

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Future Accelerators for Fermilab Proton Complex

Jeffrey Eldred Fermilab User's Meeting 2022 June 13, 2022

Fermilab Upcoming Upgrades PIP-II ~750kW

Fermilab Upcoming Upgrades PIP-II 1.2MW

New SRF linac raises Booster injection energy, new LBNF beamline.

6/13/2022

🛟 Fermilab

PIP-II Linac & Upgrade

PIP-II project has received DOE CD-3 approval construction is already underway.

Linac-to-Booster transfer line

Upgraded Recycler & Main

- **Cryoplant Building**
- Linac Complex
- **Booster Connection**

PIP-II Booster Power

	PIP	PIP-II
MI Beamline	NuMI	LBNF
RR/MI Intensity	$54 \cdot 10^{12} \text{ protons}$	$65 \cdot 10^{12} \text{ protons}$
RR/MI Rep. Time	$1.333 \mathrm{\ s}$	1.2 s
MI Power	0.7 MW	1.2 MW
Booster Intensity	$4.5 \cdot 10^{12} \text{ protons}$	$6.5 \cdot 10^{12} \text{ protons}$
Booster Rep. Rate	$15 \mathrm{~Hz}$	20 Hz
Booster Ext. Power	$85 \mathrm{kW}$	$165 \mathrm{kW}$
Injection Energy	$0.4 \mathrm{GeV}$	$0.8 \mathrm{GeV}$
Efficiency	95%	98%

The primary purpose of the PIP-II is to inject into the Booster, and in turn power the high-energy proton complex including DUNE/LBNF program.

🛠 Fermilab

6/13/2022

However, the PIP-II Linac is also designed to be CW-capable and the Booster only uses ~1.2% of the CW beam power!

- Two proposed "near-term" programs are discussed.

5 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

Proposed Mu2e-II Program

Mu2e-II proposed to send PIP-II linac beam to the mu2e experiment, ~100kW at 0.8 GeV.

Mu2e-II doing R&D on necessary changes for beam target, calorimetry, tracker, veto system, production solenoid, H- stripping etc.

Even with mu2e-II, with an RF splitter the vast majority of the PIP-II beam is still available!

6 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex 6/13/2022

1.5

1 Deflector Cavity

0.5

40.625 MHz

🛟 Fermilab

Proposed PIP-II Accumulator Ring (PAR)

Features:

- Proposed 0.8-1.0 GeV proton storage ring.

- 474m in the form of a folded figure 8.

Benefits:

- 100 kW Dark Sector Program.
- Facilitates injection into PIP-II era Booster.
- Enables 1 GeV upgrade of Booster injection.

Snowmass white paper

Proton Intensity Upgrade after PIP-II

8 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

Beam Power and Detector Size

DUNE long-baseline neutrino program calls for 2.4 MW

9 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

DUNE Physics, with 2.4 MW at 6 years

10 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

Fermilab Upcoming Upgrades Future 2.4MW

Booster prevents x2 PIP-II power, injection energy and transition-crossing limits

6/13/2022

🛟 Fermilab

Rapid-Cycling Synchotron (RCS) Option

12 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

8 GeV Linac Option

13 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

Upgrade Design History & Process

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, S. Nagaitsev and V. Lebedev: updated version of ICD-2.

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

In 2021, Committee for Fermilab Booster Upgrade an integrated design effort:

Science Working Group chaired by R. Harnik

<u>"Physics Opportunities for the Fermilab Booster Replacement"</u>

Accelerator Working Group chaired by M. Syphers <u>"An Upgrade Path for the Fermilab Accelerator Complex"</u> (RCS Scenario) <u>"An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"</u>

Next: Snowmass & P5 Process

Upgrade Design History & Process

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, S. Nagaitsev and V. Lebedev: updated version of ICD-2.

