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What is computing?
• First, what is computing? One perspective - it is physical simulation of algorithms 

coupled to interpretation. We manipulate a physical system according to rules. A 
metaphysical tower of concepts then allows us to interpret the results.
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We can simulate algorithms blindly 
- ultimately interpretation is required.

Certain physical systems can be 
manipulated very quickly - making 
algorithm simulation also very fast.
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What is classical computing?
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Think about circuits:
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What is quantum computing?
• Draw a contrast to “classical” computing:
- Nature is quantum mechanical — we may have entanglement and superposition of states.
- Measurement of a quantum system collapses the wavefunction, so quantum information is inherently fragile.
- Classical computing gives up any possibility of utilizing entanglement and superposition as part of an 

algorithm in exchange for simpler error control protocols.
- Quantum computing is the attempt to reclaim that power.
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https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://sqms.fnal.gov/research/

https://www.honeywell.com/en-us/company/quantum
https://www.xanadu.ai/hardware
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What is quantum computing?
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Bell state - no classical analog!



Gabriel N. Perdue, Fermilab // FNAL User’s Meeting 2022

Why is quantum computing interesting for HEP?
• A quantum computer is a programmable interface to quantum 

physics experiments.
- It is a tool for discovery, like a telescope, or a particle 

accelerator.
• In HEP we face a set of computational challenges in where the 

only practical path to solution requires the utilization of 
entanglement and superposition as algorithmic primitives.
• In particular, scalable methods for accurately simulating 

quantum many-body systems are beyond the capabilities of 
classical computers.
• Additionally, quantum computers are anticipated to play a strong 

role in future event generators, speeding up matrix element 
calculations and even neutrino-nucleus cross section calculations.
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What will it take for practical quantum advantage?
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Richard Feynman: the need for quantum computing (1981)

5/25/223

“Nature isn’t classical, dammit, and if you want 
a simulation of nature, you’d better make it 
quantum mechanical”

• First person to propose the idea of 
quantum computers 

• Emphasized the idea of using quantum systems to simulate/solve 
quantum problems

Spentzouris | The Fermilab Quantum Science and Technology Program

Figure courtesy of H. Lamm
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Why is quantum computing interesting for HEP?, cont.
• Quantum computing is part of a family of technologies with multiple applications:
- Sensors, Computing, and Networks

• Quantum sensors offer an exciting new platform for rare process and new physics 
searches, e.g.
- MAGIS-100 - new experiment at Fermilab, https://magis.fnal.gov/
- Axion haloscopes (ADMX, HAYSTAC, etc.)
- The Dark SRF experiment at Fermilab
- See, e.g. https://arxiv.org/abs/2203.12714 by A. Berlin et al, https://arxiv.org/abs/2203.05375 by A. Brady et al

• The potential for quantum computers for quantum data analysis is exciting and interesting, and 
HEP has a large number of natural competencies in quantum networks - we are already 
some of the best in the world at it!

7

Network technology development: IEQNET 

5/25/2240
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• Design a repeaterless transparent optical quantum network and 
demonstrate multi-user use-cases in the Chicago metropolitan area
– Leverage FQNET/CQNET systems

• Incorporate new components as they become available and test/co-design

web site: https://ieqnet.fnal.gov
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Spentzouris | The Fermilab Quantum Science and Technology Program

Record fidelity sustained teleportation 

5/25/2239

Results
• Record time-bin qubit 

teleportation fidelities 
over metropolitan scale 
distance of 44 km.

• Sustained 24/7 
operation for ~week 
duration, achieving 
~1HZ teleportation rate 
at 44 km

Spentzouris | The Fermilab Quantum Science and Technology Program

R. Valivarthi et al., PRX Quantum 1, 020317 (2020).

3D devices: better coherence, multi-level systems (qudits)

5/25/2236 Spentzouris | The Fermilab Quantum Science and Technology Program
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MAGIS-100 experiment at Fermilab
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• Major technological advance for studying 
very low mass dark matter.
– 100 m baseline – order of magnitude better 

than current state-of-the-art
– Uses ultra-precise Strontium clock transition.

• Pathfinder for longer baselines, sensitive to 
~1 Hz gravitational waves.

Spentzouris | The Fermilab Quantum Science and Technology Program
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• Major technological advance for studying 
very low mass dark matter.
– 100 m baseline – order of magnitude better 

than current state-of-the-art
– Uses ultra-precise Strontium clock transition.

• Pathfinder for longer baselines, sensitive to 
~1 Hz gravitational waves.

Spentzouris | The Fermilab Quantum Science and Technology Program

https://arxiv.org/abs/2203.12714
https://arxiv.org/abs/2203.05375
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The Fermilab Quantum Institute

8

Fermilab Quantum Science Program Thrusts, early program

5/25/227

Superconducting Quantum Systems: Leverage Fermilab’s world-leading expertise in SRF cavities to
advance qubit coherence times and scalability of superconducting quantum systems. 

