The Deep Underground Neutrino Experiment Neutrinos On (Through) the Horizon

Denver Whittington, Syracuse University for the DUNE Collaboration

54th Fermilab Users Meeting August 2, 2021

Deep Underground Neutrino Experiment

Long-Baseline Neutrino Physics with DUNE

The DUNE Near Detector

The DUNE Far Detectors

The Prototypes

Neutrino Oscillation Physics

Beyond the Beam Program

The DUNE Collaboration

1300+

Scientists

200+

Laboratories and universities

30+

Countries

Long Baseline Neutrino Physics

- Exciting physics potential through accessible long-baseline L / E
 - GeV muon neutrino and muon antineutrino beams, ~1000 km distances
- Neutrino mass ordering
 - Which mass eigenstate is the lightest?
 - Implications for 0vββ decay, cosmology, quark/lepton unification, etc.

 $\nu_{\mu} \rightarrow \nu_{e}$

- Charge-Parity symmetry violation
 - Parameterized by phase δ_{CP}
 - Potential to address baryon asymmetry
 - Why is the universe so completely matter-dominated?

Long Baseline Neutrino Physics

Neutrino Flavor Oscillations

- Produced in a flavor eigenstate
- Propagate in a mass eigenstate
- Interact in a flavor eigenstate

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array} egin{array}{ccc} egin$$

Two-Flavor Version (for simplicity)

$$P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(1.27\Delta m^2 \left[\text{eV}^2\right] \frac{L\left[\text{km}\right]}{E\left[\text{GeV}\right]}\right)$$

Long Baseline Neutrino Facility

- Beam line design under way
 - 60-120 GeV proton beam
 - 1.2 MW by late 2020's, upgradable to 2.4 MW

D. Whittington | The Deep Underground Neutrino Experiment

The Neutrino Experiment

The Neutrino Experiment

Liquid Argon Time Projection Chamber

- primary detector technology
- reconstruct detailed images of events
- apply advanced machine learning algorithms for event classification and reconstruction

FD Module 1 – Horizontal Drift

- 4 drift volumes, 3.6 m drift w/ E = 500 V/cm (HV = -180 kV)
- 150 anode plane assemblies
 - each with 4 wire planes grid | induction ×2 (wrapped) | collection
- X-ARAPUCA light trapping scintillation detectors (10 per APA)

FD Module 2 – Vertical Drift

- single-phase LArTPC (evolution from dual-phase designs)
- 6-meter drift ×2 requires 300 kV HV on (central) cathode
- greater X-ARAPUCA coverage (cryostat walls and cathode plane)
- ongoing R&D program at FNAL, CERN
 - dedicated 50 liter LAr-TPC
 - large "cold-box" at CERN by late 2021

FD Modules 3 and 4

- Third module likely to follow technology of FD Module 2
- Fourth cryostat (the "DUNE Module of Opportunity") open to ideas!
 - Check out the recent workshop at BNL to discuss range of concepts.

Module of Opportunity DUNE November 12-13, 2019 Location: Brookhaven National Laboratory

- Alternative single- and dual-phase charge collection schemes
- Innovations in detector design (light detectors, readout systems, etc.)
- Alternatives to liquid argon (e.g. liquid scintillator)
- Existing technologies as candidates (JUNO, COHERENT, DarkSide, etc.)

Multiple complementary systems

ND-LAr

primary target, modular, pixelated charge read-out LAr-TPC (300 ton)

Module 0 successfully tested at Univ. Bern

ND-GAr

high-pressure GAr-TPC, surrounded by ECAL and magnet

- muon spectrometer; nuclear interaction model constraints
- Day 1 Temporary Muon Spectrometer (TMS)

SAND

inner tracker surrounded by 100 ton ECAL and SC magnet (0.6 T)

on-axis beam monitor (spectrum/stability)

PRISM

ND-LAr and TMS/ND-GAr can move up to 30 m off-axis to characterize beam and study

Beam axis

Prototypes

ProtoDUNE-SP and -DP

- Testing of the Far Detector technologies is well underway.
- Very Low Energy charged particle beams (~ 0.5 6 GeV) at CERN ENH1
- Two ~1 kton prototypes (single and dual phase detectors)

Prototypes

ProtoDUNE-SP and –DP

- Testing of the Far Detector technologies is well underway.
- Very Low Energy charged particle beams (~ 0.5 6 GeV) at CERN ENH1
- Two ~1 kton prototypes (single and dual phase detectors)
 - Single-Phase (ProtoDUNE-SP)
 - Event reconstruction/identification training
 - R&D site: low-energy calibration (neutron gun), xenon doping, Higher Voltage tests, ...
 - Dual-Phase (ProtoDUNE-DP)
 - Development of CRP technology
 - Very High Voltage / large drift studies
 - **Evolved into Vertical Drift**

3-flavor Model Sensitivity (3.5 y ν -beam mode + 3.5 y $\overline{\nu}$ -beam mode)

18

3-flavor Model Sensitivity (3.5 y ν -beam mode + 3.5 y $\bar{\nu}$ -beam mode)

19

3-flavor Model Sensitivity

- 5σ sensitivity to δ for maximal CP-violation signal after about 7 years of staged installation/operation.
- 5σ sensitivity to about half of δ values after 10 years (staged).
- Ultimately cover about 75% of possible δ values (in the case of a minimal CP-violation signal, e.g. $\delta \approx 0$ or π)

Supernova Neutrino Burst

- Formation of a neutron star in a core-collapse supernova
 - Neutronization releases copious neutrino flux
 - About 10% of the star's rest mass converted to neutrinos
- Expected to occur a few times per century (most-likely distance of around 10 to 15 kpc)
- Rich variety of phenomena to look for!
 - neutronization burst and neutron star formation
 - shock wave and turbulence effects
 - formation of a black hole

SN 1987a

09/1994

BSM Physics

- Sterile *v*-mixing
- Non-standard *v* interactions
- Baryon number violation
- **Nucleon decay**

- Low-mass Dark Matter (@ ND)
- (in-)elastic Boosted Dark Matter - BDM (@ FD)
- and more ...

24

Recent Publication Highlights

- Long-baseline neutrino oscillation physics potential of the DUNE experiment Eur. Phys. J. C (2020) 80:978
- Prospects for beyond the Standard Model physics searches at DUNE Eur. Phys. J. C (2021) 81:322
- Supernova neutrino burst detection with DUNE Eur. Phys. J. C (2021) 81:423
- First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform 2020 JINST 15 P12004
- Experiment Simulation Configurations Approximating DUNE TDR arXiv:2103.04797
- ...and more in progress

Thanks!

New members & new ideas always welcome!

26