Electron and Neutrino Scattering from Nuclei: What's Past is Prologue

J. Carlson - LANL

A. Lovato, R. Wiringa, S. Pieper - ANL
S. Gandolfi, S. Pastore - LANL
R. Schiavilla - Jlab/ODU

- Electron Scattering from Nuclei
- Inclusive Scattering: Lessons learned
- Recent expts: back-to-back nucleons
- Electrons versus Neutrino Scattering
- EM and Weak Currents
- Relations to other experiments:
β decay, $\beta \beta$ decay, $S N$ neutrinos
- Summary and Outlook

Neutrinos

Neutrinos proposed by Pauli in 1930 to conserve energy, momentum, and angular momentum in nuclear beta decay.

$$
n \rightarrow p+e^{-}+\bar{\nu}_{e}
$$

In 1956 Reines and Cowan detected anti-neutrinos from Savannah River reactors:

$$
\bar{\nu}_{e}+p \rightarrow n+e^{+}
$$

through coincidence of e+e- gamma rays and neutron capture. Reines was a LANLT-division employee at the time.

Reines and Cowan were awarded the Nobel Prize in 1995.
Reines and Cowan discovered the electron (anti-) neutrino. Later Lederman, Schwartz and Steinberger detected muon neutrino, receiving the Nobel Prize in 1988.

Nuclei: Interactions and Currents

Non-relativistic nucleons w/ 2, 3-body interactions, currents

Deuteron Potential Models with
 Different Spin Orientations

Forrest, et al, PRC 1996

Light Nuclear Spectra

FIG. 2 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to experiment.

Inclusive electron scattering,

 measure electron kinematics only

Electron Scattering: Theorist's Idealized View

Inclusive Electron Scattering

$$
\begin{gathered}
(E, 0,0, p),\left(E^{\prime}, p^{\prime} \sin \theta, 0, p^{\prime} \cos \theta\right) \\
\omega \equiv E-E^{\prime} \\
\vec{q}=\vec{p}-\vec{p}^{\prime}
\end{gathered}
$$

Thus q and ω are precisely known without any reference to the nuclear final state

Electron Scattering: Longitudinal and Transverse Response

Transverse (current) response:
$R_{T}(q, \omega)=\sum_{f}\langle 0| \mathbf{j}^{\dagger}(q)|f\rangle\langle f| \mathbf{j}(q)|0\rangle \delta\left(w-\left(E_{f}-E_{0}\right)\right)$
Longitudinal (charge) response:
$\begin{aligned} R_{L}(q, \omega) & =\sum_{f}\langle 0| \rho^{\dagger}(q)|f\rangle\langle f| \rho(q)|0\rangle \delta\left(w-\left(E_{f}-E_{0}\right)\right) \\ \mathbf{j} & =\sum_{i} \mathbf{j}_{i}+\sum_{i<j} \mathbf{j}_{i j}+\ldots\end{aligned}$
Two-nucleon currents required by current conservation Response depends upon all the excited states of the nucleus Might expect simplifications for $\mathrm{q}<1 / \mathrm{kF}$

Momentum Distributions and Spectral Functions

Schiavilla, et al 1986, Benhar, et al 1993

Spectral Function in NM

Benhar, 1989

Impulse Approximation for quasi-elastic incoherent sum over single nucleons requires momentum distributions and/or spectral functions
broad applicability in neutron scattering, cold atom density response, ...
One-body formulation gives equal longitudinal and transverse response (once single-nucleon form factors divided out)

Simple view of inclusive QE scattering from nuclei

Charge distributions of different Nuclei:

figure from faculty.virginia.edu/ncd
based on work of Hofstadter, et al.: Nobel Prize 1961

Scaling (2nd kind) different nuclei

Slightly different k_{F} for different nuclei Donnelly and Sick, 1999
Inclusive scattering measures nuclear properties at distances $\sim \pi / \mathrm{q} \leqslant 1 \mathrm{fm}$ essentially independent of which nucleus!

