Latest results from the NOvA experiment Steven Calvez 53rd Fermilab Users Meeting August 13th 2020 NOvA is a long baseline neutrino oscillation experiment. Aims to address the following open questions: - NOvA is a long baseline neutrino oscillation experiment. Aims to address the following open questions: - o What is the **value of** θ_{23} ? θ_{23} < 45° or θ_{23} > 45° ? v_{μ} v_{τ} symmetry? - NOvA is a long baseline neutrino oscillation experiment. Aims to address the following open questions: - o What is the **value of** θ_{23} ? θ_{23} < 45° or θ_{23} > 45° ? v_{μ} v_{τ} symmetry? - \circ What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy? - NOvA is a long baseline neutrino oscillation experiment. Aims to address the following open questions: - o What is the **value of** θ_{23} ? θ_{23} < 45° or θ_{23} > 45° ? v_{μ} v_{τ} symmetry? - \circ What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy? - Is there CP violation in the lepton sector? - NOvA is a long baseline neutrino oscillation experiment. Aims to address the following open questions: - o What is the **value of** θ_{23} ? θ_{23} < 45° or θ_{23} > 45° ? v_{μ} v_{τ} symmetry? - \circ What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy? - o Is there CP violation in the lepton sector? - NOvA has a rich physics program: - **Neutrino cross-section** measurements. See Steven G.'s talk. - Search for **sterile neutrinos**. See Gianluca's talk. - Investigate astrophysical and exotics phenomena. - NOvA measures the rate, energy and flavor of neutrinos detected both near its source and in its detector far away. - Perform a joint **disappearance** $\nu_{\mu} \rightarrow \nu_{\mu}$ and **appearance** $\nu_{\mu} \rightarrow \nu_{e}$ analysis. - Measure $u_\mu \to u_\mu$ and $\overline{ u_\mu} \to \overline{ u_\mu}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$: - v_u survival probability: $$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \left(\cos^4(\theta_{13})\sin^2(2\theta_{23}) + \sin^2(2\theta_{13})\sin^2(\theta_{23})\right)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$ - Measure $u_\mu \to u_\mu$ and $\overline{ u_\mu} \to \overline{ u_\mu}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$: - v_{μ} survival probability: $$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \left(\cos^4(\theta_{13})\sin^2(2\theta_{23}) + \sin^2(2\theta_{13})\sin^2(\theta_{23})\right)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$ • Location of dip $\rightarrow |\Delta m^2_{32}|$ - Measure $u_{\mu} \to \nu_{\mu}$ and $\overline{\nu_{\mu}} \to \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$: - v_u survival probability: $$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \left(\cos^4(\theta_{13})\sin^2(2\theta_{23}) + \sin^2(2\theta_{13})\sin^2(\theta_{23})\right)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$ - Location of dip ightarrow $|\Delta m^2_{32}|$ - Amplitude of dip $\rightarrow sin^2 2\theta_{23}$ - Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: - v_e appearance probability: $$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$ $$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP}\right)$$ $$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$ - Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: - v_e appearance probability: $$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$ $$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP}\right)$$ $$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$ > In a vacuum and with no CP-violation, \mathbf{v} and $\overline{\mathbf{v}}$ oscillation probabilities are **equal**. • Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: • v_e appearance probability: $$\begin{split} P\left(\nu_{\mu} \to \nu_{e}\right) &\approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2} \\ &\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}P_{\rm sol}\left(\cos\Delta_{32}\cos\delta_{CP} \mp \sin\Delta_{32}\sin\delta_{CP}\right) \\ &\sqrt{P_{\rm atm}} = \sin(\theta_{23})\sin(2\theta_{13})\frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL}\Delta_{31} \end{split}$$ ightharpoonup CP-violation generates opposite effects in \mathbf{v} and $\overline{\mathbf{v}}$ oscillation probabilities. - Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: - v_e appearance probability: $$\begin{split} P\left(\nu_{\mu} \to \nu_{e}\right) &\approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2} \\ &\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}P_{\rm sol}\left(\cos\Delta_{32}\cos\delta_{CP} \mp \sin\Delta_{32}\sin\delta_{CP}\right) \\ &\sqrt{P_{\rm atm}} = \sin(\theta_{23})\sin(2\theta_{13})\frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL}\Delta_{31} \end{split}$$ > Other **CP-conserving phase** yields slightly different oscillation probabilities. - Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: - v_e appearance probability: $$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$ $$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP}\right)$$ $$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$ \gt Other maximum violating **CP phase** enhances ν_e appearance. δ_{CP} is cyclical. - Measure $\nu_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and δ_{CP} : - ν_{ρ} appearance probability: $$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$ $$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$ $$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$ > Matter effects also generate opposite effects in $\nu - \overline{\nu}$ oscillations depending on the Mass Hierarchy. - Measure $u_{\mu} \to \nu_e$ and $\overline{\nu_{\mu}} \to \overline{\nu_e}$ appearance to constrain $\sin^2 \theta_{23}$, Δm^2_{32} and $\delta_{\rm CP}$: - v_e appearance probability: $$\begin{split} P\left(\nu_{\mu} \to \nu_{e}\right) &\approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2} \\ &\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}P_{\rm sol}\left(\cos\Delta_{32}\cos\delta_{CP} \mp \sin\Delta_{32}\sin\delta_{CP}\right) \\ &\sqrt{P_{\rm atm}} = \sin(\theta_{23})\sin(2\theta_{13})\frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL}\Delta_{31} \end{split}$$ \triangleright θ_{23} can increase or decrease ν and $\overline{\nu}$ oscillations probabilities. ## What is the NOvA experiment? ### How are neutrinos produced? - **NuMI beam** can produce both ν_{μ} and $\overline{\nu_{\mu}}$. - World most powerful neutrino beam: typical power of 670kW (peaks >750kW). - +50% neutrino mode exposure last year. - Ongoing improvements to reach 900kW. ### How are neutrinos detected? The NOvA Near Detector and Far Detector are both segmented liquid scintillator detectors providing 3D tracking and calorimetry. #### Near Detector: - 290 tons. - 350 ft underground at Fermilab. #### Far Detector: - 14 ktons. - 810km away on the surface in Minnesota. ### How are neutrinos detected? ### What do neutrino events look like in NOvA? - Use Machine Learning techniques to select and identify neutrino interactions. - Data processing, simulations, event reconstruction, network training: performed thanks to Fermilab computing resources. ### What are NOvA's latest 3-flavor oscillation results? ### What are NOvA's latest 3-flavor oscillation results? • The measurement is sensitive to statistical fluctuations. The measurement is sensitive to **statistical fluctuations**. The measurement is sensitive to statistical fluctuations. \star : With a few more events in the ν_u oscillation dip. : With a few less events in the ν_{μ} oscillation dip. - The measurement is sensitive to statistical fluctuations - → Need to report **confidence intervals.** - The measurement is sensitive to **statistical fluctuations** - → Need to report **confidence intervals.** "True" values are "more likely than not" in the 1σ interval. - The measurement is sensitive to statistical fluctuations - → Need to report **confidence intervals.** "True" values are "very unlikely" to be outside the 3σ interval. "True" values are "more likely than not" in the 1σ interval. #### How confident are we in the results? - The measurement is sensitive to **statistical fluctuations** - → Need to report **confidence intervals.** "True" values are "very unlikely" to be outside the 3 σ interval. "True" values are "more likely than not" in the 1σ interval. Because of the low statistics and the presence of physical boundaries, building statistically accurate **confidence** intervals is very challenging. With a regular die, distribution of outcomes is flat. The sum of many dice follows a **normal distribution**. The square of the sum is χ^2 -distributed \rightarrow can mathematically predict the probability to throw ≥ 25 . The sum of many dice follows a normal distribution. The square of the sum is χ^2 -distributed \rightarrow can mathematically predict the probability to throw ≥25. The sum of two dice is not normal distributed or "gaussian". The sum of many dice follows a normal distribution. The square of the sum is χ^2 -distributed \rightarrow can mathematically predict the probability to throw ≥25. In addition, if the two dice are loaded, the only way to **predict** the distribution of outcomes is to throw the dice many times, i.e. throw pseudoexperiments. - Generate and fit **millions of pseudoexperiments** to build empirical χ^2 -distributions: **Feldman-Cousins approach**. - Extremely computationally expensive. • Generate and fit **millions of pseudoexperiments** to build empirical χ^2 -distributions: **Feldman-Cousins approach**. - Extremely computationally expensive. - Implemented a massive parallel framework on High Performance Computing platforms like NERSC, in collaboration with the SciDAC-4 HEP Data Analytics program. - Time to results brought from 6 months on FermiGrid and OpenScience grid down to a few days/weeks on NERSC machines. ## What is NOvA's constraint on δ_{CP} ? • Observed v_e - $\overline{v_e}$ appearance rates fall in a degenerate region of the param. space. 