Neutrino cross-section measurements at Fermilab

Steven Gardiner 53rd Annual Users Meeting 10–14 August 2020 Fermi National Accelerator Laboratory

Outline

- Cross section needs for the neutrino oscillations program
- Recent highlights (incomplete!) from several experiments:
 - NOvA
 - MicroBooNE
 - MINERvA
 - ANNIE
 - ArgoNeuT
- Electrons for neutrinos ($e4\nu$)

Challenges in neutrino-nucleus cross section modeling

- Experiments need cross section models that predict
 - All final-state observables for
 - All important processes for
 - Many nuclear targets including inactive detector components and the surroundings ("dirt backgrounds")
 - Over a neutrino energy range spanning orders of magnitude
- Uncertainties must be well controlled for precision oscillation measurements
- Theory is highly challenging
- Cross section measurements essential to benchmark theory and help make it better

Neutrino event generators

- Implement neutrino scattering theory for simulations by experiments
 - Full predictions for all relevant neutrino energies, reactions, and nuclei
- Several modern generators are widely used: GENIE, GiBUU, NEUT, NuWro
- **GENIE** especially popular at Fermilab
 - Employees and users actively contribute to its development
 - Backup: Preview of GENIE v3.2

NEUTRINO GENERATOR & GLOBAL FIT

The NOvA experiment

 Long-baseline neutrino oscillation experiment (see earlier talk by S. Calvez)

300-ton near detector

- Tracking calorimeter built using plastic cells filled with liquid scintillator
- -1 km from NuMI target
- Enables high-statistics cross section measurements
- This talk: CC inclusive analyses
- See also NC COH π⁰ paper
 Phys. Rev. D 102, 012004 (2020)

Alternating planes allow for 3D imaging

Wavelength shifting fibers read out by a single pixel on an avalanche photodiode

NOvA: CC inclusive measurements

• Two double-differential CC inclusive results (lepton energy & angle)

 $-v_{\ell} + A \rightarrow \ell + X$

- Particle ID via Boosted Decision Trees (BDTs)

- **v**_μ: 172 bins, 1M+ selected events -HPC @ NERSC for systematics -J. Paley, JETP seminar, 31 July 2020
- v_e: 17 bins, ~10K selected events -First ever 2D result for v_e

-M. Judah, JETP seminar, 7 August 2020

v_µ CC inclusive results

Measurements shown in "cosine slices"

Data (Stat. + Syst.) **GENIE 2.12.2 - NOvA Tune**

Good overall agreement with tuned prediction (p-value = 0.93)

NOvA Preliminary

v_µ CC inclusive results

Measurements shown in "cosine slices"

Data (Stat. + Syst.) **GENIE 2.12.2 - NOvA Tune**

Good overall agreement with tuned prediction (p-value = 0.93)

v_µ CC inclusive results

- For small angles (low Q²), untuned model over-predicts data
 - QE- and 2p2h-dominated, sensitive to nuclear effects

Generator	Total p-value
GENIE 2.12.2 - Tuned	0.93
GENIE 2.12.2 - Untuned	0.24

- Data (Stat. + Syst.)
- **GENIE 3.00.06**
- **GiBUU 2019**
- **NEUT 5.4.0**
- **NuWro 2019**
- "Out-of-the-box" generator predictions all describe the shape of the data well
- Normalization of GiBUU is low

v_µ CC inclusive results

 T_{μ} (GeV)

- For small angles (low Q²), untuned model over-predicts data
 - QE- and 2p2h-dominated, sensitive to nuclear effects

Generator	Total p-value
GENIE 2.12.2 - Tuned	0.93
GENIE 2.12.2 - Untuned	0.24

- Data (Stat. + Syst.)
- **GENIE 3.00.06**
- **GiBUU 2019**
- **NEUT 5.4.0**
- **NuWro 2019**
- "Out-of-the-box" generator predictions all describe the shape of the data well
- Normalization of GiBUU is low

v_µ CC inclusive results

NOvA Preliminary

- For small angles (low Q²), untuned model over-predicts data
 - QE- and 2p2h-dominated, sensitive to nuclear effects

Generator	Total p-value
GENIE 2.12.2 - Tuned	0.93
GENIE 2.12.2 - Untuned	0.24

Generator	Total p-value	
GENIE 3.00.06*	0.26	
GiBUU 2019	0.03	
NEUT 5.4.0	0.52	
NuWro 2019	0.22	

ve CC inclusive

NOvA Preliminary

Measurements shown in "cosine slices"