HEP Applications of Quantum Computing: Identify most promising HEP applications on near-term 
quantum computers; develop algorithms and experience with state-of-the-art machines.

Quantum Sensors: Adapt quantum technologies to enable new fundamental physics experiments. 
• Qubit-cavity systems for dark matter detection
• Cold atom interferometry

Quantum Communications: quantum teleportation systems and entanglement distribution 
architecture for connecting quantum sensors and computers

Enabling technologies: cold electronics, readout & control systems; access to quantum resources for 
community building and workforce development

Foundational Quantum Science/HEP connections: quantum field theory, wormholes, emergent 
space-time.

Spentzouris | The Fermilab Quantum Science and Technology Program

SQMS NQIA Center!

Slide courtesy of Panagiotis Spentzouris
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Quantum computing in FQI
• New effort! Over the past three years our main focus was on exploring use cases, establishing 

expertise, and forming partnerships.
- Quantum simulation for field theory: Foundational work on digital quantum simulation of bosons, fermion-boson 

interactions — PRA 98.042312 and 105.052405
- Quantum computing for data analysis: Quantum annealing for galaxy morphology classification with Lockheed 

Martin* — https://arxiv.org/abs/1911.06259
- Theory inputs for DUNE: Quantum simulation for neutrino scattering — first serious resource estimates study with U. 

of Washington (-> U. Trento), Los Alamos — PRD 101, 074038 (2020)
- Quantum computing for data analysis: Machine learning classifiers applied to high dimensional science data with 

Google, Sandbox@Alphabet, University of Waterloo — Nature (npj) Quantum Information 7, 161 (2021)
- Advance QIS to enable HEP applications: Qubit assignment problem (quantum computers for quantum program 

compilation) on Google hardware, with U. of Waterloo — under review at PRX, also https://arxiv.org/abs/2201.00445
- Quantum simulation for field theory: Large scale simulation of Z2 gauge theory with Google, Sandbox@Alphabet, U. 

of Waterloo — Supercomputing 2021, also https://arxiv.org/abs/2110.07482

• In each case we leveraged FNAL expertise to advance HEP science, and built 
successful strategic partnerships to round our our QIS expertise and credentials.

9 *This project led to Lockheed’s participation in the NQIA Center hosted at FNAL (SQMS) 

https://arxiv.org/abs/2110.07482
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Explore and identify HEP science applications

Leverage Fermilab strengths

Utilize strategic partnerships to fill gaps

Advance quantum technologies
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Strategy and tactical approach for FQI
• Illustration by example — simulating Z2 gauge theory: paper at Supercomputing 2021 

(Workshop on Quantum Computing, see also https://arxiv.org/abs/2110.07482)
- Largest classical simulation of Z2 on a quantum device to date at 36 qubits.
- Enabling HEP science: direct study of the bounds for quantum advantage in QFT; 6x6 qubit grid was 

insufficient for the science, likely require at least 7x7 (theoretically possible to simulate classically, but 
~exascale-sized)

- Leveraging HEP and Fermilab competencies: Theory expertise in problem and quantum circuit design, 
SCD experience with large scale distributed computing

- Advancing QIS where appropriate: noise model parameter scan to inform the next generation of QPUs - 
where do various improvements have the most impact?

- QIS partnerships to fill expertise gaps: work with experts at Google, Sandbox@Alphabet, and University 
of Waterloo to model quantum noise, improve quantum circuits, and accelerate applications on ASIC 
simulators (TPUs)
• This project was not on a QPU — but the relationship with Google was based on participation in their 

Early Access Partners program to use their Sycamore QPU (quantum advantage demonstration chip). 
Special thanks to Google and Sandbox@Alphabet for donating cloud computing and TPU time for 
this research!

11

https://arxiv.org/abs/2110.07482
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Simulating Z2 gauge theory
• We would like to understand the boundaries for useful 

“scientific advantage.”
• This means pushing the classical simulation of 

quantum systems as far as we can.
• We also need to understand whether Quantum Error 

Correction (QEC) is required to solve HEP problems.
• We studied Z2 gauge theory on a simulated 

version* of Google’s Sycamore QPU with a large 
noise scan.
- Square lattice connectivity is a natural map for Z2 gauge theory.
- We built a realistic parameterized quantum noise model and 

performed a large scan over parameter space in order to 
understand the relationship between theory and hardware 
errors.

12

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

*The simulated QPU was modified to admit a 6x6 qubit lattice.
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Approximating continuous gauge groups
• Lattice field theory places the 

theory on a lattice in a finite 
volume. Ultimate goal is full QCD 
with time evolution - exponentially 
expensive on classical computers.

