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Isolated energy deposits
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Final Selected Sample

56

Lines of constant En,qe [3,7,11,15,19] 
Lines of constant Q2

qe [0.01,0.1,0.4,0.8,2.0,4.0,6.0]

MINERvA PreliminaryData POT: 3.30e20

1-track sample
62159 events

2+track sample
46074 events



Background Subtraction 
Methodology

 Two side band samples: 
 Isolated energy deposits and Michel electron

 Idea is one constrains charged pions and the 
other neutral pions

 Extract scaling factors to apply to p+/- and p0 

 In pt, bin-by-bin or sum of bins depending on 
statistics

57



Selection and background 
constraint: 1-track sample
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Selection and background 
constraint: 2+-track sample
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Scaling Factors
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1-track sample 2+-track sample

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20



Efficiency
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MINERvA PreliminaryData POT: 3.30e20



Quickly look at 1D versions

62

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20

• In the ~3-5 GeV region the flux focusing systematics 
dominate

• This is right at the falling edge of the flux peak
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Quickly look at 1D versions
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MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20

Phys. Rev. D 94, 092005 (2016)
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MINERvA Preliminary
Data POT: 3.30e20

Quickly look at 1D versions
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MINERvA Preliminary
Data POT: 3.30e20
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MINERvA Preliminary
Data POT: 3.30e20

Quickly look at 1D versions
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MINERvA Preliminary
Data POT: 3.30e20

Let’s go look at these in the 2D cross section
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PtP|| Cross Section
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MINERvA Preliminary Data POT: 3.30e20
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PtP|| Cross Section
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MINERvA Preliminary Data POT: 3.30e20
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Systematic Uncertainties

 Low Recoil fit – Do the fit but varying only nn
or np or QE components. Add in quadrature. 
Dominant in mid Pt bins which have the highest 
fraction of 2p2h events

68



Systematic Uncertainties

 Muon Reconstruction-
 11MeV shift from MINERvA material assay
 30 MeV shift from energy deposition per cm
 2% for energy by range MINOS
 0.6% > 1GeV or 2.5% <1GeV if measured by 

curvature
 Added in quadrature 69



Systematic Uncertainties

 FSI Models- what particles get out of the 
nucleus and energy sharing between nucleons 
and pions

 Dominated by pion absorption 
 Background->signal migration strength

70



Systematic Uncertainties

 Interaction Models – These are the GENIE 
model parameters’ uncertainties. 

 In general small (good!) but as pT increases the 
data constraint on backgrounds isn’t as good 
and we start depending on the model more

71



Systematic Uncertainties

 Flux – See  Phys. Rev. D 94, 092005 (2016)

72

Focusing Uncertainties Hadron Production Uncertainties



Systematic Uncertainties

 Others – Summation of many small uncertainties
 Includes – particle response in detector, energy 

of hits, number of targets, matching efficiencies 
between MINOS and MINERvA, Bethe-Bloch.

73



Systematic Uncertainties

74



Comparison To Nominal GENIE

75Modified GENIE  c2=170 (stat.+sys,  120 dof)
Nominal GENIE   c2=220 (stat.+sys,  120 dof)

MINERvA Preliminary Data POT: 3.30e20
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Comparison To Nominal GENIE
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MINERvA Preliminary Data POT: 3.30e20
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Two interesting regions which will pop up later in the Q2
QE section



“s”(En,QE)

77

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary 
Data POT: 3.30e20

• This is NOT true En
• But, we normalize in bins of true En
• What is the difference?



QELike-components: En –En,QE

78

MINERvA Preliminary
Data POT: 3.30e20



What’s the wiggle partially due to?

79

MINERvA Preliminary
Data POT: 3.30e20

Rapidly changing fractions of 
non-QE components with 
biased En,QE

Why only partially? We see a 
wiggle, smaller, in p||. This is 
thought to be part of a 
mismodeling of the falling 
edge of the focusing peak.



Q2
QE Cross Section

 The low Q2
QE bin shows up in the low recoil 

analysis as well. 
 The high Q2

QE discrepancy is potentially due to 
the dipole axial form factor we use.

