

MicroBooNE Cross Section Measurements

Elena Gramellini, Lederman Fellow August 5th, 54th Annual Users Meeting

MicroBooNE at a glance

MicroBooNE is the longest running Liquid Argon Time Projection Chamber at FNAL. With 85 ton active volume, MicroBooNE collects neutrinos on-axis from the BNB and highly off-axis from NuMI.

Completed 5 years physics runs: 2015-2021.

Largest neutrino-argon dataset available to date.

Just started exciting R&D program!

MicroBooNE at a glance

MicroBooNE

Chamber at neutrinos on-

Completed 5

Largest neutr

Just started e

Thanks FNAL!!!

for all the support during construction, commissioning and data-taking!!!

MicroBooNE Publications

MicroBooNE has a large body of published work:

33 papers, 56 public notes

Sharing findings with LAr community...

Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector

Measurement of the Longitudinal Diffusion of Ionization Electrons in the Detector

Cosmic Ray Background Rejection with Wire-Cell LAr TPC Event Reconstruction in the MicroBooNE Detector

Measurement of the Flux-Averaged Inclusive CC ve and Anti-ve Cross Section on Argon using the NuMI Beam in MicroBooNE

Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC

Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE

High-performance Generic Neutrino Detection in a LAr TPC near the Earth's Surface with the MicroBooNE Detector

Neutrino Event Selection in the MicroBooNE LAr TPC using Wire-Cell 3D Imaging, Clustering, and Charge-Light Matching

A Convolutional Neural Network for Multiple Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos

2021 Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector

Measurement of Differential Cross Sections for Muon Neutrino CC Interactions on Argon with Protons and No Pions in the Final State Measurement of Space Charge Effects in the MicroBooNE LAr TPC Using Cosmic Muons

First Measurement of Differential Charged Current Quasi-Elastic-Like Muon Neutrino Argon Scattering Cross Sections with the MicroBooNE Detector Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector

Reconstruction and Measurement of O(100) MeV Electromagnetic Activity from Neutral Pion to Gamma Gamma Decays in the MicroBooNE LArTPC

A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE

2020 Calibration of the Charge and Energy Response of the MicroBooNE Liquid Argon Time Projection Chamber Using Muons and Protons First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at Enu ~0.8 GeV with the MicroBooNE Detector Design and Construction of the MicroBooNE Cosmic Ray Tagger System

Rejecting Cosmic Background for Exclusive Neutrino Interaction Studies with Liquid Argon TPCs: A Case Study with the MicroBooNE Detector First Measurement of Muon Neutrino Charged Current Neutral Pion Production on Argon with the MicroBooNE detector

A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

2019 Comparison of Muon-Neutrino-Argon Multiplicity Distributions Observed by MicroBooNE to GENIE Model Predictions

Ionization Electron Signal Processing in Single Phase LArTPCs II: Data/Simulation Comparison and Performance in MicroBooNE Ionization Electron Signal Processing in Single Phase LArTPCs I: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

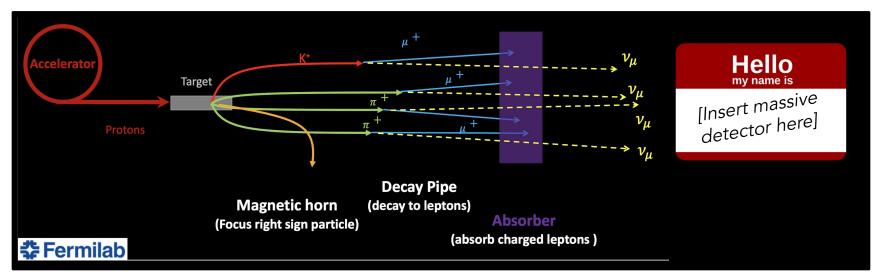
The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector

Measurement of Cosmic Ray Reconstruction Efficiencies in the MicroBooNE LAr TPC Using a Small External Cosmic Ray Counter

Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

Michel Electron Reconstruction Using Cosmic Ray Data from the MicroBooNE LAr TPC

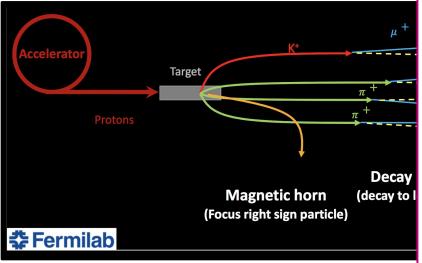
Determination of Muon Momentum in the MicroBooNE LAr TPC Using an Improved Model of Multiple Coulomb Scattering

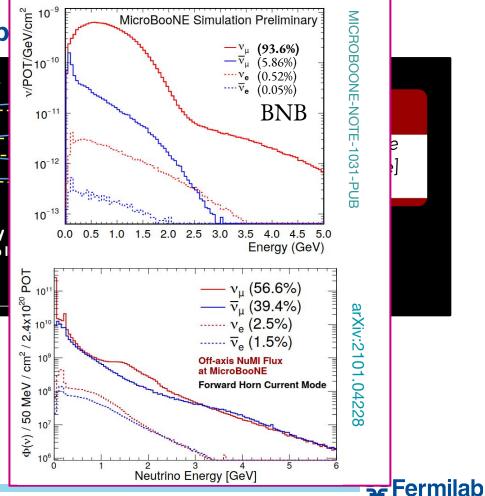

Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

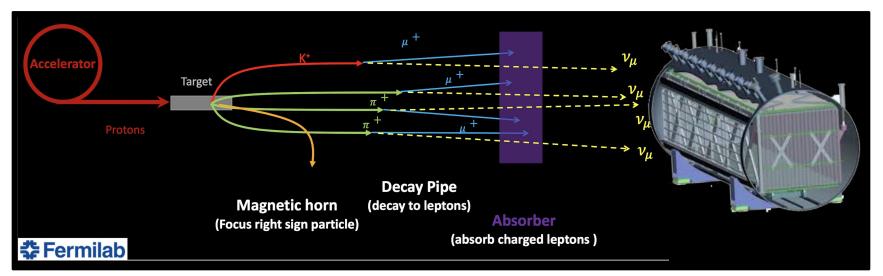
See Denver Whittington's talk **₹ Fermilab**