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

In 2021, Committee for Fermilab Booster Upgrade an integrated design effort: Science Working Group chaired by R. Harnik <u>"Physics Opportunities for the Fermilab Booster Replacement"</u>

Accelerator Working Group chaired by M. Syphers <u>"An Upgrade Path for the Fermilab Accelerator Complex"</u> (RCS Scenario) <u>"An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"</u>

Next: Snowmass & P5 Process

Experiment	Dark Sectors	V Physics	CLFV	Precision tests	R&D
Lepton flavor violation: µ-to-e conversion					
Lepton flavor violation: µ decay					
PIP2-BD: ~GeV Proton beam dump					
SBN-BD: ~10 GeV Proton beam dump					
High energy proton fixed target					
Electron missing momentum					
Nucleon form factor w/ lepton scattering					
Electron beam dumps					
Muon Missing Momentum					
Muon beam dump					
Physics with muonium					
Muon collider R&D and neutrino factory					
Rare decays of light mesons					
Ultra-cold neutrons					
Proton storage ring for EDM and axions					
Tau neutrinos					
Proton irradiation facility					
Test-beam facility					

16 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

(electrons)

'Laundry List' of Possible Experiments (RCS Scenario)

2 GeV CW-capable beam, 2mA

- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program
- neutron-antineutron oscillation experiments
- EDM storage ring (with polarized proton source upgrade)

2 GeV pulsed beam from Storage Ring, ~1 MW

- PIP2-BD stopped pions, GeV-scale dark sector search
- AMF/PRISM charged-lepton flavor violation experiments

8 GeV RCS program, ~1 MW

- SBN-BD kaon decay-at-rest, intermediate energy dark sector search
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- proton irradiation facility
- muon beam dump experiment

120 GeV Slow-Extraction program, 8e12 over six second, once per min.

- DarkQuest dark matter spectrometer experiment
- M3 muon missing-momentum experiment
- test beam program

This is everything proposed at Snowmass! Not necessarily planned for Fermilab!

🛠 Fermilab

Upgrade Design History & Process

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, S. Nagaitsev and V. Lebedev: updated version of ICD-2.

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

In 2021, Committee for Fermilab Booster Upgrade an integrated design effort:

Science Working Group chaired by R. Harnik

<u>"Physics Opportunities for the Fermilab Booster Replacement"</u>

Accelerator Working Group chaired by M. Syphers "An Upgrade Path for the Fermilab Accelerator Complex" (RCS Scenario) "An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"

Next: Snowmass & P5 Process

8-GeV Linac Program (MI program)

Performance Parameter	PIP	PIP-II	BRL	Unit	
Linac Beam Energy	400	800	8000	MeV	
Linac Beam Current (chopped)	25	2	2	mA	_
Linac Pulse Length	0.03	0.54	2.2	ms	Injects at 3
Linac Pulse Repetition Rate	15	20	20	Hz	into MI ov
Linac Upgrade Potential	N/A	CW	CW		
8 GeV Protons per Pulse (extracted)	4.2	6.5	27.5	1012	2.2ms puls
8 GeV Pulse Repetition Rate	15	20	20	Hz	•
Beam Power @ 8 GeV	80	166	700	kW	
8 GeV Beam Power to MI	50	83-142*	176-300	kW	
Beam Power to 8 GeV Program (pulsed mode)	30	83-24*	500-375	kW	
Main Injector Protons per Pulse (extracted)	4.9	7.5	15.6	1013	
Main Injector Cycle Time @ 120 GeV	1.33	1.2	1.2	S	
Main Injector Cycle Time @ 60 GeV	N/A	0.7	0.7	S	
Beam Power @ 60 GeV	N/A	1	2.15	MW	
Beam Power @ 120 GeV	0.7	1.2	2.5	MW	

*Total PIP-II with Booster 8 GeV power is 166 kW.

Section	Length	Bending field or RF frequency	Total bending angle or Linac mode	Cavities/magnets/ cryomodules	Cryomodule length
1 GeV transport	40 m	0.277 T	-45°		
$1 \rightarrow 3 \text{ GeV Linac}$	240 m	650 MHz	CW	120/20/20	9.92 m
3 GeV bend	200 m	0.13 T	105°		
3 → 8 GeV Linac	390 m	1300 MHz	Pulsed, 10 Hz	224/28/28	12.5 m
8 GeV injection		0.055 T			

20Hz er six ses

‡Fermilab

6/13/2022

19 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

8-GeV Linac Program (8-GeV program)

