

JAVIER DUARTE 53RD ANNUAL FERMILAB USERS MEETING AUGUST 12, 2020

HIGHLIGHTS FROM CMS

particles

particles

interactions

particles

interactions

particles

But there has to be more to it! SM does not explain dark matter, neutrino masses, and the matter-antimatter asymmetry...

interactions

particles

- masses, and the matter-antimatter asymmetry...

interactions

But there has to be more to it! SM does not explain dark matter, neutrino

Studying the SM precisely may give us clues to new particles or interactions

SUISSE

FRANCE

ECMS

SUISSE

FRANCE

=CMS

proton-proton collider @ 13 TeV center-of-mass energy

SPS_7 km

CERN Prevessin

SUISSE

FRANCE

-CMS

proton-proton collider @ 13 TeV center-of-mass energy 4 interaction points

SPS_7 km

CERN Prévessin

SUISSE

FRANCE

-CMS

proton-proton collider @ 13 TeV center-of-mass energy 4 interaction points 40 million collisions / second

CERN Prevessin

SUISSE

FRANCI

CMS

proton-proton collider @ 13 TeV center-of-mass energy 4 interaction points 40 million collisions / second trigger selects ~1000 collisions / second

CERN Prévessin

SUISSE

FRANC

CMS

proton-proton collider @ 13 TeV center-of-mass energy 4 interaction points 40 million collisions / second trigger selects ~1000 collisions / second

CERN Prévessin

CMS PUBLICATIONS

- 1009 publications submitted as of August 10, 2020
- Celebrated 1000th paper on June 19, 2020
- Many new papers are using the full Run 2 data set (137 fb⁻¹)

THE CURRENT PHASE OF CMS

- With Run 2 done, entering a new phase of the lifetime of the CMS experiment
 - Will take years (Run 3) to double current data set

200

150

100

THE CURRENT PHASE OF CMS

- With Run 2 done, entering a new phase of the lifetime of the CMS experiment
 - Will take years (Run 3) to double current data set
- Innovate to achieve more from this data:
 - Reduce systematic uncertainties to improve precision
 - Use machine learning (ML) to improve signal/background
 - Understand and target "gaps" in coverage, e.g. long-lived particles

THE CURRENT PHASE OF CMS

- With Run 2 done, entering a new phase of the lifetime of the CMS experiment
 - Will take years (Run 3) to double current data set
- Innovate to achieve more from this data:
 - Reduce systematic uncertainties to improve precision
 - Use machine learning (ML) to improve signal/background
 - Understand and target "gaps" in coverage, e.g. long-lived particles
- Preparations (well) underway for Run 3 and HL-LHC

RECENT HIGHLIGHTS

- Many new results for LHCP and ICHEP 2020 covering: detector performance, SM measurements, direct searches, Higgs, B-physics, heavy ions
- SM/Higgs searches as probes for new physics
 - Observation of VVV*
 - Search for longitudinally polarized same-sign WW*
 - Search for Boosted H(bb)*
 - Evidence for H(μμ)
- Direct searches for new physics
 - Vector-like BB*
 - Long-lived particles to displaced jets

*Fermilab and LPC-led efforts

FERMILAB LHC PHYSICS CENTER

- Established CMS center of excellence
- More than 500 users and 150 residents
- > 900 CMS collaborators use the LPC computing cluster for data processing and analysis
- ~800 participants in LPC-organized workshop and events, fostering interactions with theorists and non-CMS members

Distinguished Researchers Virtual Office Hours

2020 Data Analysis School

Focus on cleanest channels: fully leptonic (or same-sign) final states

<u>CMS-SMP-19-014</u> 9

- Focus on cleanest channels: fully leptonic (or same-sign) final states
- Combination of 2-6 lepton channels
 - 4 lepton channel has best sensitivity
 - Optimize BDTs for event selection

<u>CMS-SMP-19-014</u>

- Focus on cleanest channels: fully leptonic (or same-sign) final states
- Combination of 2-6 lepton channels
 - 4 lepton channel has best sensitivity
 - Optimize BDTs for event selection
- Data-driven background estimates from carefully chosen control regions

<u>CMS-SMP-19-014</u>

WWZ \rightarrow 4 lepton event

CMS experiment at the LHC, CERN CMS/ Data recorded: 2016-Jul-23 08:13:27.898048 GMT Run 277168, Event No. 3219714497 LS 1799

VVV RESULTS

All channels together

Best fit signal strengths for each process (WWW, WWZ, WZZ, ZZZ) shown

VVV OBSERVATION

process	significance[σ] observed (expected)
WWW	3.3 (3.1)
WWZ	3.3 (4.1)
WZZ	1.7 (0.7)
ZZZ	0.0 (0.9)
combined	5.7 (5.9)

