

Engineering at Fermilab:

Microelectronics for Next-Generation Instrumentation

Shaorui Li and Farah Fahim PPD/FQI Quantum ASIC Group Aug 3, 2021

Microelectronics Growth

Moore's law: technology scales 2× every 18 months – sustained by transistor scaling.

Diversified On-Chip Functionalities

- World is inherently analog or mandates an analog interface.
- Systems require various functions: analog/RF interface, analog-digital conversion, digital signal processing and storage, power management.
- Multi technology platforms

Why do we need more than Moore

Source: CEA- LETI

2020

2022

Year of 1st introduction

2018

2016

2014

Microelectronics enabling next-generation instrumentation

- Novel devices
 - Skipper CCD-in-CMOS
- Deep Cryogenic electronics
 - Quantum Communication & Computing
- Hybrid integration
 - Electronic Photonic Integration
 - 3D integration
- Hardware Software codesign to enable edge compute
 - On-chip machine learning

Novel Devices

Future CCD technologies

- Fermilab has been pioneering Skipper CCD technologies Averaging multiple samples for ultra-low noise performance (~ 1000 averages for << 1e- noise) – Juan Estrada
- 1st Step Enable parallel readout with low-cost multiple channels. Translate PCB design to Readout Integrated Circuit (ROIC) with lower noise performance (1/3rd CCD noise) and ~8 mW power per channel.
- $4" \times 4"$ board to $\sim 4 \times 4$ mm²

T. England, F. Alcalde Bessia, H. Sun, L. Stefana (SCD)

Cost reduction of ~100×

Future CCD technologies

- 2nd Method Increase readout speed without increasing noise: SiSeRO (collaboration with MIT Lincoln Lab)
- 10 × speed improvement
- Additional advantages: readout is DC-coupled at low operating voltages which removes AC coupling capacitors and further increases system integration and reduces footprint)

Future CCD technologies

- 2-D approach: skipper-in-CMOS
- Utilize a commercial CMOS Image Sensor process for lower noise performance (collaboration with SLAC and Tower Semiconductor).
- Noise of a pinned photodiode: 0.7 e-.
- With 10 averages we plan to achieve noise of ~0.2 e-.
- Allows hybrid pixel sensor with fullyparallel per-pixel readout achieving the ultimate goal of 1 kfps readout over large areas (~6 cm²) of ~2.5 Mpixels per chip.

Deep Cryoelectronics for Quantum Computing

Quantum Communication: Superconducting Nanowire Single

Photon Detectors (SNSPD)

- SNSPD best performance: operating at 1 4K.
- Time-correlated single photon counting from the deep UV to the mid-infrared.
- Extremely low dark counts and very high precision.
- QUANTUM INTERNET: high bandwidth communication.

1st Step – Low-noise amplification in collaboration with Georgia Tech and JPL.

Parameter	Goal by 2025	SOA 2019
Efficiency	>80% @ 10 µm	98% @ 1550 nm
Dark Counts	< 1e-6 cps / mm ²	< 1e-4 cps / mm ²
Energy Threshold	12.5 meV (100 µm)	0.125 eV (10 μm)
Timing Jitter	< 1 ps	2.7 ps
Active Area	100 cm ²	0.92 mm ²
Max Count Rate	100 Gcps	1.2 Gcps
Pixel Count	1.6e7 (4096x4096)	1024 (32x32)

D. Braga

Beyond NISC era QC Utilizing Cryo-Electronics

- Collaboration with industry: (Microsoft – High speed ADC)
- High-speed and high-resolution are often conflicting goals.
- Key transistor behavior: faster speed and low noise performance at cryogenic temperature.
- Why National Lab cryogenic electronics for DUNE (full cycle from modelling to testing).
- Modelling is key (collaboration with EPFL/ TU Delft).