• Perform computations at different 
lattice sizes and spacings and 
extrapolate to the continuum.

• Here - use a duality transformation: 
Z2 gauge action becomes the 
Transverse field Ising Hamiltonian. 
Same physics for half the qubits.

13
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Approximating Continuous Gauge Groups
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Theory: Z2 gauge theory

Z2 gauge action2:
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Figures courtesy of H. Lamm, E. Gustafson, E. Peters
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Observables and convergence
• The observable is a correlator between sites - 

simulate time evolution -> the Fourier transform 
gives the glueball mass.

• We chose an observable that is NOT sensitive 
to sign problems so we may compute the exact 
result classically - we may use the errors to 
gauge what the likely errors would be on a 
quantity we need a quantum computer for.
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Fig. 1. Comparison of the lattice glueball mass asm as a function of �H

obtained from: (grey band) extrapolating the exact diagonalization of Ĥ from
smaller volumes, (open symbols) classical simulations at fixed �E and varied
⇠, (closed symbols) quantum simulations at fixed �t for various �H .

where the factors Ai,s(Ek, Em) account for the various in-
ner products from the eigenbasis expansion. Since the time
dependence of the correlator is governed by the differences
in energy levels, we can extract particle state energies given
by energy gaps above the ground state. These energy levels
can be extracted by performing a fast Fourier transformation
on the time series data to generate a frequency spectrum.
This frequency spectrum will have peaks at energy differences
|Ek � Em| that most significantly drive the dynamics of the
simulations. Provided the overlap of the state |⌦i with the
ground state is sufficient enough, the energy differences should
be most strongly governed by excitations above the ground
state Ek � E0. With the set of operators that we chose, the
strongest excitation (largest peak in Fourier spectrum) will
correspond to the glueball mass (mass gap), E1 � E0.

Time evolving a quantum system requires the unitary oper-
ator of Û(t) = e

�iĤt which cannot in general be efficiently
constructed on a quantum computer. Instead, it must be
approximated. A common method is Trotterization, whereby
the time t is subdivided into N smaller steps of size �t and
Û(t) ⇡ (e�iĤ

0
�t)N with an approximate Hamiltonian Ĥ

0.
The eigenvalues and eigenvectors of Ĥ

0 will only formally
agree with the eigenvalues and eigenvectors of Equation 2 in
the limit that �t goes to zero. The quantum circuits for the
Trotterized time evolution of the Z2 gauge theory are shown
in Fig. 2

III. NOISE MODEL

A. Physics details

Since fault-tolerant quantum computation using dozens of
qubits is currently unavailable, we implement several simple
noise models to study the parameter regime in which this
problem might be feasible on NISQ [30] devices. Crosstalk is
expected to be a significant source of error in superconducting
qubit processors, and we simulate this effect by implementing
the unitary noise model for crosstalk in

p
iSWAP gates of ref.

[31]. In addition we simulate the combined effects of gate
infidelity and qubit error (e.g. T1 and T2 decay) using local
depolarizing channels.

1) Local depolarization: We study the effects of inco-
herent noise by simulating local symmetric depolarizing
noise. A depolarizing channel acts on an n-qubit subsystem
(2n-dimensional system) via the completely positive, trace-
preserving map

Dn[✏](⇢) = (1� ✏)⇢+
✏

2n
I (8)

We define a probability mass function over {0, 1, 2, 3}n
given as
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(
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4�n
✏ else

(9)

An operator sum representation for Equation 8 is then given
as a sum over n-local Pauli operators Pj = �j1 ⌦ · · · ⌦ �jn

as:
Dn[✏](⇢) =

X

j2{0,1,2,3}n

p(j)Pj⇢Pj (10)

Our noise model incorporates this type of error by applying
D1[✏1] to each qubit following each single-qubit gate and
D2[✏2] to each two-qubit subsystem following each two-qubit
gate, taking ✏2 = 10✏1 as which is a reasonable ratio for
superconducting qubit devices. For smaller simulations we use
an ancillary qubit to compute Ci,s(t) in a single simulation,
however we do not apply noise to the ancillary qubit since
our circuits would be executed on near-term devices without
the ancilla using the methods of ref. [32]. While it is rare
to observe symmetric depolarizing noise in real devices, this
noise model allows for probing very general noise effects in
a relatively small parameter space. Furthermore, our noise
model can provide insight for the use of techniques such
as randomized compiling [33] which combine randomized
experiments such that the observed noise resembles local
depolarizing noise. This technique has been demonstrated to
be effective at modifying the noise behavior for the kind of
circuit-based Hamiltonian simulation that we perform here
[34].