Data (Stat. + Syst.)
 GENIE 2.12.2 - NOvA Tune
 GENIE 2.12.2 - Untuned

Good agreement with tuned/untuned GENIE v2 predictions for all angles studied

ve CC inclusive

NOvA Preliminary

Measurements shown in "cosine slices"

Good agreement with out-of-the-box predictions from multiple generators

The MicroBooNE experiment

- Liquid argon time projection chamber (LArTPC) in the **Booster Neutrino Beam**
 - 60-ton fiducial mass
- Largest sample of v-Ar interactions collected to date
- Primary physics goals
 - Investigate low-energy excess (LEE) of electron-like events seen by MiniBooNE
 - Pursue first high-statistics measurements of neutrinoargon cross sections (several recent publications)
- This talk: CC inclusive, CCQE-like, NC1p
- Other recent results
 - Track multiplicity: Eur. Phys. J. C 79, 248 (2019)
 - v_μ CC π⁰: <u>Phys. Rev. D 99, 091102(R) (2019)</u>

MicroBooNE: v_{μ} **CC inclusive analysis**

- First double-differential measurement for v_μ
 CC in argon: Phys. Rev. Lett. 123, 131801 (2019)
- Surface detector → often 20+ cosmic rays / event
 - 4.8 ms TPC readout window
 - Variety of techniques used to achieve 99.9% cosmic rejection
- All models overpredict in high-momentum, forward-going bins
 - GENIE v2 disfavored compared to other generators
- Backup: Improved measurement underway with drastically reduced systematic uncertainties

MicroBooNE CCQE-like cross section

- Recently submitted to PRL <u>arXiv:2006.00108</u>
- Signal definition: "CC1p0π"
 - 1 muon (p_{μ} > 100 MeV/c)
 - 1 proton ($p_p > 300 \text{ MeV/c}$)
 - Cuts to enhance CCQE contribution
- Purity: ~84% CC1p0π (~81% CCQE)
- Efficiency: ~20%
- Single-differential results obtained for several kinematic variables
 - **Backup**: plots for p_{μ} , p_{p} , cos θ_{p}
- Good agreement with generators, except at very forward muon scattering angles (low Q²)

"GENIE Nominal" is the default configuration of GENIE v2.12.2, which was used in the analysis

MicroBooNE NC1p cross section

- Signal definition:
 - $1 \text{ proton } (p_p > 200 \text{ MeV/c})$
 - No other detected particles
 - Main component is NC elastic scattering (NCEL)
- Single-differential cross section extracted in terms of reconstructed proton kinetic energy
 - Includes events down to $Q^2 \sim 2m_pT_p = 0.1 \text{ GeV}^2$, significantly lower than previous measurements
- Future development toward an NCEL-like cross section

NC1p candidate event

The MINERvA experiment

- Dedicated specifically to studying neutrino cross sections
 - 6 new papers since last Users Meeting
- Last data collected in February 2019. Analyses continue.
- Operated in the NuMI beam line in two modes
 - Low Energy (LE) → 2005–2012
 - Medium Energy (ME) \rightarrow 2013–2019
- Segmented "active tracker" (CH scintillator) and passive nuclear targets (He, C, H₂O, Fe, and Pb)
 - Study A-dependence of cross sections
- This talk: ν - e^- , CCQE-like, and neutron measurements

Recent cross section results from MINERvA: ν_{μ} CC inclusive: **Phys. Rev. D 101, 11 (2020)**

 ν_{μ} CC π^{0} : arXiv:2002.05812 (submitted for publication)

 ν_{μ} CCQE-like: <u>Phys. Rev. Lett. 124, 121801 (2020)</u>

BE & transverse momentum imbalance: Phys. Rev. D 101, 092001 (2020) Flux constraint via v-e scattering: Phys. Rev. D 100, 092001 (2019)

 $\bar{\nu}_{\mu}$ CC π^{-1} : <u>Phys. Rev. D 100, 052008 (2019)</u>

See <u>https://minerva.fnal.gov/recent-minerva-results</u> for many more!