SBN and DUNE's success

...to boost


Design and Construction of the MicroBooNE Detector


1. Know your neutrino flux



Ingredients for a successful on-b

1. Know your neutrino flux

- 1. Know your neutrino flux \rightarrow
- 2. Know your detector →

MICROBOONE-NOTE-1031-PUB

JINST 15, P03022 (2020) (and many more)

LArTPC in action

Extremely detailed 3D images + calorimetry + PID: unprecedented tool for neutrino interaction & BSM physics

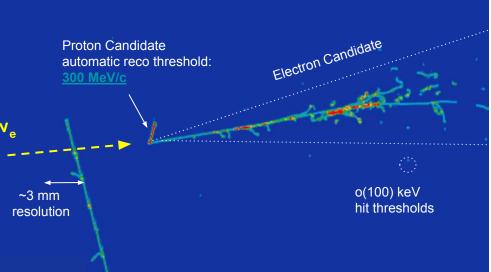
NUMI DATA: RUN 5440 EVENT 2577. MARCH 15, 2016

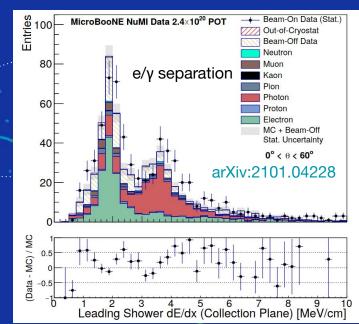
LArTPC in action

Extremely detailed 3D images + calorimetry + PID: unprecedented tool for neutrino interaction & BSM physics

Proton Candidate automatic reco threshold:
300 MeV/c

-3 mm
resolution

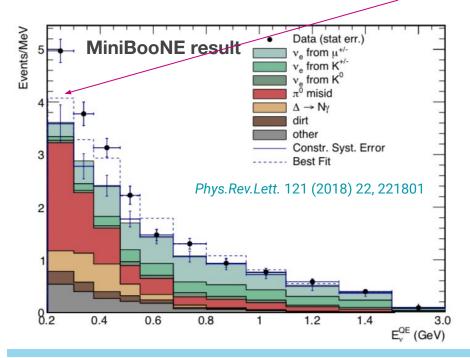

O(100) keV
hit thresholds

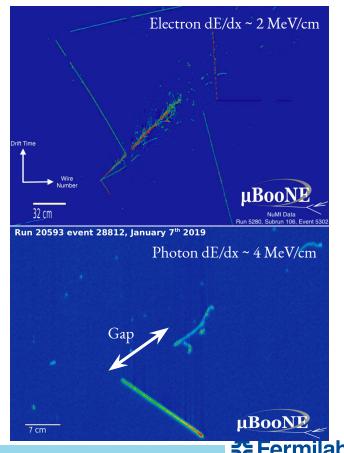

NUMI DATA: RUN 5440 EVENT 2577. MARCH 15, 2016

μBooNE

LArTPC in action

Extremely detailed 3D images + calorimetry + PID: unprecedented tool for neutrino interaction & BSM physics




NUMI DATA: RUN 5440 EVENT 2577. MARCH 15, 2016

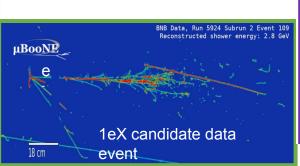
To e⁻ or not to e⁻? Why is e/γ separation a big deal?

Primary physics goal:

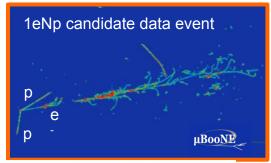
Investigate the nature of the MiniBooNE excess of low energy electromagnetic events. **Is it electrons? Is it photons?**

Exploring the MiniBooNE LEE

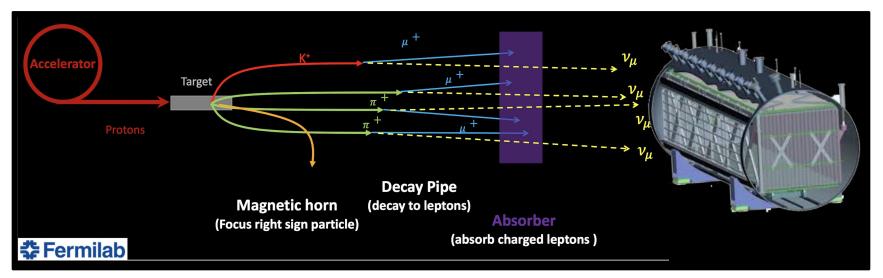
ν_e analyses:

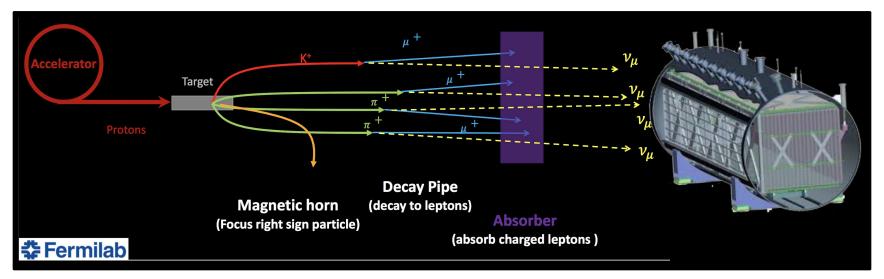

- → MiniBooNE-like final state (Pandora, 1eNp, 1e0p)
- → restricting to quasi-elastic kinematics (Deep Learning , 1e1p)
- \rightarrow all v_{e} final states (Wire-Cell, 1eX)

single photon analysis:


 \rightarrow targeting Delta radiative decay hypothesis (Pandora, 1 γ 1p, 1 γ 0p)

