Precision Cosmology with the Cosmic Microwave Background

ACDM Cosmology

- Expanding, flat universe that began in a hot, dense state
- Dominated by dark energy and dark matter

NASA WMAP Science Team

 ACDM model describes our universe incredibly well... BUT it leaves many fundamental questions unanswered

The Cosmic Microwave Background (CMB) is the afterglow of the Big Bang

 Formed ~400,000 years after the Big Bang→ oldest light in the universe

- 1. Snapshot of the early universe
 - Picture of the earliest moments in the universe
 - ~10 trillion times the energies of particle accelerators
- 2. Backlight to the formation and evolution of structure in the universe (galaxies, galaxy clusters, etc.)
 - Information about dark matter, dark energy, information about particles and their interactions, astrophysics

The CMB answers fundamental questions

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10-36 s after its beginning

Inflation is currently the leading theory of the early universe

- Universe underwent exponential expansion shortly after its beginning
- Offers explanations for several unexplained phenomena
 - Flatness and uniformity of the universe
 - Source of structure in the universe
- If inflation occurred, it would have left a signature pattern in the CMB polarization
 - "B-mode" polarization
 - Size of this signal would directly measure the energy scale of inflation
 - One of the few ways to probe early universe ~10⁻³⁶ s
 after its beginning

The CMB answers fundamental questions

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles

Particles Beyond the Standard Model

- Relativistic particles contribute to the radiation density of the universe
- Changes in radiation density change the expansion rate and primordial oscillations → change characteristics of the temperature and polarization of the CMB
- Standard Model: $N_{eff} = \overline{3.046}$

$$\Delta N_{eff} \geq 0.047~{
m Spin}\,{1\over 2}$$
, 1, ${3\over 2}$

$$\Delta N_{eff} \geq 0.027~{
m Spin}~{
m 0}$$

Planck (current):
$$\sigma(N_{eff}) \sim 0.2$$

Simons Observatory:
$$\sigma(N_{eff}) \sim 0.07$$

CMB-S4:
$$\sigma(N_{eff}) \sim 0.027$$

The CMB answers fundamental questions

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles
- CMB measures the sum of the neutrino masses ($\sum m_{\nu}$)
 - Compliment to neutrino oscillation experiments that measure Δm_{ij}²

The CMB answers fundamental questions

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles
- CMB measures the sum of the neutrino masses ($\sum m_{\nu}$)
 - Compliment to neutrino oscillation experiments that measure Δm_{ij}^2
- CMB constrains dark matter and dark energy through the growth of structure (σ_8), the expansion rate (H_0), and the amounts of dark matter and dark energy
 - Extremely accurate probe of these mysterious dark components
 - Highly complementary to supernovae and large-scale structure studies

CMB as a Backlight

- Photons from the CMB are gravitationally deflected by structure
- Can reconstruct maps of the dark matter distribution
- Lensing probes the growth of structure \rightarrow dark energy, $\sum m_v$
- Need improved temperature + polarization measurements on small angular scales across large areas of the sky

CMB as a Backlight

- Photons from the CMB are gravitationally deflected by structure
- Can reconstruct maps of the dark matter distribution
- Lensing probes the growth of structure \rightarrow dark energy, $\sum m_v$
- Need improved temperature + polarization measurements on small angular scales across large areas of the sky

Galaxy Clusters

Galaxy clusters are largest structures in the universe >
formation is highly sensitive to effects of dark matter
and dark energy

CMB as a backlight to galaxy clusters

 CMB photons collide with high energy gas in galaxy clusters → Boosts their energy (increases their frequency)

Signal does not dim with distance → picture of evolution

Measurement Challenges

- The amplitude of the inflationary signal is small → Need high sensitivity
- Polarized foreground contamination from synchrotron and dust emission → Need wide frequency coverage
- Fluctuations in the unpolarized atmosphere, especially on large angular scales (ground-based) → Need to lower atmospheric noise

The Simons Observatory Collaboration, 2018

Future Progress in CMB Science

- Progress is now driven by instrumental advancements
- Multichroic pixels → increased sensitivity and frequency coverage
- Polarization modulators → lower atmospheric noise
- Increased detector count → increased sensitivity
 - Increased number of detectors/array
 - Increased number of arrays

Next Decade: More Detectors = More Sensitivity

AdvACT (Current)

~5000 detectors

Simons
Observatory (~2023)

~50,000 detectors

CMB-S4 (~2030)

~500,000 detectors

Science Forecasts

Parameter	Current Best	SO Baseline	CMB-S4 Baseline	Method
$\sigma(r)$	0.03	0.003	0.0005	BB + ext delens
$\sigma(N_{ m eff})$	0.2	0.07	0.027	TT/TE/EE + κκ
$\sigma(\sum m_{\nu})$	0.1 eV	0.04 eV	0.015 eV	κκ + DESI-BAO
$\sigma(H_0)$	0.5	0.4	0.24	TT/TE/EE + κκ
$\sigma(\sigma_8)$ (%)	7%	2%	0.1%	κκ + LSST-LSS + DESI-BAO

The Simons Observatory Collaboration, 2018
The CMB-S4 Collaboration, 2016

Plus:

SO: 20,000+ galaxy clusters

CMB-S4: 100,000+ galaxy clusters

CMB-S4

- CMB-S4 is a joint project between the DOE and NSF
- CMB-S4 Collaboration has 317+ members from 96 institutions (universities + national labs); 16 countries

Fermilab Roles on CMB-S4

 100 mK Detector Module Assembly and Testing

- Microwave coupling
- Module design and assembly
- Module characterization
- >2024: Mass production and testing of modules
- Detector group leadership and project leadership
- Data simulation + Site computing infrastructure
- Cryostat design and commissioning receiver for high resolution telescopes
- Calibration for inflationary signal telescopes

Beyond CMB-S4

- CMB-S4 will nominally operate until ~2037
 - Data analysis will be rich→ inform new directions
 - Many opportunities for combining with surveys at other wavelengths
- Large millimeter surveys of the sky → much like optical (LSST)
 - More sensitivity → time + detectors
 - Opportunities for combining data sets + multimessenger astronomy (especially with transient sources)
- Higher resolution: ~arcminute to ~few arcsec (e.g. ToITEC, CMB-HD)
 - Improved measurements and constraints of core CMB science
 - Detailed galaxy cluster measurements → resolve substructure
 - Higher resolution transient detections

Summary

- The next generation of CMB observations are poised to make tremendous discoveries
 - r : Observe gravity operating on quantum scales
 - N_{eff}: Probe for particles beyond the standard model
 - $\sum m_{\nu}$: Constrain the masses of neutrinos
 - New insights into dark energy, dark matter, structure formation
- CMB-S4 will be on the forefront of these nextgeneration observations

21