The MINERvA experiment

- Dedicated specifically to studying neutrino cross sections
 - 6 new papers since last Users
 Meeting
- Last data collected in February 2019. Analyses continue.
- Operated in the NuMI beam line in two modes
 - Low Energy (LE) \rightarrow 2005–2012
 - Medium Energy (ME) \rightarrow 2013–2019
- Segmented "active tracker" (CH scintillator) and passive nuclear targets (He, C, H₂O, Fe, and Pb)
 - Study A-dependence of cross sections
- This talk: ν - e^- , CCQE-like, and neutron measurements

MINERVA ν - e^- analysis: in situ flux constraint

- Neutrino flux predictions typically good to ~10%, key input for oscillation analyses
- νe^{-1} cross section small but well-known
 - "Standard candle"
 - Technique demonstrated by MINERvA for LE data in 2016 (Phys. Rev. D 93, 112007)
- New ME analysis has higher statistics (9×) and an improved treatment of systematic uncertainties
- Event rate in reconstructed E_e compared to a priori prediction
- Bayes' theorem used to constrain the flux model given the observed data
- Improved precision will benefit all MINERvA ME analyses
 - Strategy can be applied to other experiments

MINERvA v_{μ} CCQE-like cross section

- First ME cross section publication
 Phys. Rev. Lett. 124, 121801 (2020)
 - Uses ν - e^- result to reduce flux systematic uncertainties
- Signal definition: 1 muon, 0 mesons, 0 heavy baryons, and any number of nucleons
 - Note that this definition of "CCQE-like" is different from MicroBooNE's (CC1p0π)
- Data compared to generator predictions, including special GENIE v2.12.6 tunes by MINERvA
 - MnvGENIE v1: RPA corrections to CCQE + add 2p2h + adjust non-resonant π production

χ^2 MnvGENIE v1: 1194/184 bins

MINERvA v_{μ} CCQE-like cross section

- First ME cross section publication
 Phys. Rev. Lett. 124, 121801 (2020)
 - Uses ν - e^- result to reduce flux systematic uncertainties
- Signal definition: 1 muon, 0 mesons, 0 heavy baryons, and any number of nucleons
 - Note that this definition of "CCQE-like" is different from MicroBooNE's (CC1p0π)
- Data compared to generator predictions, including special GENIE v2.12.6 tunes by MINERvA
 - MnvGENIE v1: RPA corrections
 to CCQE + add 2p2h + adjust
 non-resonant π production

χ^2 MnvGENIE v1: 1194/184 bins

Underprediction of the cross section for high p_T and both $3 < p_{II}/GeV < 5$ and $9 < p_{II}/GeV < 20$. Tuning of QE contribution needed?

Backup: 1D $d\sigma/dQ_{OE}^2$ measurement

Triple-differential v_µ CCQE-like cross section

Ratio to MnvGENIEv1

- Extend analysis to 3D
 - Correlate ΣT_p with muon kinematics
 - Very sensitive to nuclear effects!
- Reveals need for substantial model improvements
 - Combination of FSIs & 2p2h+RES strength

____ QELike-2p2h

- - - 2p2h without fit

Triple-differential v_µ CCQE-like cross section

MnvGENIEv

Ratio to

- Extend analysis to 3D
 - Correlate ΣT_p with muon kinematics
 - Very sensitive to nuclear effects!
- Reveals need for substantial model improvements
 - Combination of FSIs & 2p2h+RES strength
- Data/MC ratio is mostly consistent across p_{\parallel} bins \rightarrow good modeling of energy dependence
 - An exception is low p_T

Neutrino-induced neutrons in MINERvA

- Neutron multiplicities and kinematic distributions are difficult to predict
 - Substantial differences between generators
 - Modeling of secondary neutron production also needed (Geant4)
- LE analysis: $\bar{\nu}_{\mu}$ CC in CH active tracker
 - Phys. Rev. D 100, 052002 (2019)
 - Multiplicity, time-of-flight, position, speed (1/ β), E_{dep}
 - Detection via p recoils, inelastic n-C scatters
 (p, γ, fragments) → ~10 MeV kinetic energy threshold
- ME analysis in progress
 - More efficient, 7.5× more data!
 - Data for multiple targets

Neutrino-induced neutrons in MINERvA

- Neutron multiplicities and kinematic distributions are difficult to predict
 - Substantial differences between generators
 - Modeling of secondary neutron production also needed (Geant4)
- LE analysis: $\bar{\nu}_{\mu}$ CC in CH active tracker

- Phys. Rev. D 100, 052002 (2019)