2) Two qubit gate crosstalk: Crosstalk is expected to be
a significant source of error in the implementation of two-
qubit gates that will limit the scale of algorithms implemented
on near-term hardware (e.g. [35]). We study the effects of
crosstalk in the context of

p
iSWAP gates according to the

tum processors. Additionally, this work establishes a lower
boundary for quantum advantage in QFT simulations. We also
provide a template for demonstrating the feasibility of large-
scale quantum simulation problems. We expect demonstrations
of this type will be an important “gating step” when run-
ning applications on real quantum computing platforms with
the potential to address beyond classical problems. Time on
beyond-classical quantum resources is too scarce and valuable
to deploy on problems that have not demonstrated both the
requisite hardness and the ability to run on quantum resources.

II. THEORY

The lattice field theory (LFT) program initiated by Wil-
son [15] has been successful in the study of nonperturbative
quantum field theory. In order to render a QFT finite, LFT
places the theory on a lattice in a finite volume. Fields are
placed either on the sites within the box, or on the links
between them. In this way, the infinite degrees of freedom
of the QFT are rendered finite and can be simulated on a
computer by sampling from the exponential of the action
S. In order to recover the true QFT results, calculations at
different lattice spacings and volumes are performed and then
extrapolated to the physical limit where both the finite volume
and lattice spacing cutoff regulators have been removed.
Unfortunately, for problems involving dynamics [16], [17]
or finite-density [18], [19], [20], [21] this method requires
exponential classical computational resources due to sign
problems. Such exponential costs can be avoided by using
quantum devices.

Instead of using the action S, a more natural formulation
of QFT for quantum devices is the Hamiltonian Ĥ , which
can then be used to time evolve a state using Û(t) = e

iĤt.
For lattice gauge theories, the most commonly used H is the
Kogut-Susskind Hamiltonian [22]. In the case of Z2 gauge
theory, it is
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where the two terms are analogous to the electric and magnetic
terms found in electrodynamics – U(1) gauge theory. While
this expression generalizes to other gauge theories, it requires
a four-qubit operation. This can be avoided by using the dual
representation – the transverse field Ising model [23], [24],
[25], [26] – which also reduces the number of qubits by half.
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where the sum over ~n ranges over the N
2
s

plaquettes, µ̂ =
[x̂, ŷ] indicates spatial direction, J = 1

�H

, � = �H , and �H is
related to the physical lattice spacing as.

Current and near-term quantum devices have few qubits and
large noise which in principle will limit calculations to small
volumes and large as. Whether simulations are sufficient for
the physical limit depends on the size of the theoretical errors.
Formally, these results should be equal to those obtained from

an S in the limit where the temporal lattice spacing is taken to
zero. We can use this to leverage classical LFT Monte Carlo
simulations to estimate the theoretical systematic errors from
using current quantum devices [27] by computing results much
closer to the physical limit. Obviously, in order to make these
estimates the observable investigated must not have a sign
problem, otherwise the classical simulations will be poor. For
this reason, the mass of the lowest-energy glueball state is cho-
sen. Better candidates for near-term quantum advantage [28]
are ones where the classical simulations are obstructed by sign
problems, but the quantum simulations should have a similar
difficulty and theoretical errors to the lattice glueball mass.

For these calculations, the anisotropic Wilson action [15]
was used:

S = ��E/⇠0

X

i2s

Uss � �E⇠0

X

i2t

Ust (3)

using plaquettes Uij which are oriented in the space-space or
space-time planes with a coupling �E and a bare anisotropy
factor ⇠0. Lattice renormalization effects change the true
anistropy of the lattice from ⇠0 to ⇠. As ⇠ ! 1, for
fixed as, the classical action results should converge to those
obtained from the quantum simulations of the Hamiltonian. To
check this, we can relate finite ⇠ classical results to quantum
simulation via the relation:

�E/⇠ =
p

�He
��E⇠ (4)

This convergence between the classical and quantum simu-
lations is demonstrated in Fig. 1 for the case of our largest
6⇥6 square spatial lattice where the classical results (denoted
by their value of �E) approach the exact Hamiltonian result
as ⇠ is increased. In addition, Trotterized real-time quantum
results for �t = 0.25 are shown as well. Similar to the classical
results. The Trotterized quantum results will only agree with
the grey band in the limit that �t approaches zero.

By studying the difference between the lattice results and
the continuum on the classical side, estimates of the theoretical
errors from an analogous quantum simulation can be found.
These estimates direct the choice of J,� and Trotter step for
the quantum simulations and determining when continuum
extrapolation may be viable.