Performance Parameter	PIP	PIP-II	BRL	Unit
Linac Beam Energy	400	800	8000	MeV
Linac Beam Current (chopped)	25	2	2	mA
Linac Pulse Length	0.03	0.54	2.2	ms
Linac Pulse Repetition Rate	15	20	20	Hz
Linac Upgrade Potential	N/A	CW	CW	
8 GeV Protons per Pulse (extracted)	4.2	6.5	27.5	10 ¹²
8 GeV Pulse Repetition Rate	15	20	20	Hz
Beam Power @ 8 GeV	80	166	700	kW
8 GeV Beam Power to MI	50	83-142*	176-300	kW 2
Beam Power to 8 GeV Program (pulsed mode)	30	83-24*	500-375	kW
Main Injector Protons per Pulse (extracted)	4.9	7.5	15.6	10 ¹³
Main Injector Cycle Time @ 120 GeV	1.33	1.2	1.2	S
Main Injector Cycle Time @ 60 GeV	N/A	0.7	0.7	S
Beam Power @ 60 GeV	N/A	1	2.15	MW
Beam Power @ 120 GeV	0.7	1.2	2.5	MW

8-GeV pulsed 2µs -> 2ms

‡ Fermilab

*Total PIP-II with Booster 8 GeV power is 166 kW.

Section	Length	Bending field or	Total bending angle	Cavities/magnets/	Cryomodule
		RF frequency	or Linac mode	cryomodules	length
1 GeV transport	40 m	0.277 T	-45°		
$1 \rightarrow 3 \text{ GeV Linac}$	240 m	650 MHz	CW	120/20/20	9.92 m
3 GeV bend	200 m	0.13 T	105°		
3 → 8 GeV Linac	390 m	1300 MHz	Pulsed, 10 Hz	224/28/28	12.5 m
8 GeV injection		0.055 T			

20 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

Upgrade Design History & Process

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, S. Nagaitsev and V. Lebedev: updated version of ICD-2.

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

In 2021, Committee for Fermilab Booster Upgrade an integrated design effort:

Science Working Group chaired by R. Harnik

<u>"Physics Opportunities for the Fermilab Booster Replacement"</u>

Accelerator Working Group chaired by M. Syphers "An Upgrade Path for the Fermilab Accelerator Complex" (RCS Scenario) "An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"

Next: Snowmass & P5 Process

RCS Scenarios

"Design Considerations for Fermilab Multi-MW Proton Facility" white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 \mathrm{GeV}$	2 GeV	$2 { m GeV}$
Minimum Linac Current	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	8 GeV	8 GeV	8 GeV
RCS Intensity	6.5 e12	26 e12	37 e12
RCS Circumference	474.2 m	553.2 m	570 m
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Accumulation Technique	Slip-stacking	Conventional	Conventional
8 GeV Accumulation	Recycler	Recycler	Main Injector
Available RCS Power	80 kW	170 kW	750 kW
Main Injector Intensity	80 e12	156 e12	185 e12
Main Injector Cycle Time	1.2 s	1.2 s	1.4 s
Main Injector Power (120 GeV)	$1.2 \ \mathrm{MW}$	2.4 MW	2.4 MW
Upgraded Main Injector Power		3.3 MW	4.0 MW

22 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

RCS Scenarios (ramp rate and 8 GeV program)

"Design Considerations for Fermilab Multi-MW Proton Facility" white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 \mathrm{GeV}$	$2 \mathrm{GeV}$	2 GeV
Minimum Linac Current	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	8 GeV	8 GeV	8 GeV
RCS Intensity	6.5 e12	26 e12	37 e12
RCS Circumference	474.2 m	553.2 m	570 m
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Number of Batches Accumulation Technique	12 Slip-stacking	6 Conventional	5 Conventional
Number of Batches Accumulation Technique 8 GeV Accumulation	12 Slip-stacking Recycler	6 Conventional Recycler	5 Conventional Main Injector
Number of Batches Accumulation Technique 8 GeV Accumulation Available RCS Power	12 Slip-stacking Recycler 80 kW	6 Conventional Recycler 170 kW	5 Conventional Main Injector 750 kW
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector Intensity	12 Slip-stacking Recycler 80 kW 80 e12	6 Conventional Recycler 170 kW 156 e12	5 Conventional Main Injector 750 kW 185 e12
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector IntensityMain Injector Cycle Time	12 Slip-stacking Recycler 80 kW 80 e12 1.2 s	6 Conventional Recycler 170 kW 156 e12 1.2 s	5 Conventional Main Injector 750 kW 185 e12 1.4 s
Number of BatchesAccumulation Technique8 GeV AccumulationAvailable RCS PowerMain Injector IntensityMain Injector Cycle TimeMain Injector Power (120 GeV)	12 Slip-stacking Recycler 80 kW 80 e12 1.2 s 1.2 MW	6 Conventional Recycler 170 kW 156 e12 1.2 s 2.4 MW	5ConventionalMain Injector750 kW185 e121.4 s2.4 MW

