

URA Early Career Award talk: New horizons in neutrino physics

Pedro A. N. Machado

It is a great honor to receive the URA early career prize. But this is hardly a one-person achievement.

Stephen Parke

Roni Harnik

Noemi Rocco

Shirley Li

Ornella Palamara (honorary theorist!)

Ivan Martinez-S.

Vedran Brdar

Yuber Perez-G.

Josh Isaacson

Jessica Turner

Will Jay

Kevin Kelly

It is a great honor to receive the URA early career prize. But this is hardly a one-person achievement.

Straight to the point: I would not have gotten the award if I wasn't part of our excellent theory group, working with the best postdocs in the world.

The short baseline neutrino anomalies

If interpreted as oscillations $P(v_{\mu} \text{ to } v_{e}) \sim 0.3\%$ $P(\overline{v}_{\mu} \text{ to } \overline{v}_{e}) \sim 0.3\%$ and $\Delta m^{2} \sim 1 \text{ eV}^{2}$

The issue of sterile neutrinos

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4ab \sin^{2}(\text{osc. phase})$$

$$P(\nu_e \to \nu_s) \simeq 4a \sin^2(\text{osc. phase})$$

$$P(\nu_{\mu} \rightarrow \nu_{s}) \simeq 4b \sin^{2}(\text{osc. phase})$$

The issue of sterile neutrinos

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4ab \sin^{2}(\text{osc. phase})$$

$$P(\nu_e \to \nu_s) \simeq 4a \sin^2(\text{osc. phase})$$

$$P(\nu_{\mu} \rightarrow \nu_{s}) \simeq 4b \sin^{2}(\text{osc. phase})$$

The issue of sterile neutrinos

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4ab \sin^{2}(\text{osc. phase})$$

$$P(\nu_e \to \nu_s) \simeq 4a \sin^2(\text{osc. phase})$$

$$P(\nu_{\mu} \to \nu_{s}) \simeq 4b \sin^{2}(\text{osc. phase})$$

There are other possible explanations, each of those presenting distinct signatures.

Distinct signatures = distinct background ==> better description of neutrino-nuclei interactions is needed, see Noemi's talk

Spatial Resolution: Photon Conversion Distance

LArTPC's are like a digital bubble chamber. In argon photons travel with a mean free path of ~15cm before pair converting, and as the photons are neutral this appears as a distinct gap.

Calorimetry: Shower dE/dx

Photons producing e⁺e⁻ pairs tend to deposit twice the energy per unit length as a single electron

Example of shower dE/dx for candidate neutrino events in the arXiv:2101.04228 NuMI beam at MicroBooNE

ArgoNeuT produced physics results with a "table-top" size experiment [240 Kg LArTPC]

LAr TPC: Bubble chamber quality of data with added calorimetry

...or LArTPC is "a "colored" bubble chamber"

(theorist simplified view!)

slide stolen from (

10. Palamara

ArgoNeuT demonstrated the LAr capability to detect 21 MeV recoil protons.

Reconstruct, identify and point.

For comparison, SK can only see protons that emit Cherenkov light, that is, protons with kinetic energy above ~ 1.4 GeV

Event topology carries extra information

What can we learn from LArTPCs?

Atmospheric neutrinos below the GeV scale and CP violation Kelly et al 1904.02751

CP violation effects in sub-GeV atmospheric neutrinos is 10x larger than in beam neutrinos

12

Atmospheric neutrinos below the GeV scale and CP violation

elly et al 1904.0275:

CP violation effects in sub-GeV atmospheric neutrinos is

10x larger than in beam neutrinos

But sub-GeV atmospherics are very difficult...

Needs to know neutrino direction

Low E protons are invisible

@ Cherenkov detectors

Liquid Argon TPCs can do it!

Atmospheric neutrinos below the GeV scale and CP violation

Kelly et al 1904.027

Simulate neutrino-argon interactions with event generators

Use realistic atmospheric fluxes (Honda et al 1502.03916)

$$\Phi_{\alpha}(E) = \Phi_{\alpha,0} f_{\alpha}(E) \left(\frac{E}{E_0}\right)^{\gamma}$$

Account for uncertainties of atmospheric neutrino fluxes

40% normalization, 5% e/μ ratio, 2% nu/nubar ratio, ± 0.2 spectral distortion coefficient

Realistic LArTPC capabilities

 $\Delta p = 5\%$, 5%, 10%, $\Delta \theta = 5^{\circ}$, 5°, 10°, for e, μ , p, $K_p = 30 \text{ MeV}$

Classify events by final state topology (number of protons)

Atmospheric neutrinos below the GeV scale and CP violation Kelly et al 1904.02751

Atmospheric neutrinos below the GeV scale and CP violation Kelly et al 1904.02751

Quantum tomography measurement of Earth's matter profile

Quantum tomography measurement of Earth's matter profile

Combine with total mass and moment of inertia measurements

Outer mantle: 3.1 ± 0.7 g/cm³

Inner mantle: 5.1 ± 0.6 g/cm³

Core: 11 ± 1 g/cm³

Take home message

DUNE has a unique opportunity to study sub-GeV neutrinos

This opens up the possibility of

- (1) measuring CP violation independently of the beam
 - (2) doing quantum tomography with neutrinos

Cross section is flavor dependent, flavor content changes when going off-axis

de Gouvêa

Perez

Tabrizi

And much more we have been doing for neutrino theory here at the lab!

Tau neutrino strategies at DUNE inspired in LHC techniques

Neutrino-nuclei interaction description

Light (below GeV) and ultralight (below 10⁻¹² eV) dark matter in neutrino experiments

Skipper-CCD physics potential for neutrinos

. . .

Conclusions

Full physics potential of LArTPCs is still under exploration:

Exciting times ahead!!!

Very fruitful collaboration between THs and EXPs: SBN-Theory meetings (with Roni and Ornella)

Diversity, broadly defined, of our theory group is key for innovation