Scaling \neq Single-Nucleon Process

 Longitudinal /Transverse separation in ${ }^{12} \mathrm{C}$
from Benhar, Day, Sick, RMP 2008 data Finn, et al 1984

$\left(e, e^{\prime}\right)$ Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

Single nucleon couplings factored out Momenta of order inverse internucleon spacing:
Large enhancement of transverse over longitudinal response Requires beyond single nucleon physics

${ }^{12} \mathrm{C}$ calculations:

NUCLEI
 Nuclear Computational Low-Energy Initiative

GFMC for ground-state

+ current correlation matrix elements

$$
\Psi_{0}=\exp [-H \tau] \Psi_{T}
$$

$2^{\text {A }}=4096$ spin amplitudes \times
I $2!/(6!6!$) $=924$ isospin amplitudes
(charge basis) for each sample

~ 45 M core-hours

Currents and elastic/transition form factors

${ }^{12} \mathrm{C}$ elastic form factor

2 Nucleon charge operators (relativistic corrections) are small

Hoyle state transition form factor

2-Nucleon Currents

Form Factors

Wiringa, Pastore, Schiavilla, et al

Magnetic Moments

Path Integral Algorithm: $\quad \Psi_{0}=\exp [-H \tau] \Psi_{T}$

$$
\left.R_{L, T}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}+E_{f}\right)\left|\langle f| \mathcal{O}_{\mathcal{L}, \mathcal{T}}\right| 0\right\rangle\left.\right|^{2}
$$

Easy to calculate Sum Rules: ground-state observable

$$
S(q)=\int d \omega R(q, \omega)=\langle 0| O^{\dagger}(q) O(q)|0\rangle
$$

Imaginary Time (Euclidean Response) statistical mechanics

$$
\begin{array}{c|c|c|}
\tilde{R}(q, \tau)=\langle 0| \mathbf{j}^{\dagger} \exp \left[-\left(\mathbf{H}-\mathbf{E}_{\mathbf{0}}-\mathbf{q}^{\mathbf{2}} /(\mathbf{2} \mathbf{m})\right) \tau\right] \mathbf{j}|\mathbf{0}\rangle> \\
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} V_{i j}+\sum_{i<j<k} V_{i j k} & \ldots \\
\mathbf{j}=\sum_{i} \mathbf{j}_{i}+\sum_{i<j} \mathbf{j}_{i j}+\ldots & \ldots &
\end{array}
$$

Euclidean Response

Sum rule \rightarrow elastic FF^{2} W/ increasing T
${ }^{12} \mathrm{C}$ Euclidean Response: electron scattering

Lovato, et al, arXiv: I 501.0|98।

Electron Scattering in Helium and Carbon Maximum Entropy for Inversion (Lovato)

Electromagnetic Longitudinal and transverse in ${ }^{4} \mathrm{He}$.
Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015))

Preliminary: Electromagnetic Longitudinal and transverse in ${ }^{12} \mathrm{C}$. Lovato, Gandolfi, Carlson, Pieper, Schiavilla, (2016))

Lovato, 2015
(prelim)

Back to Back Nucleons: Jlab experiments

E Piasetzky et al. 2006 Phys. Rev. Lett. 97162504. M Sargsian et al. 2005 Phys. Rev. C 71044615. R Schiavilla et al. 2007 Phys. Rev. Lett. 98 I3250I R Subedi et al. 2008 Science 320 I475.

2-nucleon momentum ${ }^{12} \mathrm{C}$ distributions ${ }^{10_{B}} \ldots, \mathrm{nP}$ pairs dominate over nn and pp

Argoneut
np vs. pp
$\mathrm{q}\left(\mathrm{fm}^{-1}\right)$
Carlson, et al, arXiv:1412.3081

Recent Experiments: Heavy Nuclei

Neutrinos and Nuclei

Solar Neutrinos
Beta Decay
Reactor Neutrinos
Atmospheric Neutrinos
Accelerator Neutrinos
Astrophysical Neutrinos (Supernovae, ...)
Double-Beta Decay

All to some degree require knowledge of neutrino interactions with nuclei (different kinematics)

Axial Currents at Low Momentum Transfer: Beta Decay

Intermediate q, E: Supernovae and Astrophysical Neutrinos
Different Sources, time dependence, different epochs

Kepler Supernova

Coherent Oscillations, MSW in turbulent regime, ${ }^{\text {, }}$.
Can we make r-process nuclei in supernovae?