Architecture Suitable for 72 Qubit Computer

Scale by Integrating Control Electronics

Google Al Quantum

Benefits of Cryogenics for Trapped-Ion QIP

- Greatly reduced electric-field noise
 - This noise is a limiting factor in error in trappedion 2QGs in small traps
 - Measured to be much larger than JN ("anomalous")
 - Source unknown
 - Empirically, 2 orders of magnitude lower at ~5K
 when compared to room temp.
 - This is true when technical noise is under control

MIT-LL measurements

Author Initials MM/DD/YY

2QG: Two-qubit gat
JN: Johnson noise

Presentation Name - 13

Cryo-Electronics Control for Ion-Traps (QSC - ORNL)

S. Li, F. Fahim (FNAL)
C. Seck, R. Pooser (ORNL)

with expensive and bulky room-operation electronics

- Low output noise: < 100 nV/sqrt(Hz) around a wide frequency range (0.5 5 MHz) and at low frequency.
- Low power: < 5 mW/DAC (limited by the cooling power of the cryostat) while driving a wide rage of load capacitance (70 – 1800 pF) of +/- 10 V full scale at 10 MHz waveform updating rate.
- High resolution: 14-16 bit for precise control and not disturbing RF electrodes.
- Memory: 100 electrodes * 14 bit * 5000 points ~ 2.5 MB

Hybrid Integration

Atomic Clock: Joint DOD – DOE project

H. Sun, S. Li (FNAL) J. Chiaverini, R. McConnell (MIT LL)

Portable optical atomic clock with frequency instability of 10⁻¹⁶ over 10,000 sec

DOD – Atomic Photonic Integration

DOE – Electronic Photonic Integration

Create a closed loop compact system

n Instrumentation

Electrode

Layer **Photonics**

Hardware-Software Codesign: Al

Why do we need data processing on the edge

POWER: CV²f x (data volume) problem

- Total power consumption to move data from pixel to periphery: 1 pJ/bit (~5 mm distance)
- Total power consumption to move data off-chip: > 0.1 nJ/bit

Minimize C,V

- 3D Integration (high density, low capacitance interconnect)
- Low voltage signaling

Reduce data

Typically, just zero-suppression for on-detector sparce data

HL LHC:

Higher granularity, higher occupancy, higher precision

=> needs NEW APPROACH

Tool-kit development and Operation in rad-hard environment

- Integration of HLS generated and expert RTL
- Design code agnostic approach for implementation of various triplication methods

HL LHC High Granularity Calorimeter*: Data flow

CNN: Encodes information by correlating spatial features

- conv2D layer extract spatially corelated geometric features
- Flatten layer Vectorizes the 2D image from the conv2D layer [8 x 4 x 4 = 128 x 1]
- **Dense layer** aggregates the various features to provide higher order information

 ReLU – an activation function which introduces non-linearity by applying thresholds (part of both the conv2D and dense layers)

J. Hirschauer

SCD: N. Tran, C. Herwig, U. Columbia: G. Di Guglielmo

NU: M.B. Valentin. S. Memik

Towards heterogenous system on-chip

OPTIMIZATION REQUIREMENTS

- Analog Mixed-Signal Kernels
- Neuromorphic computing (event driven)

- OPTO-ELECTRONIC COMPUTE
- In-memory compute (non-Von Neumann approaches) new materials
- Electronic-Photonic conversion
- Hybrid integration

Current (digitization and high Digital neuromorphic Analog/mixed-signal implementation speed off-chip data transfer) using floating gates or memristive implementation cross-bar arrays Sensor Sensor Sensor classification and learning using DNN N N O (Preamp) (Preamp) (Preamp) (memory) using Sensor Sensor Sensor layers (Preamp) (Preamp) (Preamp) classification ADC -Sensor Sensor Sensor Further compressive (Preamp) (Preamp) (Preamp) compression using Sensor Sensor Sensor feature On-chip feature (Preamp) (Preamp) (Preamp) Sensor Sensor Data Sensor On-chip (Preamp) (Preamp) (Preamp) Sensor Sensor Sensor (Preamp) (Preamp) (Preamp) **❖** Fermilab

Thank You