- Observed VVV for the first time
- Evidence for WWW and WWZ
- of new physics

GGH INTERACTIONS

- High-p_T Higgs processes are a probe of potential BSM particles in the loop
 - Appear as new ggH interactions

GGH INTERACTIONS

- High-p_T Higgs processes are a probe of potential BSM particles in the loop
 - Appear as new ggH interactions

GGH INTERACTIONS

- High-p_T Higgs processes are a probe of potential BSM particles in the loop
 - Appear as new ggH interactions

BOOSTING THE HIGGS

At high momentum, the bottom quarks are boosted into a single large-radius jet

BOOSTING THE HIGGS

- > At high momentum, the bottom quarks are **boosted** into a single large-radius jet
 - Smaller (relative) QCD background

DEEP DOUBLE-B TAGGER

- Process track and SV inputs as ordered lists
 - Combine in final layer with expert inputs
- Performance gain over previous algorithm

<u>track</u> inputs

<u>secondary</u> <u>vertex</u> <u>inputs</u>

> <u>expert</u> inputs

VS.

|--|

DEEP DOUBLE-B TAGGER

- Process track and SV inputs as ordered lists
 - Combine in final layer with expert inputs
- Performance gain over previous algorithm

|--|

DEEP DOUBLE-B TAGGER

<u>DP-2018/033</u>15

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-20 03:55:39.135168 GMT Run / Event / LS: 305313 / 624767783 / 361

H(bb) cand. jet

 $p_{T} = 905 \text{ GeV}$ $m_{SD} = 130 \text{ GeV}$ deep double-b = 0.97

<u>CMS-PHO-EVENTS-2020-012</u> 16

BOOSTED H(BB) RESULTS

BOOSTED H(BB) RESULTS

Modest (1.8σ) excess over SM expectation

PASSING

TRENDS IN HIGGS P_T

Fits performed in categories of p_T

[800, 1200] GeV $\mu_{\rm H} = 9.1^{+4.5}_{-4.1}$ [675, 800] GeV $\mu_{\rm H} = 8.7^{+3.4}_{-3.1}$ [600, 675] GeV $\mu_{H} = 8.3^{+3.0}_{-2.7}$ [550, 600] GeV $\mu_{\rm H} = 3.7^{+2.7}_{-2.6}$ [500, 550] GeV $\mu_{\rm H} = -3.6^{+2.6}_{-2.8}$ [450, 500] GeV $\mu_{\rm H} = -0.5^{+2.7}_{-2.7}$

<u>CMS-HIG-19-003</u>

TRENDS IN HIGGS P_T

[800, 1200] GeV $\mu_{H} = 9.1^{+4.5}_{-4.1}$ [675, 800] GeV $\mu_{\rm H} = 8.7^{+3.4}_{-3.1}$ [600, 675] GeV $\mu_{\rm H} = 8.3^{+3.0}_{-2.7}$ [550, 600] GeV $\mu_{\rm H} = 3.7^{+2.7}_{-2.6}$ [500, 550] GeV $\mu_{\rm H} = -3.6^{+2.6}_{-2.8}$ [450, 500] GeV $\mu_{\rm H} = -0.5^{+2.7}_{-2.7}$

- Fits performed in categories of p_T
- Can look for trends as a function of Higgs p_T

<u>CMS-HIG-19-003</u>

TRENDS IN HIGGS PT

Can look for trends as a function of Higgs p_T

HIGGS 2ND GEN. COUPLINGS

- LHC Run 2 measured 3rd gen. Higgs couplings
 - tau lepton [<u>PLB 779 (2018) 283</u>]
 - top quark [PRL 120 (2018) 231801]
 - bottom quark [<u>PRL 121 (2018) 121801</u>]

CMS-PAS-HIG-19-006

HIGGS 2ND GEN. COUPLINGS

- LHC Run 2 measured 3rd gen. Higgs couplings
 - tau lepton [<u>PLB 779 (2018) 283</u>]
 - top quark
 [PRL 120 (2018) 231801]
 - bottom quark [PRL 121 (2018) 121801]
- Next challenge: 2nd gen.
 - charm quark: µ < 70 (37 exp.) @ 95% CL
 [JHEP 03 (2020) 131]
 - muons (before ICHEP 2020)
 - CMS: μ < 2.9 @ 95% CL [PRL 122 (2019) 021801]</p>
 - ATLAS: μ < 2.2 @ 95% CL [<u>arXiv:2007.07830</u>]

<u>CMS-PAS-HIG-19-006</u>

<u>22 (2019) 021801]</u> (iv:2007.07830]

Run 2 analysis (137 fb⁻¹)

- Targeting ggH, VBF, VH, and ttH prod.
- VBF has best sensitivity due to background suppression from fwd. jets
- Combined with Run 1 data @ 7 and 8 TeV

significance: 3.0σ (2.5σ exp.) signal strength: $\mu = 1.19^{+0.41}_{-0.39}$ (stat.) $^{+0.17}_{-0.15}$ (syst.)