For the quantum simulation, we use the observable [29]

Ci,s(t) = h⌦|Û†(t)X̂iÛ(t)X̂s|⌦i. (5)

The subscript s indicates the location on the lattice that we
want the source operator X̂ to act on, while i iterates over a
subset of sites in the lattice. |⌦i is an approximate “ground
state” which we choose to be |0...0i. This correlator can be
expanded in the eigenbasis of the time evolution operator,

Û(t) =
X

E

|EihE|e�itE
. (6)

Using this expansion, we can write the operator Ci,s(t) as

Ci,s(t) =
X

{Ek},{Em}

Ai,s(Ek, Em)eit(Ek�Em)
, (7)

tum processors. Additionally, this work establishes a lower
boundary for quantum advantage in QFT simulations. We also
provide a template for demonstrating the feasibility of large-
scale quantum simulation problems. We expect demonstrations
of this type will be an important “gating step” when run-
ning applications on real quantum computing platforms with
the potential to address beyond classical problems. Time on
beyond-classical quantum resources is too scarce and valuable
to deploy on problems that have not demonstrated both the
requisite hardness and the ability to run on quantum resources.

II. THEORY

The lattice field theory (LFT) program initiated by Wil-
son [15] has been successful in the study of nonperturbative
quantum field theory. In order to render a QFT finite, LFT
places the theory on a lattice in a finite volume. Fields are
placed either on the sites within the box, or on the links
between them. In this way, the infinite degrees of freedom
of the QFT are rendered finite and can be simulated on a
computer by sampling from the exponential of the action
S. In order to recover the true QFT results, calculations at
different lattice spacings and volumes are performed and then
extrapolated to the physical limit where both the finite volume
and lattice spacing cutoff regulators have been removed.
Unfortunately, for problems involving dynamics [16], [17]
or finite-density [18], [19], [20], [21] this method requires
exponential classical computational resources due to sign
problems. Such exponential costs can be avoided by using
quantum devices.

Instead of using the action S, a more natural formulation
of QFT for quantum devices is the Hamiltonian Ĥ , which
can then be used to time evolve a state using Û(t) = e

iĤt.
For lattice gauge theories, the most commonly used H is the
Kogut-Susskind Hamiltonian [22]. In the case of Z2 gauge
theory, it is
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where the two terms are analogous to the electric and magnetic
terms found in electrodynamics – U(1) gauge theory. While
this expression generalizes to other gauge theories, it requires
a four-qubit operation. This can be avoided by using the dual
representation – the transverse field Ising model [23], [24],
[25], [26] – which also reduces the number of qubits by half.
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Current and near-term quantum devices have few qubits and
large noise which in principle will limit calculations to small
volumes and large as. Whether simulations are sufficient for
the physical limit depends on the size of the theoretical errors.
Formally, these results should be equal to those obtained from

an S in the limit where the temporal lattice spacing is taken to
zero. We can use this to leverage classical LFT Monte Carlo
simulations to estimate the theoretical systematic errors from
using current quantum devices [27] by computing results much
closer to the physical limit. Obviously, in order to make these
estimates the observable investigated must not have a sign
problem, otherwise the classical simulations will be poor. For
this reason, the mass of the lowest-energy glueball state is cho-
sen. Better candidates for near-term quantum advantage [28]
are ones where the classical simulations are obstructed by sign
problems, but the quantum simulations should have a similar
difficulty and theoretical errors to the lattice glueball mass.

For these calculations, the anisotropic Wilson action [15]
was used:
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using plaquettes Uij which are oriented in the space-space or
space-time planes with a coupling �E and a bare anisotropy
factor ⇠0. Lattice renormalization effects change the true
anistropy of the lattice from ⇠0 to ⇠. As ⇠ ! 1, for
fixed as, the classical action results should converge to those
obtained from the quantum simulations of the Hamiltonian. To
check this, we can relate finite ⇠ classical results to quantum
simulation via the relation:
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This convergence between the classical and quantum simu-
lations is demonstrated in Fig. 1 for the case of our largest
6⇥6 square spatial lattice where the classical results (denoted
by their value of �E) approach the exact Hamiltonian result
as ⇠ is increased. In addition, Trotterized real-time quantum
results for �t = 0.25 are shown as well. Similar to the classical
results. The Trotterized quantum results will only agree with
the grey band in the limit that �t approaches zero.

By studying the difference between the lattice results and
the continuum on the classical side, estimates of the theoretical
errors from an analogous quantum simulation can be found.
These estimates direct the choice of J,� and Trotter step for
the quantum simulations and determining when continuum
extrapolation may be viable.