3 reconstruction paradigms, 6 complementary channels

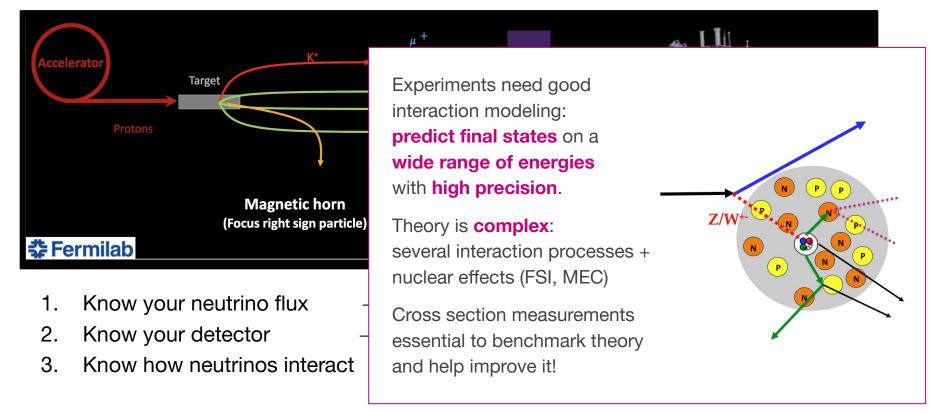




- Know your neutrino flux →
- 2. Know your detector →

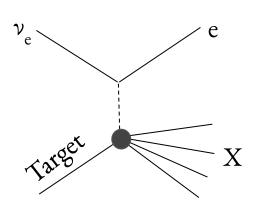
MICROBOONE-NOTE-1031-PUB

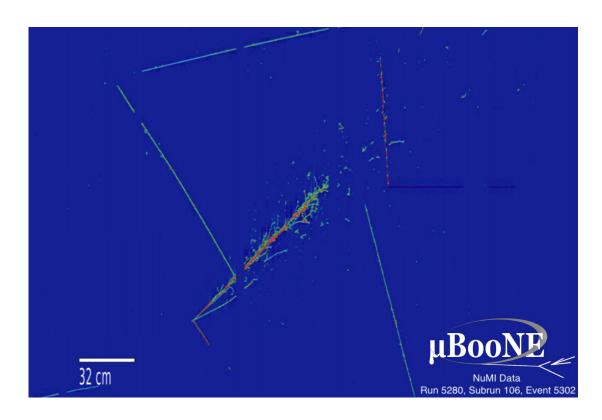
JINST 15, P03022 (2020) (and many more)



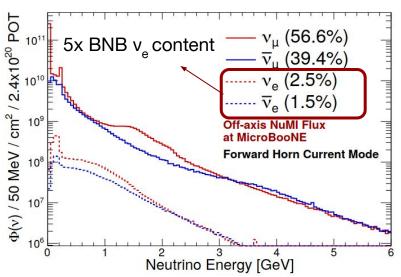
- 1. Know your neutrino flux \rightarrow
- 2. Know your detector →
- 3. Know how neutrinos interact

MICROBOONE-NOTE-1031-PUB

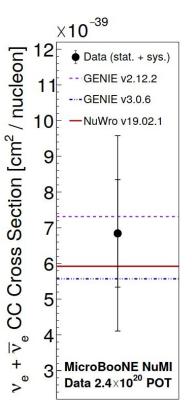

JINST 15, P03022 (2020) (and many more)



$v_e + \overline{v}_e$ Bar CC Inclusive @ NuMI



$v_e + \overline{v}_e$ Bar CC Inclusive @ NuMI

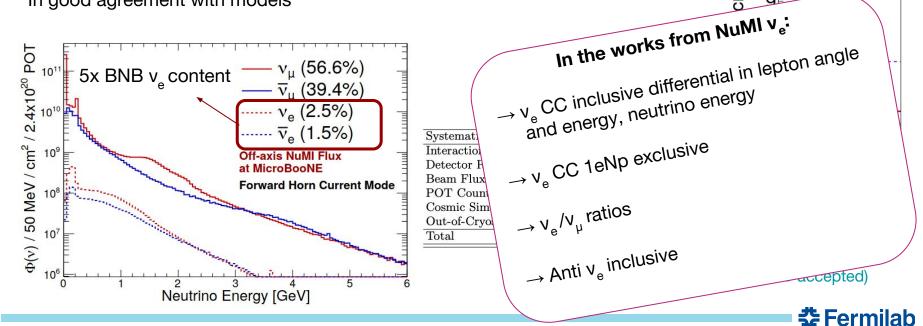

Flux averaged total cross section.

Largest ever sample of v_e -Ar interactions with > 200 events Selection main requirement: at least one shower compatible with electron hypothesis: Purity ~40%, Efficiency ~10%.

In good agreement with models

Systematic Source	Relative Uncertainty [%]
Interaction	10
Detector Response	23
Beam Flux	22
POT Counting	2
Cosmic Simulation	4
Out-of-Cryostat Simulation	6
Total	34

arXiv:2101.04228 (PRD accepted)



$v_{a} + \overline{v}_{a}$ Bar CC Inclusive @ NuMI

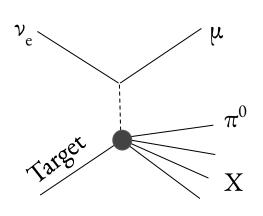
Flux averaged total cross section.

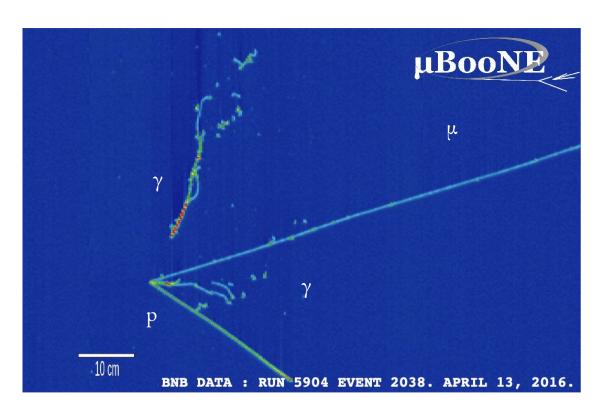
Largest ever sample of v_a -Ar interactions with > 200 events Selection main requirement: at least one shower compatible with electron hypothesis: Purity ~40%, Efficiency ~10%.