- Multiplicity, time-of-flight, position, speed (1/ β), E_{dep}
- Detection via p recoils, inelastic n-C scatters (p, γ , fragments) $\rightarrow \sim 10$ MeV kinetic energy threshold
- ME analysis in progress
 - More efficient, 7.5× more data!
 - Data for multiple targets

A. Olivier, New Perspectives 2020

The ANNIE experiment

- Water Cherenkov detector installed in the Booster Neutrino Beam (~100 m from target)
 - 26 tons of Gd-loaded water
- Physics mission: measure neutrino-induced neutron yields as a function of outgoing lepton kinematics
- Capture-based strategy (no threshold)
 - Complementary to MINERvA measurements based on neutron scattering

Gd-loading allows neutron tagging with high efficiency Capture cross section: 5×10⁴ barn Total energy in γ-rays: ~8 MeV

ANNIE status: neutrinos

- Physics-quality data taking expected to start this Fall
- First beam neutrinos seen: elevated tank activity during 1.6 µsec beam spill
- 70 µsec readout window spans multiple capture times

4. Beam data and 1949 PB performance

The ArgoNeuT experiment

- Small LArTPC ($40 \times 47 \times 90$ cm³) that operated in the NuMI beam line from 2009–2010
- Many pioneering measurements
- Placed in front of MINOS near detector
 - Tracking muon spectrometer

v_e CC candidate event display Phys. Rev. D 102, 011101(R) (2020)

MINOS near detector 980 ton steel tracker

ArgoNeuT ν_e + $\bar{\nu}_e$ CC inclusive analysis

- First measurement of this cross section on argon Phys. Rev. D 102, 011101(R) (2020)
- 13 events identified using fully automated selection & reconstruction
- Good agreement with GENIE
- **Backup**: Demonstration of MeV-scale reconstruction in a LArTPC Phys. Rev. D 99, 012002 (2019)

v_e CC candidate event display

Electrons for Neutrinos ($e4\nu$ **)**

- Electron-nucleus scattering shares many similarities to the neutrino case
- Projectile energy precisely known
 - Test energy reconstruction techniques
- The $e4\nu$ collaboration works to improve neutrino generators by
 - Benchmarking predictions against electron scattering data
 - Improving quality & consistency of e^{-}/ν modeling
 - Pursuing new measurements
- Similar studies carried out for GENIE v2 by Ankowski & Friedland (arXiv:2006.11944)
- Related measurements also proposed for LDMX by Ankowski et al. (Phys. Rev. D 101, 053004)

Conclusion

- The neutrino cross section program at Fermilab is delivering foundational results crucial for the success of current and future neutrino oscillation experiments
- Many people have worked tirelessly to do the cutting-edge science shown here. Congratulations on a job well done!
- Special thanks to all involved in delivering world-class, high-intensity neutrino beams to our detectors
- Stay tuned for much, much more as we move toward the era of SBN & DUNE

Neutrino oscillation measurements

- Precise measurements of neutrino oscillation probabilities will allow us to answer key questions
 - Leptonic CP violation
 - Neutrino mass hierarchy
 - Sterile neutrinos
- Detectors measure neutrino event rates rather than the probabilities themselves
- Oscillation parameters $(\theta, \Delta m^2, \delta_{\rm CP})$ are inferred by comparing expected versus observed event rates

•ve) % P ~ µ ~ µ

Cross sections for oscillation analyses $N_{\nu}^{\text{obs}}(E_{\nu}^{\text{reco}}) \sim \mathbf{U}(E_{\nu}^{\text{true}} \to E_{\nu}^{\text{reco}}) \left[\Phi(E_{\nu}^{\text{true}}) \times \sigma(E_{\nu}^{\text{true}}) \times \epsilon(E_{\nu}^{\text{true}}) \times P^{\text{osc}}(E_{\nu}^{\text{true}}) \right]$

Required inputs for an oscillation analysis include:

- Prediction for the neutrino flux at the detector location
- Cross section models for both signal and background
- Selection efficiency
- Migration matrix: transform between $E_{\nu}^{\text{true}} \leftrightarrow E_{\nu}^{\text{reco}}$

Corrections needed to connect true event rate to observation depend on many variables \mathbf{X}

• Must be studied in simulation using a full prediction of $d\sigma/d\mathbf{X}$

Precise extraction of P^{osc} depends on well-controlled **uncertainties** for the other factors

J. Paley, JETP seminar, 31 July 2020

Preview of GENIE v3.2

Many other new features. See genie-mc.org for the current list.