For the quantum simulation, we use the observable [29]

Ci,s(t) = h⌦|Û†(t)X̂iÛ(t)X̂s|⌦i. (5)

The subscript s indicates the location on the lattice that we
want the source operator X̂ to act on, while i iterates over a
subset of sites in the lattice. |⌦i is an approximate “ground
state” which we choose to be |0...0i. This correlator can be
expanded in the eigenbasis of the time evolution operator,
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Using this expansion, we can write the operator Ci,s(t) as
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tum processors. Additionally, this work establishes a lower
boundary for quantum advantage in QFT simulations. We also
provide a template for demonstrating the feasibility of large-
scale quantum simulation problems. We expect demonstrations
of this type will be an important “gating step” when run-
ning applications on real quantum computing platforms with
the potential to address beyond classical problems. Time on
beyond-classical quantum resources is too scarce and valuable
to deploy on problems that have not demonstrated both the
requisite hardness and the ability to run on quantum resources.
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The lattice field theory (LFT) program initiated by Wil-
son [15] has been successful in the study of nonperturbative
quantum field theory. In order to render a QFT finite, LFT
places the theory on a lattice in a finite volume. Fields are
placed either on the sites within the box, or on the links
between them. In this way, the infinite degrees of freedom
of the QFT are rendered finite and can be simulated on a
computer by sampling from the exponential of the action
S. In order to recover the true QFT results, calculations at
different lattice spacings and volumes are performed and then
extrapolated to the physical limit where both the finite volume
and lattice spacing cutoff regulators have been removed.
Unfortunately, for problems involving dynamics [16], [17]
or finite-density [18], [19], [20], [21] this method requires
exponential classical computational resources due to sign
problems. Such exponential costs can be avoided by using
quantum devices.

Instead of using the action S, a more natural formulation
of QFT for quantum devices is the Hamiltonian Ĥ , which
can then be used to time evolve a state using Û(t) = e
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For lattice gauge theories, the most commonly used H is the
Kogut-Susskind Hamiltonian [22]. In the case of Z2 gauge
theory, it is
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where the two terms are analogous to the electric and magnetic
terms found in electrodynamics – U(1) gauge theory. While
this expression generalizes to other gauge theories, it requires
a four-qubit operation. This can be avoided by using the dual
representation – the transverse field Ising model [23], [24],
[25], [26] – which also reduces the number of qubits by half.
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Current and near-term quantum devices have few qubits and
large noise which in principle will limit calculations to small
volumes and large as. Whether simulations are sufficient for
the physical limit depends on the size of the theoretical errors.
Formally, these results should be equal to those obtained from

an S in the limit where the temporal lattice spacing is taken to
zero. We can use this to leverage classical LFT Monte Carlo
simulations to estimate the theoretical systematic errors from
using current quantum devices [27] by computing results much
closer to the physical limit. Obviously, in order to make these
estimates the observable investigated must not have a sign
problem, otherwise the classical simulations will be poor. For
this reason, the mass of the lowest-energy glueball state is cho-
sen. Better candidates for near-term quantum advantage [28]
are ones where the classical simulations are obstructed by sign
problems, but the quantum simulations should have a similar
difficulty and theoretical errors to the lattice glueball mass.

For these calculations, the anisotropic Wilson action [15]
was used:
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using plaquettes Uij which are oriented in the space-space or
space-time planes with a coupling �E and a bare anisotropy
factor ⇠0. Lattice renormalization effects change the true
anistropy of the lattice from ⇠0 to ⇠. As ⇠ ! 1, for
fixed as, the classical action results should converge to those
obtained from the quantum simulations of the Hamiltonian. To
check this, we can relate finite ⇠ classical results to quantum
simulation via the relation:
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This convergence between the classical and quantum simu-
lations is demonstrated in Fig. 1 for the case of our largest
6⇥6 square spatial lattice where the classical results (denoted
by their value of �E) approach the exact Hamiltonian result
as ⇠ is increased. In addition, Trotterized real-time quantum
results for �t = 0.25 are shown as well. Similar to the classical
results. The Trotterized quantum results will only agree with
the grey band in the limit that �t approaches zero.

By studying the difference between the lattice results and
the continuum on the classical side, estimates of the theoretical
errors from an analogous quantum simulation can be found.
These estimates direct the choice of J,� and Trotter step for
the quantum simulations and determining when continuum
extrapolation may be viable.

For the quantum simulation, we use the observable [29]

Ci,s(t) = h⌦|Û†(t)X̂iÛ(t)X̂s|⌦i. (5)

The subscript s indicates the location on the lattice that we
want the source operator X̂ to act on, while i iterates over a
subset of sites in the lattice. |⌦i is an approximate “ground
state” which we choose to be |0...0i. This correlator can be
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the potential to address beyond classical problems. Time on
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to deploy on problems that have not demonstrated both the
requisite hardness and the ability to run on quantum resources.
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between them. In this way, the infinite degrees of freedom
of the QFT are rendered finite and can be simulated on a
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where the two terms are analogous to the electric and magnetic
terms found in electrodynamics – U(1) gauge theory. While
this expression generalizes to other gauge theories, it requires
a four-qubit operation. This can be avoided by using the dual
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[25], [26] – which also reduces the number of qubits by half.
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sen. Better candidates for near-term quantum advantage [28]
are ones where the classical simulations are obstructed by sign
problems, but the quantum simulations should have a similar
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6⇥6 square spatial lattice where the classical results (denoted
by their value of �E) approach the exact Hamiltonian result
as ⇠ is increased. In addition, Trotterized real-time quantum
results for �t = 0.25 are shown as well. Similar to the classical
results. The Trotterized quantum results will only agree with
the grey band in the limit that �t approaches zero.