In good agreement with models

×10⁻³⁹

Data (stat. + sys.)

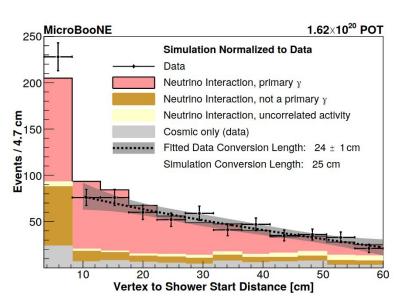

GENIE v2.12.2

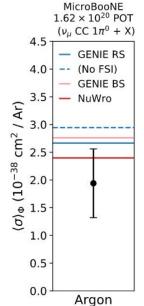

---- GENIE v3.0.6

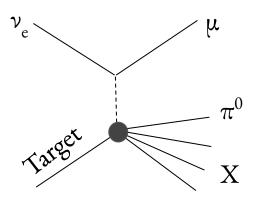
-NuWro v19.02.1

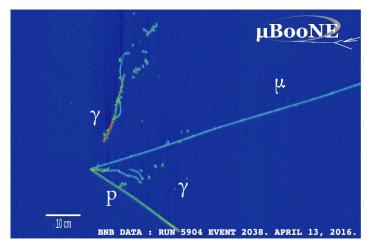
/ nucleon]

Production of neutral pions

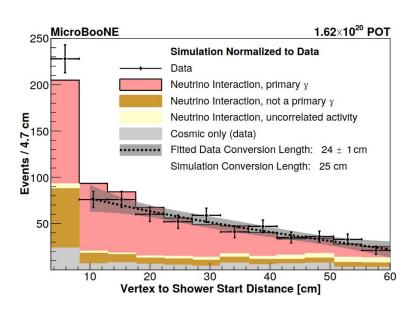


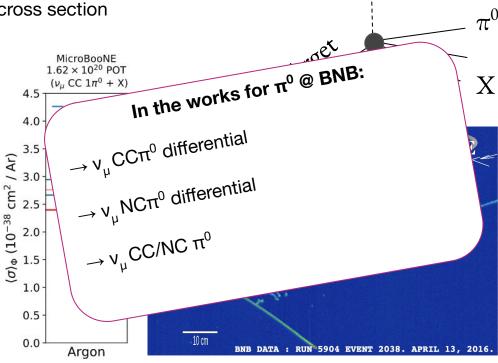





Production of neutral pions

Fundamental background to the LEE search First measurement of flux averaged $v_{_{\!\scriptscriptstyle U}}\text{-Ar }CC\pi^0$ cross section Phys. Rev. D99, 091102(R) (2019)





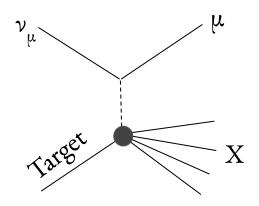
Production of neutral pions

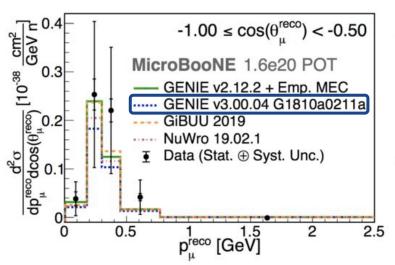
Fundamental background to the LEE search First measurement of flux averaged v_{μ} -Ar CC π^0 cross section Phys. Rev. D99, 091102(R) (2019)

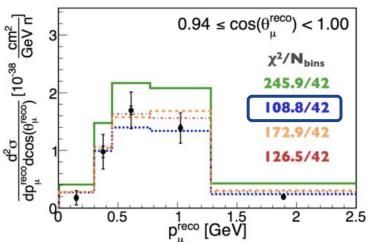
v_{μ} CC Inclusive @ BNB μBooNE μBooNE Run 3469 Event 28734, October 21st, 2015 30 cm

Run 3493 Event 27435, October 23rd, 2015

22

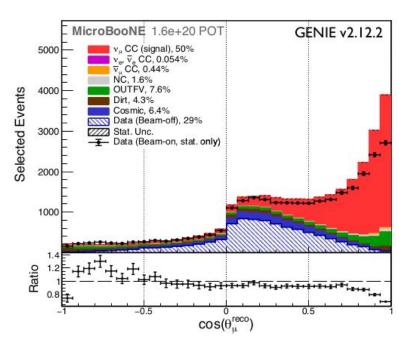

30 cm

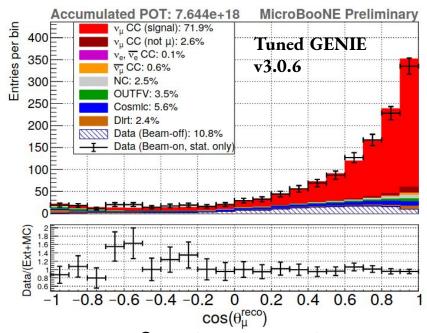

v_{μ} CC Inclusive @ BNB


In single detector measurements, muon neutrinos are used to constrain uncertainties on electron neutrinos flux and interaction model.