80

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20



Z-expansion of Form Factors 

 Z-expansion is a model independent axial form factor 
 This is interesting, but it not a 1 to 1 comparison
 The Z-expansion plot is true Q2 and true QE 81

Phys.Rev. D84, 073006 (2011)
Phys.Rev. D93, 113015 (2016)

MINERvA Preliminary
Data POT: 3.30e20



Where does our low Q2
QE reside in 

MiniBooNE phase space?

Phys. Rev. D 93, 072010 (2016)
Phys. Rev. D 81, 092005 (2010)

Assumes contribution is all CCQE



Where does this reside in our 
inclusive result?

83

GENIE predicts about 1/3 of the rate in the pT /p|| bins are from true QE. 
The result above also see these contributions (along the diagonal)
Low Q2 predictions of the non-QE component are difficult.



Recap
 As we utilize better models our agreement with 

data improves, but there is still work to be 
done!

 The pT p|| result will be useful to the model 
building community, with new components 
necessary to better reproduce the data

 MINERvA can access larger Q2 which is 
interesting when comparing to the Z-expansion

 En,QE is a variable which depends on your 
model.
 Better get that model correct!

84



Looking to the future

 MINERvA has a very large dataset from the 
NOvA era neutrino run. What can we do?
 Explore that higher Q2

QE space which is currently 
limited in statistics

 Slice the data in more ways.

 Continue to utilize better models as they 
become available. Test them. 

 Continue to study FSI and A-dependence using 
our C, Fe, Pb targets.

85



Conclusions

86

We need 2p2h-like models 
in our simulation!

We have a model + ad hoc corrections to 
describe the inclusive data

Works on neutrino 
AND antineutrino 
exclusive channels!

We have a prescription which can be directly applied to oscillation experiments. 

This is CC0p – just like the primary signal region in T2K



Backups
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Previous CCQE(like) 
Results

88



Old CCQE Results Model Comp 
c2

89



Reconstruction Variables

 q0 n = Calorimetric Hadronic Energy






90



How about the hadron side of 
things?

91

 Select two track events in the tracker and also 
isolate a sample in the nuclear targets

 Does not require a MINOS match – because…

 Nuclear targets provide A-dependent 
measurements on C, Fe, Pb



What does the proton say?
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It says…

 GENIE 2p2h+RPA models an analysis off the CH 
target in the track and the C target in the 
nuclear region

 A dependence simulation in  NuWro better 
represents the data

93



Michel
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Michel Energy Spectrum
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MINERvA Preliminary
Data POT: 3.30e20



Michel Decay Time
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MINERvA Preliminary
Data POT: 3.30e20



Isolated Energy Deposits
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Time difference between deposit 
and vertex

98
Sample passes all non-isolated deposit related cuts
Sample here is 1+ deposits 
( the signal sample would keep the 1 deposit case)

MINERvA Preliminary
Data POT: 3.30e20



Distance from the vertex to the 
deposit
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Sample passes all non-isolated deposit related cuts
Sample here is 1+ deposits 
( the signal sample would keep the 1 deposit case)

MINERvA Preliminary
Data POT: 3.30e20



Isolated deposit’s energy
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Sample passes all non-isolated deposit related cuts
Sample here is 1+ deposits 
( the signal sample would keep the 1 deposit case)

MINERvA Preliminary
Data POT: 3.30e20



PID

101



PID broken down by particle

102Full event selection except for PID cut, 2-tracks only, 



PID broken down by particle

103Full event selection except for PID cut, 2-tracks only, 



PID broken down by particle

104Full event selection except for PID cut, 2-tracks only, 



PID broken down by particle

105Full event selection except for PID cut, 2-tracks only, 



Background Constraint
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Signal Before Tuning
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1-track sample 2-track sample

Sample passes ALL selection criteria

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20



Signal Before Tuning
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MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20

1-track sample 2-track sample

Sample passes ALL selection criteria



Sideband Inputs
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MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20