New INCL++/ABLA07 & Geant4 FSI models

& GLOBAL FIT

SuSAv2 QE + 2p2h cross sections

NOvA: inclusive cross sections

- Study outgoing lepton kinematics in the reaction $\nu_{\ell} + A \to \ell^- + X$
- NOvA has recently obtained two detailed inclusive measurements:
 - ν_{μ} : More than 1M selected events, 172 bins in $(T_{\mu}, \cos \theta_{\mu})$ space
 - ν_{ρ} : About 10K selected events, first ever doubledifferential measurement!
- Analyses rely on well-understood particle ID
 - Implemented using Boosted Decision Trees (BDTs)
- Muon ID: 4-variable score leads to high purity
- Electron ID: templates separate signal/background

Exclusive cross section measurements

- Ideally, we'd like to measure the same cross sections a theorist calculates, e.g., CCQE
- Nature isn't quite so kind to us
 - Hadronic final-state interactions (FSIs)
 - Detector thresholds, resolution
- Instead, experiments routinely categorize events by observable topologies
 - "CC0 π " \rightarrow 1 charged lepton and zero pions detected
- Interaction mode separation is imperfect, but data nevertheless provide powerful model constraints

Toward higher precision

- Various improvements to MicroBooNE analysis tools over the past ~2 years
 - Detector response & reconstruction
 - GENIE v2.12.2 \rightarrow v3.0.6 with tuning to T2K v_µ CC0 π data (CH target)
 - Overlay MC: eliminate cosmic-ray simulation in favor of off-beam data
- Big payoff: drastically reduced systematic uncertainties
- New CC inclusive analysis leverages these improvements and cosmic-ray tracker (CRT)
 - Single-differential: very good agreement with previous result, but reduced uncertainties
 - Future work toward double-differential cross section

v_µ **CC purity: 50%** → **71.9%**

Source	Uncertainty	
	Previous Analysis	This Anal
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	N/A
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

Toward higher precision

- Various improvements to MicroBooNE analysis tools over the past ~2 years
 - Detector response & reconstruction
 - GENIE v2.12.2 \rightarrow v3.0.6 with tuning to T2K v_µ CC0 π data (CH target)
 - Overlay MC: eliminate cosmic-ray simulation in favor of off-beam data
- Big payoff: drastically reduced systematic uncertainties
- New CC inclusive analysis leverages these improvements and cosmic-ray tracker (CRT)
 - Single-differential: very good agreement with previous result, but reduced uncertainties
 - Future work toward double-differential cross section

MicroBooNE CCQE-like cross section

Agreement improves for multiple kinematic variables when forward muon angles are excluded.

The MINERvA experiment

Constraining flux uncertainties with ν - e^- scattering

- Precise modeling of the neutrino flux is crucial for oscillation experiments
 - Uncertainties typically ~10%
 - Often a leading uncertainty for cross section measurements

- Flux predictions are made with detailed simulations of beam production
 - Hadron production cross sections important input
- ν - e^- cross section is precisely known
 - Standard candle for *in situ* flux measurement
 - Orders of magnitude smaller than $\nu\text{-}A$
 - Backgrounds and low statistics
- Signal: very forward electron shower
- Backgrounds: ν_e CCQE, photons from π^0 decays, etc.

D. Jena, Neutrino 2020

MINERvA v_µ CCQE-like cross section

- First ME cross section publication
 - Uses ν - e^- result to reduce flux systematic uncertainties
- Signal definition: 1 muon, 0 mesons, 0 heavy baryons, and any number of nucleons
 - Note that this definition of "CCQElike" is different from **MicroBooNE's** (CC1p0π)
- Data compared to generator predictions, including special GENIE v2.12.6 tunes by MINERvA
 - MnvGENIE v1: RPA + 2p2h + adjusted non-resonant π production
 - MnvGENIE v2: MnvGENIE v1 + low-Q² suppression for RES

First measurement to probe $Q_{OE}^2 > 4 \,\mathrm{GeV^2}$. All models studied cannot achieve good agreement over the full range.