First double differential measurement on Argon

→ Overall good agreement with theory (Phys. Rev. Lett. 123, 131801 (2019)). More recent models achieve better agreement at forward scattering angles.





v_u CC Inclusive @ BNB: a Sneak Peek at Next Gen Analyses

Improved detector simulation and tuned nuclear modelling

Previously published measurement Phys. Rev. Lett. 123, 131801 (2019)

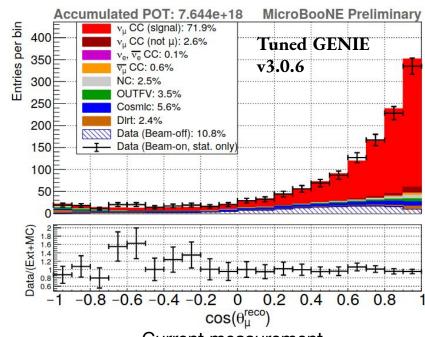
Current measurement

MICROBOONE-NOTE-1069-PUB

v_u CC Inclusive @ BNB: a Sneak Peek at Next Gen Analyses

Improved detector simulation and tuned nuclear modelling

- \rightarrow Purity: from 50% to 71.9%
- → 3x Reduction of cosmic contamination
- → Detector uncertainties from 16.2 % to 3.3 %


Better detector understanding: signal processing from all planes & improved calorimetry JINST 13, P07006 (2018), JINST 13, P07007 (2018)

Reduced systematic uncertainties via a data driven method

MICROBOONE-NOTE-1075-PUB

Improved neutrino interaction model MICROBOONE-NOTE-1074-PUB

Cosmic Ray Tagger use, JINST 14, P04004 (2019)

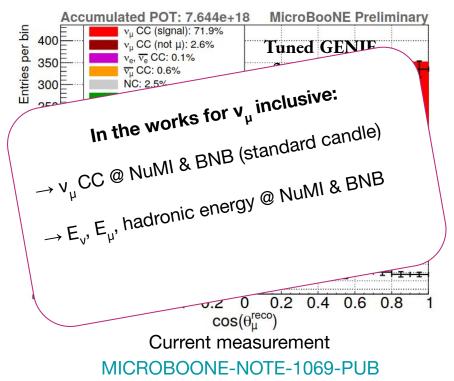
Current measurement

MICROBOONE-NOTE-1069-PUB

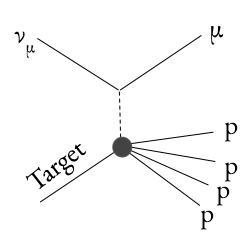
v_{μ} CC Inclusive @ BNB: a Sneak Peek at Next Gen Analyses

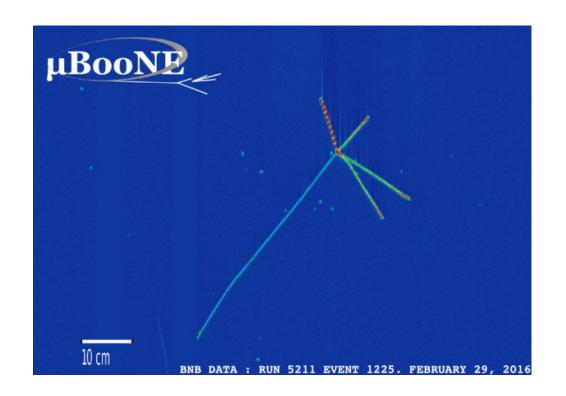
Improved detector simulation and tuned nuclear modelling

- \rightarrow Purity: from 50% to 71.9%
- → 3x Reduction of cosmic contamination
- \rightarrow Detector uncertainties from 16.2 % to 3.3 %


Better detector understanding: signal processing from all planes & improved calorimetry JINST 13, P07006 (2018), JINST 13, P07007 (2018)

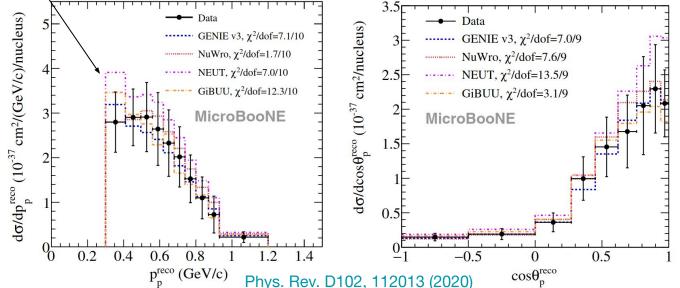
Reduced systematic uncertainties via a data driven method

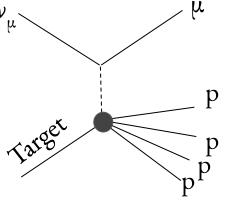

MICROBOONE-NOTE-1075-PUB


Improved neutrino interaction model MICROBOONE-NOTE-1074-PUB

Cosmic Ray Tagger use, JINST 14, P04004 (2019)

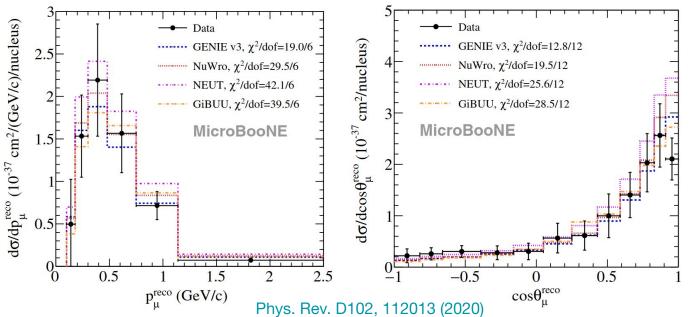
v_{μ} CC exclusive topologies: v_{μ} CC0 π Np with N \geq 1

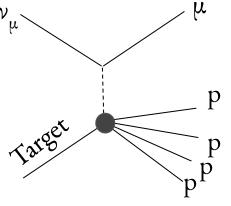




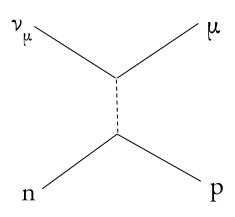
v_{₁₁ CC exclusive topologies: v₁₁ CC0πNp with N ≥ 1}

Event selection: $P_{_{\mu}}\!>100$ MeV/c, $300< P_{_{D}}\!<1200$ MeV/c , 0π Purity ~70% & efficiency ~30%, overall agreement in proton kinematics Lowest momentum bin (close to detection threshold) most sensitive to model differences