8/13/2020 ## What is NOvA's constraint on δ_{CP} ? - Observed v_e $\overline{v_e}$ appearance rates fall in a degenerate region of the param. space. - No significant v_e $\overline{v_e}$ asymmetry observed. ## What is NOvA's constraint on δ_{CP} ? - Observed v_e $\overline{v_e}$ appearance rates fall in a degenerate region of the param. space. - No significant ν_e $\overline{\nu_e}$ asymmetry observed. - Disfavor IH $\delta_{\rm CP}=\pi/2$ at >3 σ and NH $\delta_{\rm CP}=3\pi/2$ at 2 σ . ## What is NOvA's constraint on $\sin^2\theta_{23}$ and Δm^2_{32} ? Best fit in Normal Hierarchy and Upper Octant ($\theta_{23} > 45^{\circ}$). #### **Precision measurements:** - $-\Delta m^2_{32}=2.41\pm0.07\times10^{-3}\,\text{eV}^2\ (\pm3\%)$ - $-\sin^2\theta_{23}=0.57^{+0.04}_{-0.03}~(\pm7\%)$ - Preference for: - Normal Hierarchy at 1.0σ - Upper Octant at 1.2σ - Non-maximal mixing at 1.1σ ## What is NOvA's future sensitivity? - Run until **2025**, accumulating more than 3×10^{21} **POT** in both ν and $\overline{\nu}$ modes. - Could reach **5σ sensitivity** to **Mass Hierarchy** for most favorable parameters. - Probe the majority of δ_{CP} values at 2σ -level. **High Performance Computing** enables great **speed ups** and previously computationally prohibitive analysis techniques to be explored. - High Performance Computing enables great speed ups and previously computationally prohibitive analysis techniques to be explored. - Development of Machine Learning tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc. - High Performance Computing enables great speed ups and previously computationally prohibitive analysis techniques to be explored. - Development of Machine Learning tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc. - NOvA Test Beam program is ongoing at Fermilab Test Beam Facility: reduce our largest systematics. - **High Performance Computing** enables great **speed ups** and previously computationally prohibitive analysis techniques to be explored. - Development of **Machine Learning** tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc. - NOvA Test Beam program is ongoing at Fermilab Test Beam Facility: reduce our largest systematics. - Expect more neutrino cross-section measurements from NOvA: see past two weeks JTEP seminars on the ν_u and ν_e charged current inclusive measurements. #### **Conclusions** - New results with 50% more neutrino mode exposure and updated analysis. - Preference for **Normal Hierarchy** (1.0σ) and **Upper Octant** (1.2σ) . - Achieved some of the **most precise measurement** of: - $-\Delta m^2_{32}=2.41\pm0.07\times10^{-3}\,\mathrm{eV^2}$ - $-\sin^2\theta_{23}=0.57^{+0.04}_{-0.03}$ - Exclude IH $\delta_{\rm CP}=\pi/2$ at >3 σ and NH $\delta_{\rm CP}=3\pi/2$ at 2 σ . - Fermilab played a critical role in NOvA's latest results! Grateful for continued support. 8/13/2020 # **Backup** 8/13/2020 #### **GENIE Tune** ▶ Used **GENIE 3.0.6** in NOvA 2020 analysis: choose the most theory-driven models and retune some parameters to better match ND data. | Process | Model | |------------------|---------------------------| | Quasielastic | Valencia 1p1h | | Form Factor | Z-expansion | | Multi-nucleon | Valencia 2p2h | | Resonance | Berger-Sehgal | | DIS | Bodek-Yang | | Final State Int. | hN semi-classical cascade | #### **GENIE Tune** #### Largest **tunes**: - Meson Exchange Current (MEC or 2p2h): tune to ND data - ► Final State Interactions (FSI): use external π -scattering data ## **NOvA Preliminary** ## Joint NOvA-T2K analysis • Data-driven techniques lead to small adjustments to the ν_{μ} CC, ν_{e} CC and NC rates. #### FD numu | Obs. | ν_{μ} candidates | 211 | |-------|------------------------|-----| | Total | background | 8.2 | | Obs. | $\overline{\nu}_{\mu}$ candidates | 105 | |------|-----------------------------------|-----| | Tota | l background | 2.1 | #### FD nue | Obs. v_e candidates | 82 | |-----------------------|------| | Best fit prediction | 85.8 | | Total background | 26.8 | | Beam bkg | 22.7 | | Cosmic bkg | 3.1 | | Wrong sign | 1.0 | | Obs. v_e candidates | 33 | |-----------------------|------| | Best fit prediction | 33.2 | | Total background | 14.0 | | Beam bkg | 10.2 | | Cosmic bkg | 1.6 | | Wrong sign | 2.3 | ## Joint NOvA-T2K analysis - T2K results are statistically compatible with ours. - Ongoing effort towards a joint NOvA-T2K fit. ## p_t extrapolation - ND/FD containment difference. - Split ND samples into 3 bins of transverse momentum and extrapolate separately. - Reduce cross-section uncertainty by 30%. Overall systematics reduction is 10%. 8/13/2020 ## **Systematics** - ▶ **Detector calibration**: will be improved by the ongoing test beam program at FNAL. - ▶ Neutron uncertainty: cover discrepancies observed in low-energy $\overline{\nu}$ data. Ongoing work to improve our simulation and understanding of neutrons in the detectors. - ► Neutrino cross-sections: use own tuning but still noticeable nuclear effects (RPA, MEC). 8/13/2020 ## **Systematics** ▶ Without the ND to FD extrapolation technique, cross-section and flux uncertainties would be dominant, especially for the appearance analysis which is extremely rate sensitive.