By studying the difference between the lattice results and
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errors from an analogous quantum simulation can be found.
These estimates direct the choice of J,� and Trotter step for
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extrapolation may be viable.
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Simulation deliverable is a time series

• For each n x n qubit 
lattice (3x3, 4x4, 5x5, 
6x6) and parameter 
set (βH,δt,ε,𝛇) we 
compute the Ci,s(t) 
time series.

• O(n2) local 
observables

• Fourier transform -> 
spectrum -> glueball 
mass (mass gap) E1 
- E0
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Fig. 4. (a) Time series and (b) Fourier transform for increasing ✏2 in the depolarizing model with fixed ⇣ = 0 on a 4 ⇥ 4 grid. The effect of depolarizing
noise is to dampen the time series signal, which both flattens the existing spectrum and introduces higher frequency modes. The maximum ✏2 = corresponds
to an error of 236% in the computed glueball mass and tends to increase with ✏2. (c) Time series and (d) Fourier transform for increasing ⇣ with fixed
✏2 = 0. The crosstalk error model tends to distort the spectrum in an unpredictable manner. The maximum ⇣ = 7.5⇥ 105 corresponds to an error of 37%
in the computed glueball mass, highlighting that the computed mass is highly non-monotonic with respect to the crosstalk noise.

Fig. 5. Relative error in computed glueball mass as a function of (✏2, ⇣/2⇡)
noise strength shows a narrow regime in which the mass can be computed
with high accuracy for the 5 ⇥ 5 grid. For comparison, ref. [36] describes
how ⇣/2⇡ = 2.26 ⇥ 106 s�1 results in crosstalk becoming the dominant
source of error for transmon qubits with T1 = 15.2µs, T2 = 4.2µs coupled
via a bus cavity (which differs from the architecture employed in the Google
Sycamore chip). The contents of this plot required roughly 500 GPU-hours
of simulation time using Nvidia V100 GPUs.
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Fig. 6. Sources of relative systematic error in computed glueball mass as a
function of �H . The gray band indicates the estimated theoretical errors from
extrapolating with 3⇥, 4 ⇥ 4, 5 ⇥ 5, and 6 ⇥ 6 classical lattices. The error
from noise are shown for different fiducial noise models.
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Simulating large lattices
• Large (e.g. 6x6, and even 5x5) face severe memory and speed 

constraints.
• Noisy simulation is not even possible for 6x6 lattice (memory requirements 

would only fit on a leadership class supercomputer, using the whole 
machine).
• Very large speed-up possible on Google TPUv3 ASIC chips (linear 

algebra accelerators designed for machine learning workloads) using 
private codes.
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CPU vs. TPU 6 ⇥ 6 lattice timing results

6 ⇥ 6 simulation specifications:
Noiseless, 25 choices of (�H , �t), 21 observables
qsimcirq: 37 qubit simulation, 2-local observables
qsim, TPU: 2 ⇥ 36 qubit simulation, 1-local observables,

Platform 6 ⇥ 6
m1-ultramem-160 (qsimcirq) 470 hours

m1-ultramem-160 (qsim) 295 hours
TPUv3-512 4.5 hours

TPUs for quantum simulation achieve ⇥60-100 speedup!
CPUs can be utilized for very large circuits with
out-of-the-box qsimcirq - no special configuration

Presenter: Evan Peters

4 TB RAM

qsimcirq - 37 qubits, 
2-local oservables

qsim, TPU - 2 x 36 qubits, 
1-local observable
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Theory errors and noise errors
• Large amount of data to analyze! Representative example:
- 5 x 5 lattice noise sweep - (6 𝛇’s) x (6 ε2’s) x (3 βH’s) x (1 δt)

• Compare errors from noise to theory errors.
• 𝛇, ε2 values better than current hardware state of the art by x10-100
• Results here were computed using 64 Nvidia V100 GPUs in parallel on Google Cloud Platform (500 GPU-hours for 

the plot on the left)

17
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Theory error is comparable to noise error