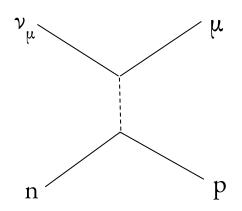




v_u CC exclusive topologies: v_u CC0πNp with N ≥ 1

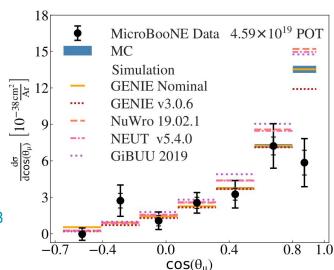

Disagreement in muon kinematics at forward scattering angles

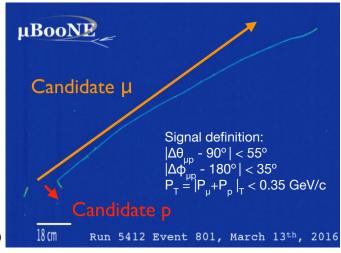
ν_μ CC exclusive topologies: ν_μ CCQE-like



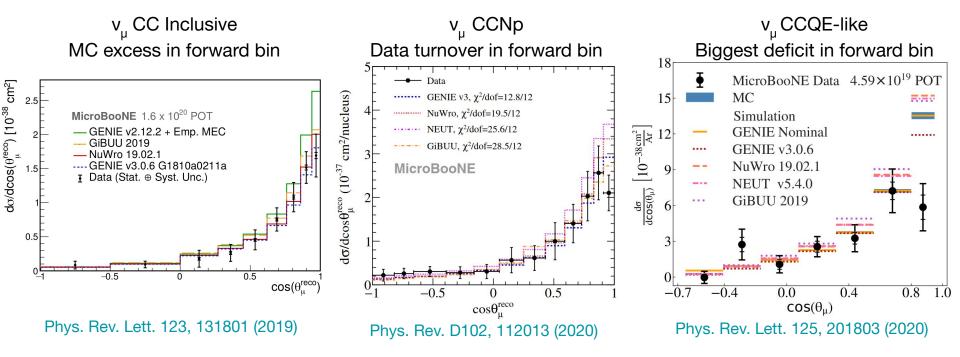
v_{μ} CC exclusive topologies: v_{μ} CCQE-like

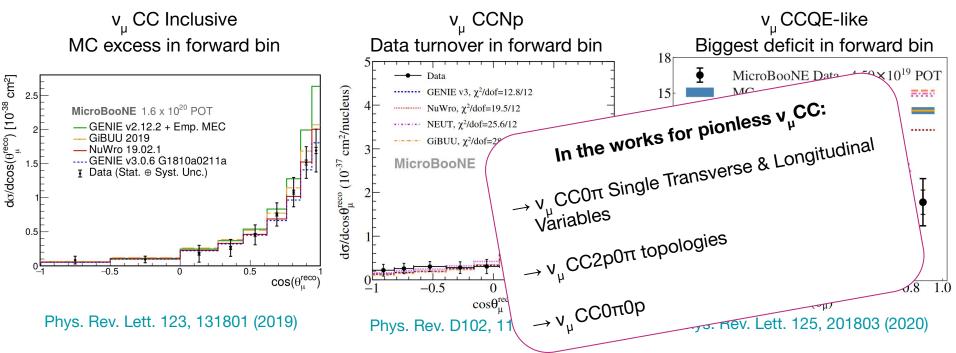
Simple topology dominant at energies relevant for SBN


CCQE-like in restricted phase space boosts CCQE predicted purity: ~80%

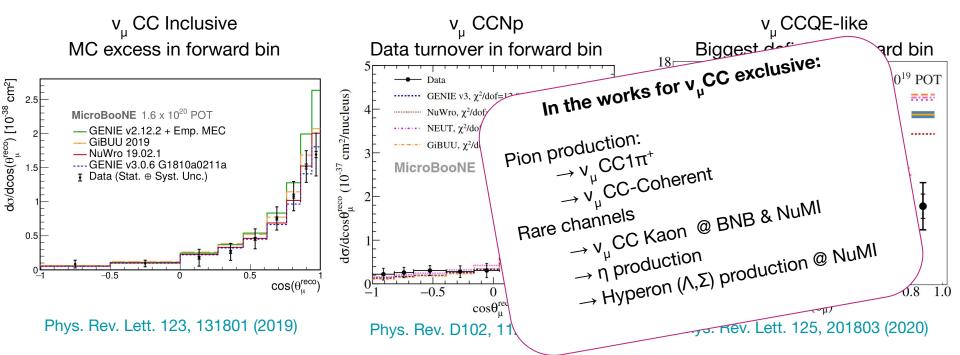

Event selection: $P_{\mu} > 100$ MeV/c, single proton $P_{p} > 300$ MeV/c

Good agreement with models, except at very forward muon scattering angles.

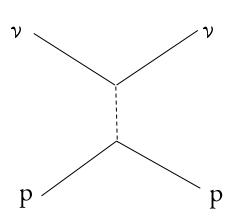

Phys. Rev. Lett. 125, 201803 (2020)

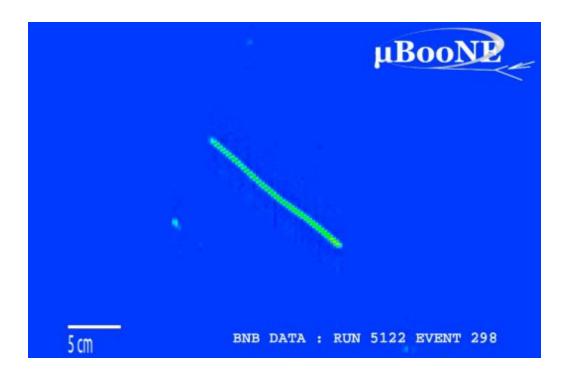

Consistent Picture for v_u CC

Forward region is very sensitive to nuclear physics: more modern generators show promise. Investigation with using exclusive channels will shed light on the matter.



Forward region is very sensitive to nuclear physics: more modern generators show promise. Investigation with using exclusive channels will shed light on the matter.