ICD-2 RCS is more cost-effective, BSR is more ambitious

BSR delivers more for 8 GeV, compatible with a second LBNF target station

23 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

6/13/2022

🛠 Fermilab

RCS Scenarios (required rings)

"Design Considerations for Fermilab Multi-MW Proton Facility" white paper

Parameter	PIP-II Booster	ICD-2	BSR
Linac Energy	$0.8 { m GeV}$	2 GeV	2 GeV
Minimum Linac Current	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Required
RCS Energy	8 GeV	8 GeV	8 GeV
RCS Intensity	6.5 e12	26 e12	37 e12
RCS Circumference	474.2 m	553.2 m	570 m
RCS Rep. Rate	20 Hz	10 Hz	20 Hz
Number of Batches	12	6	5
Accumulation Technique	Slip-stacking	Conventional	Conventional
8 GeV Accumulation	Recycler	Recycler	Main Injector
Available RCS Power	80 kW	170 kW	750 kW
Main Injector Intensity	80 e12	156 e12	185 e12
Main Injector Cycle Time	1.2 s	1.2 s	1.4 s
$\ \text{ Main Injector Power (120 GeV)} $	1.2 MW	2.4 MW	2.4 MW
Upgraded Main Injector Power		3.3 MW	4.0 MW

ICD-2 scenario require Recycler (or similar), maintains RR experimental program.

🚰 Fermilab

6/13/2022

BSR sceneario requires either an Accumator Ring or 5 mA linac upgrade.

24 Jeffrey Eldred | Future Accelerators for Fermilab Proton Complex

RCS Scenarios (possible staging)

"Design Considerations for Fermilab Multi-MW Proton, Facility" white paper

Parameter	PIP-II Booster	Staging?	IČD-2	BSR
Linac Energy	$0.8 \mathrm{GeV}$	$\sim 1.6 { m GeV}$	2 GeV	2 GeV
Minimum Linac Current	2 mA	2 mA	2 mA	2 mA
GeV-scale Accumulator Ring	Optional	Optional	Optional	Required
RCS Energy	$8 { m GeV}$	8 GeV	8 GeV	8 GeV
RCS Intensity	$6.5 \ \mathrm{e12}$	$\sim 20 \text{ e}12$	26 e12	37 e12
RCS Circumference	474.2 m	$\sim 550 \text{ m}$	$553.2 \mathrm{~m}$	570 m
RCS Rep. Rate	20 Hz	10 Hz	10 Hz	20 Hz
Number of Batches	12	6	6	5
Accumulation Technique	Slip-stacking	Conventional	Conventional	Conventional
8 GeV Accumulation	Recycler	Recycler	Recycler	Main Injector
Available RCS Power	80 kW	$\sim 60 \text{ kW}$	170 kW	750 kW
Main Injector Intensity	80 e12	116 e12	156 e12	185 e12
Main Injector Cycle Time	1.2 s	1.2 s	1.2 s	1.4 s
Main Injector Power (120 GeV)	$1.2 \ \mathrm{MW}$	1.8 MW	2.4 MW	$2.4 \mathrm{MW}$
Upgraded Main Injector Power			3.3 MW	4.0 MW

Possible Staging with 1.8 MW, smaller Linac upgrade, PIP-II era Main Injector RF.

🚰 Fermilab

6/13/2022

Optionally, could be designed to be upgradeable to either 2.4 MW scenario.

Summary

PIP-II upgrade, massive potential for GeV-scale experimental program

- Proposed ~100kW mu2e-II program.
- Proposed ~100kW PAR / dark sector program
- A lot of other ideas are out there muons, neutrons, polarized protons.

Longterm planning for a subsequent Proton Intensity Upgrade.

- Engaging Snowmass and the wider physics community.
- Robust planning helps make wise decisions, maintain flexibility.
 ICD-2 RCS: Well-developed proposal, focused on 2.4 MW for LBNF.
 BSR RCS: More challenging injection/linac, much more 8-GeV power.
 8-Gev Linac: R&D for 8-GeV injection, potential for high CW power.

Fermilab

6/13/2022

What will be the **future 0.8-2 GeV** experimental program?

- power, beam structure, timeline.

What will be the **future 8 GeV** experimental program?

- power, beam structure, timeline.
- future role of Recycler Ring and Delivery Ring.