5 ⇥ 5 noise sweep:
(6 values ⇣)⇥ (6 values ✏2)⇥ (3 values �H)⇥ (�t = 0.25)
Compare error due to noise model versus theory error
⇣, ✏2 values ⇠ 10⇥ lower than currently seen in hardware
Computed using up to 64 Nvidia V100 GPUs in parallel
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Study conclusions
• Even with results up to 6 x 6 in lattice size, the glueball mass has a high uncertainty.
• Observables of interest for quantum advantage will likely require at least a 7 x 

7 lattice to be included, perhaps larger - right at the edge of what we can 
simulate exactly with exascale resources.
- Need to better understand the interplay between inexact 

simulation and theory errors!
• Noise errors were found to be comparable to physics theory errors, but this 

was assuming roughly x10-100 better qubit noise parameters than what we have 
in modern hardware.
• Great success partnering with scientists at Google and Sandbox@Alphabet
• We helped write on a tutorial if you’d like to try the cloud platform 🙃
- https://cloud.google.com/architecture/quantum-simulation-on-google-cloud-with-cirq-qsim
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FQI Quantum Algorithms: Vision and objectives
• What are the goals for the next 5 years?
- It is clear one of the strongest early applications will be quantum simulation of field 

theories. Data analysis for quantum sensors, possibly networked, to extend and 
enhance New Physics searches is another promising candidate.
• These two are likely to be our main focus. 

- Quantum computers are plausibly on track to enter the era of Quantum Error 
Correction (QEC - think of it as “self healing” for decoherence) by the end of the 
decade. This will enable calculations of real scientific value to HEP. There are a 
number of important open questions:
• Will commercial devices be well-suited to run our applications or will they focus on, e.g. 

quantum chemistry and materials problems with stronger support in the business 
community?

• What are the requirements for a quantum computer for HEP applications?
• What is the most effective role we can play in enabling, and shaping the contours of, QEC?
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Vision and objectives moving forward, cont.
• What are the goals for the next 5 years?
- Historical analogies can be dangerous, but the lattice computing trajectory is 

compelling. We will engage in a co-design process to define the 
computing requirements for HEP physics and find and defend the 
“boundaries” of quantum advantage.
- We will also work to better understand the interplay between quantum 

networks, sensors, and algorithms. The line is blurry - the same devices can 
often be used for sensing and computation!
• These two goals leverage HEP and especially Fermilab’s strengths in 

quantum field theory, quantum algorithms, superconducting devices, 
quantum networks, detector instrumentation, and theory support for 
new physics searches.

20
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Thanks for listening!



Gabriel N. Perdue, Fermilab // FNAL User’s Meeting 2022

Noise models and hardware viability
• We built a noise model with two parameterized components.
• Local depolarizing noise - rough model for gate infidelity, where Pj is a k-local 

Pauli operator (e.g., for bit flip and phase errors) and p(j) is a function of ε 
(governs the likelihood of a given Pauli operator or the identity.)

• We apply D1 to qubits after applying a single-qubit gate and D2 after applying 
a two-qubit gate, with ε2 = 10 ε1.
• For qubit-crosstalk, we use a unitary ZZ error*, with a parameter 𝛇 based on 

fabrication defects

22 *See, eg. D. McKay in PRL 122 (May 2019)

13/28

Noise models can inform hardware viability

1 Local depolarizing noise: Rough model for gate infidelity

Dn[✏](⇢) =
X

j2{0,1,2,3}n

p(j)Pj⇢Pj (1)

where Pj is a k -local Pauli, p(j) depends on ✏.
2 Unitary ZZ error: Rough model for certain crosstalk error4

UZZ [⇣] = exp (�i2⇡⇣T |11ih11|) (2)

where ⇣ is based on fabrication defects.
Incoherent error (Equation 1) is simulated using trajectories:
Stochastically sample and apply Pj according to p(j)

4 David C. McKay et al. In: Physical Review Letters 122 (May 2019).
Presenter: Evan Peters
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What is quantum computing?
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Super hand-wavy “quantum advantages”
• Superposition lets us create a sum state with two operations 

instead of four.
• Entanglement means we can manipulate the entire state vector 

with one operation.
• Exploiting these operations with provable speedup is actually 

pretty hard! (Consider measurement if nothing else…)

Circuit composer: https://quantum-computing.ibm.com/
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What is quantum computing good for?
• Many things (cryptography, communications, etc.), but the “commercial 

killer app” will probably be the first proposal*: the simulation of quantum 
systems - and the money is in chemistry now. Quantum computers will 
ultimately be able to do something classical computers will never be able 
to do - simulate exactly the behavior of molecules with complex electron 
behavior.

• The physics undergirding this is that of a system of interacting fermions.
• There are fewer commercial applications in the simulation of, say, nuclear 

matter in neutrino-nucleus scattering, but we can benefit from the 
commercially motivated research in quantum chemistry a great deal!

• Why is quantum computing powerful?
- https://www.smbc-comics.com/comic/the-talk-3
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