1-track sample 2-track sample

Sample passes ALL other cuts but has 2 or more isolated clusters

Jump at 0.8-1.0 GeV PT in the 2-track sample is because 
of the PID cut which stops cutting in that region and 
beyond



Sideband Inputs
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MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20

1-track sample 2-track sample

Sample passes ALL cuts but has an associated Michel



Scaling Factors
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1-track sample 2-track sample

MINERvA Preliminary
Data POT: 3.30e20

MINERvA Preliminary
Data POT: 3.30e20



Tuned Sideband 
Isolated Energy Deposits
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1-track sample 2-track sample



Tuned Sideband
Michels

113

1-track sample 2-track sample



Tuned Signal Sample
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Tuned Sideband 
Isolated Energy Deposits
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1-track sample 2-track sample



Tuned Sideband
Michels
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1-track sample 2-track sample



Tuned Signal Sample
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1-track sample 2-track sample



Migration
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Migration Matrix Pt
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MINERvA PreliminaryData POT: 3.30e20
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Migration Matrix Pt
MINERvA PreliminaryData POT: 3.30e20



Migration Matrix P||
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MINERvA PreliminaryData POT: 3.30e20 MINERvA PreliminaryData POT: 3.30e20
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Migration Matrix P||
MINERvA PreliminaryData POT: 3.30e20



Migration Matrix Q2
QE
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MINERvA PreliminaryData POT: 3.30e20
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Migration Matrix Q2
QE

MINERvA PreliminaryData POT: 3.30e20



Migration Matrix En
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MINERvA PreliminaryData POT: 3.30e20



Migration Matrix En
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MINERvA PreliminaryData POT: 3.30e20



Efficiency and Purity
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Efficiency - QELike
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MINERvA PreliminaryData POT: 3.30e20



Efficiency- QE
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MINERvA PreliminaryData POT: 3.30e20



Efficiency – QELike – 2p2h
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MINERvA PreliminaryData POT: 3.30e20

The cutoff is due to the model cutting out at q3=1.2 GeV



Efficiency – QELike - Resonant
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MINERvA PreliminaryData POT: 3.30e20



Purity
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MINERvA PreliminaryData POT: 3.30e20



Efficiency – Q2
QE
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MINERvA PreliminaryData POT: 3.30e20



Efficiency – En,QE

134

MINERvA PreliminaryData POT: 3.30e20



Results

135



Signal definition
 QELike – Defined by final state particles

 Any number of nucleons of all energy
 No pion, heavy baryons etc
 No gammas > 10MeV

 Additional constraints
 True muon angle <20.0

 We do not simulate radiative CCQE but will not 
cut it out of the sample in data (mostly 
collinear with muon)
 Basically we assume selection efficiency of this 

process is the same as everything else… 136



Result #1, PTP||
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MINERvA Preliminary Data POT: 3.30e20
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Note: x-axis is not linear. High P|| is squashed to allow everyone to see the lower P||



Result #1 PTP||
Note the sometimes large xN
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MINERvA Preliminary Data POT: 3.30e20

Note: x-axis is not linear. High P|| is squashed to allow everyone to see the lower P||
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Systematics
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MINERvA Preliminary Data POT: 3.30e20
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Data Nominal GENIEModified GENIE



Q2
QE systematic errors
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MINERvA Preliminary
Data POT: 3.30e20



En,QE systematic errors
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MINERvA Preliminary
Data POT: 3.30e20



MiniBooNE Comparison
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MiniBooNE and MINERvA
Kinematics

 MiniBooNE and MINERvA variables at high 



MiniBooNE and MINERvA
Kinematics

 At low 2 for MINERvA, ଶ
்
ଶ



MiniBooNE and MINERvA
Kinematics

 True CCQE and 2p2h like W.  Note migration of 2p2h to higher 2



MiniBooNE data, our lowest , 
<.0125 GeV2



MiniBooNE data, our high , 
>2 GeV2



149



Tuned Signal Sample

150

1-track sample 2-track sample



vs. : The Teppei plot

 Because of the difference between CCQE-like and true 
CCQE and the problem with 