Pion production

- Key for studying inelastic reaction modes (RES, DIS)
- Other Fermilab experiments have recently published total cross sections
 - NOvA: NC COH π⁰ Phys. Rev. D 102, 012004 (2020)
 - MicroBooNE: v_μ CC π⁰ Phys. Rev. D 99, 091102(R) (2019)
- MINERvA has studied various differential cross sections in detail
- Recent paper examined tuning of GENIE π production modeling to four CC measurements from MINERvA
 Phys. Rev D. 100, 072005 (2019)
- Tension seen between MINERvA measurements (CH) and between MINERvA and older bubble chamber data (¹H, ²H)
- Additional $\bar{\nu}_{\mu}$ CC $1\pi^{-}$ measurement not included in tuning study: Phys. Rev. D 100, 052008 (2019)

Various model adjustments explored, including changes to standard GENIE parameters and an "ad hoc low-Q² suppression"

With the options available, good agreement with all measurements could not be achieved

Pion production

- Key for studying inelastic reaction modes (RES, DIS)
- Other Fermilab experiments have recently published total cross sections
 - NOvA: NC COH π⁰ Phys. Rev. D 102, 012004 (2020)
 - MicroBooNE: v_{μ} CC π^{0} Phys. Rev. D 99, 091102(R) (2019)
- MINERvA has studied various differential cross sections in detail
- Recent paper examined tuning of GENIE π production modeling to four CC measurements from **MINERvA** Phys. Rev D. 100, 072005 (2019)
- Tension seen between MINERvA measurements (CH) and between MINERvA and older bubble chamber data (¹H, ²H)
- Additional $\bar{\nu}_{\mu}$ CC $1\pi^{-}$ measurement not included in tuning study: Phys. Rev. D 100, 052008 (2019)

JINST 12 (2017) P01016

Fits shown here were performed using **NUISANCE**, a software framework for comparing and tuning neutrino generator predictions to experimental data

Used for some of the other comparisons in this talk as well (e.g., MicroBooNE CC inclusive)

Neutrino-induced neutrons in MINERvA

- Neutron multiplicities and kinematic distributions are poorly understood at present
 - Theoretically challenging and difficult to measure
 - Substantial differences in generator predictions
 - "Generator" vs. "Geant4" neutrons
- LE analysis: $\bar{\nu}_{\mu}$ CC in CH active tracker
 - Phys. Rev. D 100, 052002 (2019)
 - Multiplicity, time-of-flight, position, speed (1/ β), E_{dep}
 - Detection via p recoils, inelastic n-C scatters (p, γ , fragments) $\rightarrow \sim 10$ MeV kinetic energy threshold
- HE analysis in progress
 - More efficient, 7.5× more data!
 - Data for multiple targets

Preference for both RPA and 2p2h in measured "QE-rich" multiplicity distribution

A neutrino event in ANNIE

- LAPPDs, muon momentum reconstructed in MRD.
- 2. Neutrons travel, scatter and thermalize.
- 3.–4. Neutrons capture on Gd, γ -ray cascades detected by conventional PMTs

1. CC interaction in fiducial volume produces a muon. Vertex reconstruction by

ArgoNeuT MeV-scale reconstruction

- Phys. Rev. D 99, 012002 (2019)
- Multiple MeV-scale contributions needed to match data
 - De-excitation γ-rays
 - Neutron inelastic scatters
- Applications
 - Improved energy resolution for GeV neutrinos
 - DUNE supernova & solar neutrinos
 - Cross section measurements for ν -A scattering at tens-of-MeV
 - BSM searches
- See <u>Phys. Rev. D 99, 036009 (2019)</u> and <u>arXiv:2006.14675</u> for details

ArgoNeuT MeV-scale reconstruction

- Phys. Rev. D 99, 012002 (2019)
- Multiple MeV-scale contributions needed to match data
 - De-excitation γ-rays
 - Neutron inelastic scatters
- Applications
 - Improved energy resolution for GeV neutrinos
 - DUNE supernova & solar neutrinos
 - Cross section measurements for ν -A scattering at tens-of-MeV
 - BSM searches
- See <u>Phys. Rev. D 99, 036009 (2019)</u> and <u>arXiv:2006.14675</u> for details

ArgoNeuT MeV-scale reconstruction

- Phys. Rev. D 99, 012002 (2019)
- Multiple MeV-scale contributions needed to match data
 - De-excitation γ-rays
 - Neutron inelastic scatters
- Applications
 - Improved energy resolution for GeV neutrinos
 - DUNE supernova & solar neutrinos
 - Cross section measurements for ν -A scattering at tens-of-MeV
 - BSM searches
- See <u>Phys. Rev. D 99, 036009 (2019)</u> and <u>arXiv:2006.14675</u> for details