Intermediate q: Neutrino Scattering from ${ }^{12} \mathrm{C}$ (LSND) and Astrophysical Neutrinos Theory

Hayes and Towner, PRC, 1999

	Muon neutrino DIF	Electron neutrino DAR	Muon Capture	Photo- absorption
Shell	13.8	12.5	42.2	23.6
Exp	$12.4(2)$	$14.4(4)$	$39.0(1)$	$21(2)$

Astrophysical Neutrinos on ${ }^{4} \mathrm{He}$ Theory w/ 2 nucleon currents Gazit and Barnea, PRL 2007

Little evidence for quenching (or enhancement) for $30-100 \mathrm{MeV}$ neutrinos

Neutrinoless Double Beta Decay

Rate: Absolute Mass Scale
Majorana

$$
\left\langle m_{\beta \beta}\right\rangle=\sum_{i} U_{e i}^{2} m_{i}
$$

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=G_{0 \nu}(Q, Z)\left|M_{0 \nu}\right|^{2}\left\langle m_{\beta \beta}\right\rangle^{2}
$$

Matrix Element for light Majorana neutrino exchange)

$$
\begin{aligned}
M_{0 \nu} & =g_{A}^{2} M_{0 \nu}^{G T}-g_{V}^{2} M_{0 V}^{F} \\
M_{0 V}^{G T} & =\langle f| \sum_{i<j} \frac{R}{r} \sigma_{i} \cdot \sigma_{j} \tau_{i}^{+} \tau_{j}^{+}|i\rangle \\
M_{0 V}^{F} & =\langle f| \sum_{i<j}^{R} \frac{R}{r} \tau_{i}^{+} \tau_{j}^{+}|i\rangle
\end{aligned}
$$

Double Beta Decay Matrix Element (light Majorana neutrino exchange)

$$
\begin{aligned}
M_{0 \nu} & =g_{A}^{2} M_{0 \nu}^{G T}-g_{V}^{2} M_{0 V}^{F} \\
M_{0 V}^{G T} & =\langle f| \sum_{i<j} \frac{R}{r} \sigma_{i} \cdot \sigma_{j} \tau_{i}^{+} \tau_{j}^{+}|i\rangle \\
M_{0 V}^{F} & =\langle f| \sum_{i<j} \frac{R}{r} \tau_{i}^{+} \tau_{j}^{+}|i\rangle
\end{aligned}
$$

corrections from two-nucleon currents, quenching of gA? MC methods sum over all intermediate states

Accelerator Neutrinos

Superk

MINOS

MINERva

MicroBooNE

Advantages: Control over Energy, flux neutrino 'beams' can be sent over long distances

Theorist's Idealized Neutrino Experiment

Monochromatic neutrino (or anti-neutrino) beam
with well-characterized flavor
detected at at least 2 distances w/ different flavors resolved
Need L - distance to detector
E - energy of neutrinos
number of neutrinos w/ different flavors at different baselines L
Reality: know L

mostly know flavor dependence
MiniBoone flux don't know Energy so don't know L/E need to understand how neutrinos interact with nuclei to reconstruct neutrino energy

Larger q: QuasiElastic Neutrino Scattering

 requires enhancement!