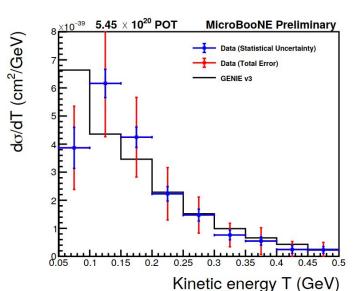


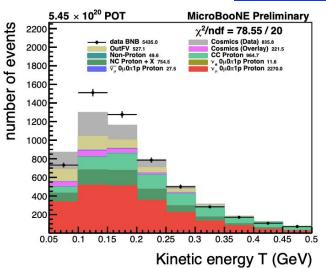


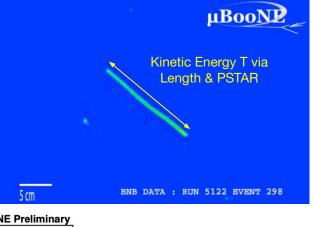
Forward region is very sensitive to nuclear physics: more modern generators show promise. Investigation with using exclusive channels will shed light on the matter.

Challenging topologies: NC1p

Challenging topologies: NC1p

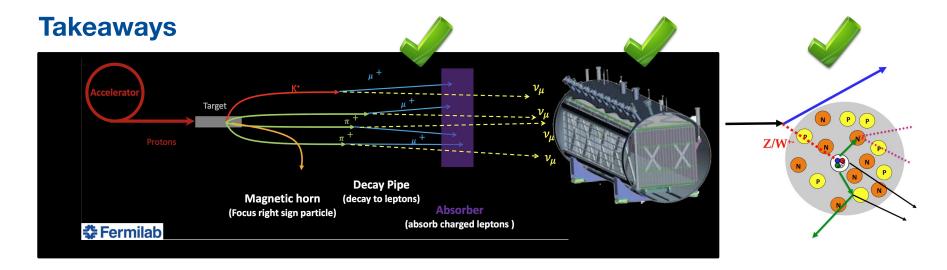

Neutral current interactions w/ single proton:


1 proton track with 1.2 < length < 200 cm


Lowest Q² NC1p analysis to date (0.1 GeV²)

Purity ~40% & efficiency ~30%

Sensitive to strange component of neutral-current axial form factor



No previous data for NCE with T < 225 MeV

MICROBOONE-NOTE: 1067-PUB

MicroBooNE has collected the largest sample of neutrino-argon interactions available to date and has completed our first era of detector studies and cross section analyses.

→ Stepping stone measurements for many more to come! Much more data to analyze!

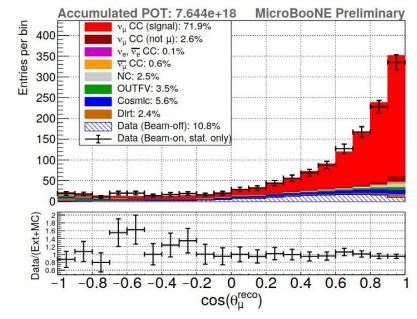
Measuring neutrino cross sections on argon with high precision opens a new window in the exploration of the nucleus and it is foundational for BSM work in LArTPCs:

we are setting solid basis for a series of first results on the MiniBooNE low energy excess (coming soon).

Exciting times ahead!!! Stay tuned!

Backup

Improved Interaction Model: GENIE Tune

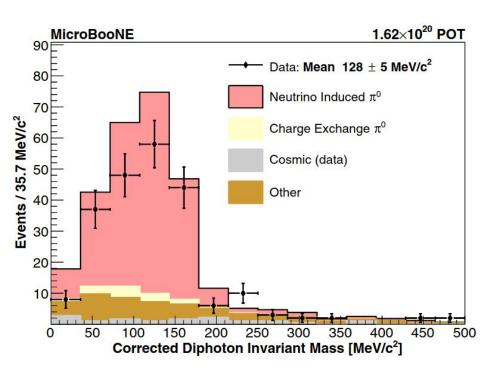

GENIE v2.12.2 \rightarrow GENIE v3.0.6

Tuned CCQE and CCMEC models to T2K $v_{_{IJ}}$ CC0 π data

T2K data is on a carbon target

→ Tuning seems to give good agreement with MicroBooNE's argon-target data

MICROBOONE-NOTE-1074-PUB



GENIE v3.0.6 models used:

QE/MEC → J. Nieves, J.E. Amaro, M. Valverde Phys. Rev. C 70, 055503 (2004) and R. Gran, J. Nieves, F. Sanchez. M. Vicente-Vacas Phys. Rev. D 88, 113007 (2013) RES/COH → C. Berger, L. Sehgal Phys. Rev. D 76, 113004 (2007), Phys. Rev. D 79, 053003 (2009) FSI → work by L. Salcedo, E. Oset, M. Vicente-Vacas, C. Garcia-Recio Nucl. Phys. A 484,557-592 (1988) and V. Pandharipande, S.C. Pieper Phys. Rev. C 45, 791-798 (1992)

More on Neutral Pions

 π^0 selection 350 MicroBooNE Preliminary 5.89e+20 POT ν_e CC0π0p: 0.8 ν_μ CC: 182.9 300 $ν_e$ CC0 π Np: 3.0 ν NC π⁰: 462.8 MeV ν_e CC: 10.2 ν_μ CC π⁰: 1298.2 250 Out. fid. vol.: 41.0 / EXT: 210.2 ♦ BNB: 2452 /12 Cosmic: 107.2 200 Entries 150 100 ż 50 BNB / (MC+EXT) 1.5 0.5 0.0 100 200 300 400 500 M_{vv} [MeV]

Phys. Rev. D99, 091102(R) (2019)

MICROBOONE-NOTE-1085-PUB

MicroBooNE: current R&D

Brief R&D parenthesis

Noise source in MicroBooNE: MicroBooNE noise characterization paper: <u>JINST 12</u>, <u>P08003 (2017)</u>

Single photo-electron rates as a function of drift HV and with reverse cathode polarity.

HV studies: $70 \text{ kV} \rightarrow 128 \text{ kV}$

Impact of UV laser grounding schemes for DUNE?

