

MicroBooNE: Recent Results and a Focus on the Future

Lauren Yates (Fermilab) on behalf of the MicroBooNE Collaboration 55th Annual Fermilab Users Meeting June 16, 2022

MicroBooNE Experiment at a Glance

- MicroBooNE observes neutrino interactions using a LArTPC
 - BNB: on-axis, flux peaks at ~600 MeV ____
 - NuMI: off-axis by $\sim 8^{\circ}$, flux peaks low but goes out to a few GeV _____
- Completed five years of beam physics data-taking, collected largest neutrino-argon interaction dataset
- Also completed several post-operations R&D studies

L. Yates | MicroBooNE @ Fermilab Users Meeting

Fermilab Neutrino Campus

MicroBooNE Experiment at a Glance

- MicroBooNE observes neutrino interactions using a LArTPC
 - BNB: on-axis, flux peaks at ~600 MeV —
 - NuMI: off-axis by ~8°, flux peaks low but go ____
- Completed five years of begins collected largest neu
- Also completed sever

6/16/2022

MicroBooNE Detector: A Liquid Argon Time Projection Chamber

- LArTPCs are highly-capable, fully-active tracking calorimeters
- Detailed images of interactions with ~3 mm spatial resolution enable low thresholds and excellent particle identification

L. Yates | MicroBooNE @ Fermilab Users Meeting

6/16/2022

MicroBooNE's Scientific and Technical Accomplishments

Searching for New Physics

Understanding ν **–A**r Interactions

6/16/2022

L. Yates | MicroBooNE @ Fermilab Users Meeting

5

More than 45 publications written by MicroBooNE in the past 5 years

More than 75 public notes sharing progress with community as we go

Understanding LArTPCs & Developing Techniques

Searching for New Physics

Understanding *v***–Ar** Interactions

6/16/2022

L. Yates | MicroBooNE @ Fermilab Users Meeting

6

Understanding LArTPCs & Developing Techniques

6/16/2022

L. Yates | MicroBooNE @ Fermilab Users Meeting

Understanding Neutrino–Argon Interactions

Searching for New Physics

Understanding *v***–Ar** Interactions

6/16/2022

L. Yates | MicroBooNE @ Fermilab Users Meeting

8

Neutrino Interactions

6/16/2022

9

Discovery science with neutrinos requires understanding and modeling interactions Essential for interpreting final state particle content and kinematics to extract neutrino properties • Theory is complex due to multiple channels, nuclear effects, final-state interactions Cross-section measurements are key to benchmarking models and improving them

v_{μ} CC Inclusive: Probing Hadronic Energy

- Recent MicroBooNE v_{μ} charged-current inclusive measurement focuses on hadronic energy
 - Critical for estimating the neutrino energy, which in turn is necessary for neutrino oscillation measurements
- Probes the physics of the final-state hadronic system
- Model validated using novel constraint procedure
- More on this at the <u>JETP Seminar</u> tomorrow!
- And more to come: higher statistics, multi-differential MICROBOONE-NOTE-1110-PUB

106/16/2022L. Yates | MicroBooNE @ Fermilab Users Meeting

v_{μ} CC Exclusive Measurements: Probing Nuclear Physics

- specific aspects of nuclear physics modeling with unprecedented detail
- Targeting $1\mu 2p0\pi$ topology to study meson exchange currents (MEC)

6/16/2022

11

• Additionally, exclusive measurements of v_{μ} charged-current interactions on argon probe

• Targeting $1\mu 1p0\pi$ topology and using transverse kinematic imbalance (TKI) variables to investigate nuclear effects in argon — initial nucleon motion, final state interactions

π^0 Final States: Probing Pion Production

- Recently published a measurement of NC $1\pi^0$ cross section on argon
- Also first exclusive measurements of NC $1\pi^0$ cross sections on argon
- Measure a smaller cross section than predicted by all of the models studied
 - Result is ~1 σ (sys+stat) from GENIE v3
- More to come:

12

- Differential v_{μ} CC $1\pi^{0}$ measurement MICROBOONE-NOTE-1107-PUB
- Differential NC ≥1π⁰ measurement MICROBOONE-NOTE-1111-PUB

Searching for New Physics

Searching for New Physics

Understanding *v***–Ar** Interactions

13 6/16/2022 L. Yates | MicroBooNE @ Fermilab Users Meeting

The MiniBooNE LEE Anomaly

- MiniBooNE studied $v_{\mu} \rightarrow v_{e}$ appearance using the BNB beam and a mineral oil Cherenkov detector
- MiniBooNE's final results show a 4.8 σ excess of v_e -like events, called the low-energy excess (LEE)
- MicroBooNE's first searches addressing the LEE anomaly pursue two main hypotheses:
 - Electrons from charged-current v_e interactions (greens)
 - Single photons from neutral-current Delta resonance radiative decays, NC $\Delta \rightarrow N\gamma$ (yellow)