Significant Enhancement required, calculations show enhancement in Vector, Axial, and Interference Terms

Neutrinos Oscillations and Masses

Neutrino oscillations first proposed in 1957 by Bruno Pontecorvo, Maki, Nakagawa, and Sakata in 1962

Neutrinos interact with matter in the flavor basis but propagate in the mass basis (in vacuum)

$$
\begin{aligned}
U & =\left[\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1} / 2} & 0 \\
0 & 0 & e^{i \alpha_{2} / 2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 \\
0 & e^{i \alpha 1 / 2} & 0 \\
0 & 0 & e^{i \alpha_{2} / 2}
\end{array}\right]
\end{aligned}
$$

Mixing angles, CP violating phases, Majorana Phases + MSW effect from forward scattering in matter

Neutrino Oscillations: Masses and Mixing

masses, mixings from oscillations

Simplified two-flavor neutrino oscillations:

$$
\begin{gathered}
P_{\alpha \rightarrow \beta, \alpha \neq \beta}=\sin ^{2}(2 \theta) \sin ^{2}\left(1.267 \frac{\Delta m^{2} L}{E} \frac{\mathrm{GeV}}{\mathrm{eV}^{2} \mathrm{~km}}\right) . \\
\text { Ratio of E/L to } \Delta \mathrm{m}^{2} \text { critical }
\end{gathered}
$$

Need to understand cross-section even with near and far detectors

Sum rules in ${ }^{12} \mathrm{C}$

Single Nucleon currents (open symbols) versus Full currents (filled symbols)

${ }^{12} \mathrm{C}$ Euclidean Response: Neutral Current

V-A interference

critical for LBNF
neutrino vs. antineutrino:
CP violation
and mass hierarchy
$\sim 30 \%$ enhancement from 2 N currents in all channels except Longitudinal (charge)

Future Theory Efforts: Accelerator Neutrinos Higher Energy, Larger Nuclei, more exclusive

Larger Nuclei: AFDMC (sample spins/isospins)
Coupled Cluster
Factorization Approaches
(2-nucleon level)
Higher Energy: in Factorization Approaches Pion production, Delta, ...

More Exclusive Channels: couple to Generators (semi-classical) at multi-nucleon level

Future: Astrophysical Neutrinos

'Nuclear physics and neutrinos' questions:
Neutrino decoupling - initial flux at proto-neutron star or in neutron star mergers

Neutrino evolution - Coherent neutrino interactions in early universe, more realistic treatment of compact objects

Nucleosynthesis in supernovae and neutron star mergers

Open Questions

CP-violation in neutrinos

LBNF, HyperK, ...

Mass hierarchy, normal or inverted?
Absolute mass scale

Majorana or Dirac masses?
Neutrinoless
Double beta-decay

Hints of further Beyond the Standard Model Physics?
short-baseline \& reactor experiments

Summary

- Exciting time in Neutrino Physics
- Many prospects for discovery:
mass hierarchy
CP violation,
Majorana neutrinos (lepton number violation),
absolute mass scale
- Nuclear Physics (and computation)
plays a key role in: astrophysics,
supernovae, neutron stars and mergers
and nuclear and particle physics experiments
Many thanks to:
FNAL
DOE NP
NUCLEI SciDAC-3 project (computingnuclei.org) DOE NP and ASCR
ANL devoting $\sim 100 \mathrm{M}$ core-hours to this project plus staff/postdoc time
INCITE award to NUCLEI project
LANL support through LDRD-DR and LDRD-ER Projects

Backup Slides

Nucleon Form Factors

Gonzalex-Jiminez, Caballero, Donnelly, Phys. Reports 2013

Cold Atoms (Fermions at Unitarity)

Spin Response : Spectral Function Approach

Spin versus Density response (Experiment)

Both at q $=4.5 \mathrm{kF}$

Density and Spin Response Identical for PWIA or Spectral Function

Nucleon Form Factors

Gonzalez-Jiminez, Caballero, Donnelly, Phys. Rep. 2013

Fig. 3. (Color online) EM nucleon form factors from different experiments (see Fig. 2 for references) are compared with the GKex model and with the data of Bernauer et al. [116] (see text for details).
R. González-Jiménez et al. / Physics Reports 524 (2013) 1-35