Real-time triggering solutions that can get physics faster in SBND, DUNE ND

Argon doping

NuMI

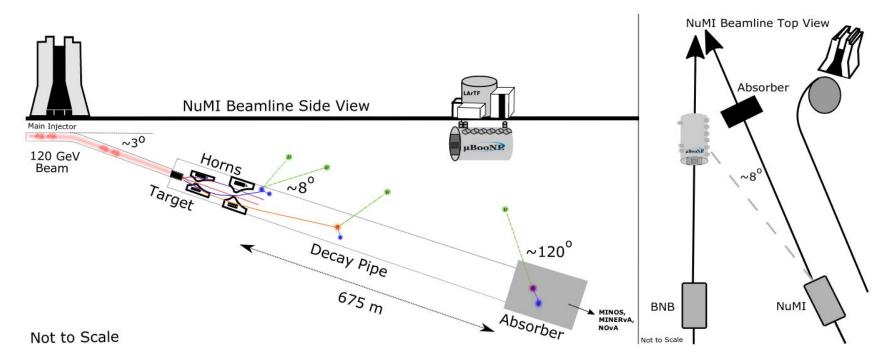
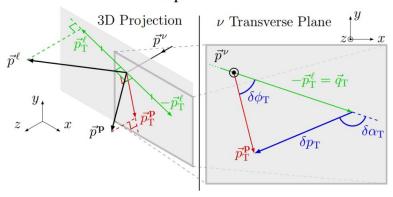


FIG. 3. The position of the MicroBooNE detector relative to the NuMI neutrino beam target with views projected to the side and above. The NuMI beamline is angled 3° downwards and the distance of the NuMI target to MicroBooNE is approximately 679 m. The flux of neutrinos at MicroBooNE covers angles ranging from 8° to 120° relative to the NuMI beamline direction.


Single Transverse Variables

Transverse direction characterized by magnitude & 2 angles

$$\delta \vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}^{\ell} + \vec{p}_{\mathrm{T}}^{p},$$

$$\delta\phi_{\mathrm{T}} = \arccos \frac{-\vec{p}_{T}^{\ell} \cdot \vec{p}_{\mathrm{T}}^{N}}{p_{\mathrm{T}}^{\ell} p_{\mathrm{T}}^{N}},$$

$$\delta \alpha_{\mathrm{T}} = \arccos \frac{-\vec{p}_{T}^{\ell} \cdot \delta \vec{p}_{\mathrm{T}}}{p_{\mathrm{T}}^{\ell} \delta p_{\mathrm{T}}}$$

Longitudinal Variables

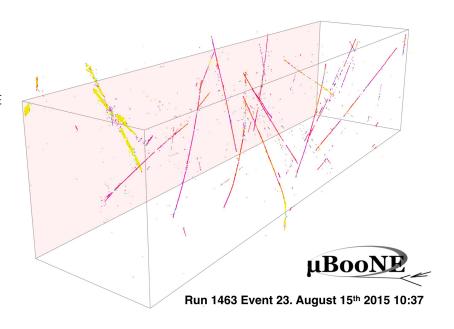
Introduced by the Minerva collaboration to remove dependence on E, while assuming ground state remnant nucleus. Phys. Rev. Lett. 121, 022504 (2018), Phys.Rev. D 101, 092001 (2020), Phys. Rev. C 95, 065501 (2017)

$$egin{aligned} R &= m_A + p_L^\mu + p_L^p - E^\mu - E^p \ \delta p_L &= rac{1}{2}R - rac{m_{A-1}^2 + \delta p_T^2}{2R} \end{aligned}$$

$$m p_{n,proxy} = \sqrt{\delta p_L^2 + \delta p_T^2}$$

Struck nucleon momentum

$$egin{align} \delta \mathrm{p}_{\mathrm{Tx}} &= (\mathbf{\hat{p}}_{\mathsf{v}} imes \mathbf{\hat{p}}_{\mathrm{T}}^{\mathsf{\mu}}) \cdot \delta \mathbf{p}_{\mathrm{T}} \ \delta \mathrm{p}_{\mathrm{Ty}} &= -\mathbf{\hat{p}}_{\mathrm{T}}^{\mathsf{\mu}} \cdot \delta \mathbf{p}_{\mathrm{T}} \ \end{pmatrix}$$


Sensitivity to nuclear effects

MicroBooNE: event reconstruction

3D Event reconstruction is crucial in LArTPC. Multiple avenues:

- → "The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector", Eur. Phys. J. C78, 1, 82 (2018)
- → "Neutrino Event Selection in the MicroBooNE Liquid Argon Time Projection Chamber using Wire-Cell 3D Imaging, Clustering, and Charge-Light Matching", JINST 16, P06043 (2021)
- \rightarrow "A Convolutional Neural Network for Multiple Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber", Phys. Rev. D103, 092003 (2021)

Cosmic contamination plays a big role on the surface:

Cosmic Ray Tagger installed in 2018 JINST 14, P04004 (2019),

Cosmic data as background to simulation (pioneered the "overlay" technique in LAr).

v_{μ} CC exclusive topologies: protons

Low thresholds probe more detailed interaction channels and nuclear effects

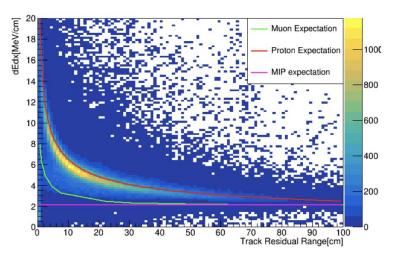
→ ArgoNeuT: 200 MeV/c

Phys. Rev. D 90, 012008

→ T2K: 500 MeV/c

Phys. Rev. D 98, 032003

→ MINERvA: 450 MeV/c


Phys. Rev. D 99, 012004

→ MicroBooNE: 300 MeV/c

Phys. Rev. D102, 112013

Protons identified by Bragg peak in last 30 cm of track MICROBOONE-NOTE-1056-PUB