MicroBooNE's First LEE Results: Electrons

- Three MicroBooNE analyses searched for an enhanced rate of low-energy v_e interactions
 - 1e1p CCQE: events with 1e1p topology and kinematics consistent with two-body scattering PRD 105, 112003 (2022)
 - -1eNp + 1eOp: events with no pions in the final state PRD 105, 112004 (2022)
 - 1eX: events with any hadronic final state PRD 105, 112005 (2022)

L. Yates | MicroBooNE @ Fermilab Users Meeting 6/16/2022

15

MicroBooNE's First LEE Results: Electrons

- Three MicroBooNE analyses searched for an enhanced rate of low-energy v_e interactions
 - 1e1p CCQE: events with 1e1p topology and kinematics consistent with two-body scattering PRD 105, 112003 (2022)
 - -1eNp+1e0p: events with no pions in the final state PRD 105, 112004 (2022)
 - 1eX: events with any hadronic final state PRD 105, 112005 (2022)
- Observations in low-energy region consistent with intrinsic v_e rate expected from the BNB
 - No evidence for an excess of low-energy v_e

MicroBooNE's First LEE Results: Single Photons

- MicroBooNE's single photon search studied two topologies: $1\gamma 1p$ and $1\gamma 0p$
- Main background to this search is NC π^0 events, which were constrained by side-band samples identified using parallel analysis tools
- No excess consistent with an enhancement of NC $\Delta \rightarrow N\gamma$ is observed, and sets a limit on the effective branching ratio for this decay that is 50x better than previous

6/16/2022

17

L. Yates | MicroBooNE @ Fermilab Users Meeting

```
PRL 128, 111801 (2022)
```


Searches for Sterile Neutrinos

- Building on first LEE results, now pursuing searches for sterile neutrinos within the 3+1 oscillation framework
- A 1μ1p CCQE selection used in the 1e1p analysis has been used to study v_μ disappearance in the BNB
- Selections used in the fully inclusive 1*eX* analysis have been used to study general 3+1 oscillations in BNB
- Results so far consistent with three neutrinos
- More coming soon:
 - Joint 1*e*1*p*+1*μ*1*p* analysis in the BNB <u>MICROBOONE-NOTE-1105-PUB</u>
 - Inclusive analysis combining BNB and NuMI MICROBOONE-NOTE-1116-PUB
 - Future analyses addressing other sterile models

Investigating Other LEE Models

- involving photons or e^+e^- pairs in the final state
- Currently expanding investigations of photon-like and e^+e^- pair channels
 - Some preliminary results are shown below, and even more is on the way
- MicroBooNE will continue to test many LEE-motivated models of new physics, leveraging the excellent performance of our LArTPC detector and multiple reconstruction paradigms

6/16/2022

19

L. Yates | MicroBooNE @ Fermilab Users Meeting

Theory landscape related to the LEE anomaly continues to evolve — many new models

Searching for Other New Physics Signatures

- MicroBooNE is also capable of searching for many other new physics signatures
- Searched heavy neutral leptons from BNB decaying to $\mu\pi$ pairs PRD 101 052001 (2020)
- Searched for Higgs portal scalar bosons from NuMI decaying to e^+e^- pairs
- Searching for neutron-antineutron oscillations from neutrons bound in detector's argon nuclei
- More coming soon:
 - Updated heavy neutral lepton search
 - Updated Higgs portal scalar boson search
 - Search for dark trident interactions _____
 - Search for millicharged particles

MicroBooNE's Scientific and Technical Accomplishments

Searching for New Physics

- Addressing origin of LEE anomaly
- Investigating sterile neutrinos via short baseline oscillations
- Searching for several other BSM physics signatures

Understanding v–Ar Interactions

- Measuring a variety of inclusive and exclusive cross-sections
- Performing key tests of models
- Leveraging powerful detector, largest v–Ar interaction dataset

6/16/2022

- Advances in detector physics, modeling, signal processing, and calibration
- Developed multiple novel reconstruction techniques
- Post-operation R&D studies

A Focus on the Future

- The full Short Baseline Neutrino (SBN) program, which includes ICARUS and SBND, has much more exciting physics yet to come
- SBN is critical to building LArTPC expertise leading up to the DUNE long-baseline oscillation experiment
- Will hear more about SBND, ICARUS, and DUNE in the next few talks!

L. Yates | MicroBooNE @ Fermilab Users Meeting 6/16/2022

22

Thank you!

L. Yates | MicroBooNE @ Fermilab Users Meeting

6/16/2022

Science & Technology Facilities Council

European Commission

Horizon 2020 European Union funding for Research & Innovation