CMS-PAS-HIG-19-006

MEASUREMENT OF H $\rightarrow \mu\mu$

(weighted) m_{µµ} fit for all event categories

<u>CMS-PAS-HIG-19-006</u>

MEASUREMENT OF H $\rightarrow \mu\mu$

(weighted) m_{µµ} fit for all event categories

<u>CMS-PAS-HIG-19-006</u>

CMS HL-LHC UPGRADE

TDRs for the MIP timing detector and L1 trigger recently approved New phase of engineering, prototyping, and construction COVID-19 has generated delays up to 3 months, still absorbable in the present contingencies

Technical proposal CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886 Scope Document CERN-LHCC-2015-019 https://cds.cern.ch/record/2055167

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record

- Si-Strip and Pixels increased granular
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

Barrel Calorimeters

timing for e/γ at 30 GeV

https://cds.cern.ch/record/2283187

• ECAL crystal granularity readout at 40 MHz with precise

rd/2283189

Instr. and Luminosity, stems and Infrastructure 1.ch/record/002706512

CMS has contributed many innovations to the field

arXiv:1804.06913 CMS-TDR-021

- CMS has contributed many innovations to the field
 - Fast ML project including realtime, on-detector, and lowlatency ML (hls4ml) as well as high-throughput heterogeneous computing for big data

- CMS has contributed many innovations to the field
 - Fast ML project including realtime, on-detector, and lowlatency ML (<u>hls4ml</u>) as well as high-throughput heterogeneous computing for big data
 - Tracking and particle-flow reco. **@ L1 Trigger**

- CMS has contributed many innovations to the field
 - Fast ML project including realtime, on-detector, and lowlatency ML (<u>hls4ml</u>) as well as high-throughput heterogeneous computing for big data
 - Tracking and particle-flow reco. **@ L1 Trigger**
 - Precision timing detectors
 - Data scouting or "trigger-level analysis"

SUMMARY AND OUTLOOK

- Excellent recent results with a very large scope
- Many years and luminosity in front of us (5% of the total delivered so far)
- Active in several different areas
 - Analysis, development of new reconstruction/computing/ML techniques, preparation for the upcoming Run 3, HL-LHC upgrade
- Great time to be part of an LHC collaboration, exposed to all of the different activities of an experimental physicist

For more: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

JAVIER DUARTE 53RD ANNUAL FERMILAB USERS MEETING AUGUST 12, 2020

- Focus on cleanest channels: fully leptonic (or same-sign) final states
- Combination of 2-6 lepton channels
 4 lepton channel has best sensitivity
 Optimize BDTs for event selection
 0.45
 0.30

0.60

0.00

 Data-driven background estimates from carefully chosen control regions

 Focus on cleanest channels: fully leptonic (or same-sign) final states

Combination of 2-6 lepton	[dd]	
channels	ction	0.45
4 lepton channel has best sensitivity	Cross se	0.30
Optimize BDTs for event selection 7k events w/		0.15
137 fb ⁻¹		0.00
Data-driven background		
estimates from carefully		

0.60

chosen control regions

COMPACT MUON SOLENOID

Specialized components to measure different particles

Brass + Plastic scintillator ~7,000 channels

100 million channels

SILICON TRACKERS

Pixel (100x150 μ m) ~16m² ~66M channels Microstrips (80x180 μ m) ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID

Niobium titanium coil carrying ~18,000A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

VVV: ANALYSIS STRATEGY

Use BDTs for optimal sensitivity in event selection

EXECUTIVE SUMMARY

- High-p_T Higgs candidate jet identified with
 - jet substructure
 - double-b tagging
 - jet mass
- Backgrounds:

MAJOR IMPROVEMENTS IN FULL RUN 2 ANALYSIS

Improved deep double-b tagger

MAJOR IMPROVEMENTS IN FULL RUN 2 ANALYSIS

- Improved deep double-b tagger
- Factorized background prediction
- Updated Higgs p_T prediction
- Unfolded differential Higgs p_T measurement

POLARIZED WW PAIRS

Motivation

- production of longitudinally polarized gauge bosons via vector boson scattering is tightly linked to the mechanism of EW symmetry breaking
- modifications of the production cross sections are expected in BSM models, • e.g., in scenarios involving additional Higgs bosons
- the precise measurement of the cross section is a long-term goal of the LHC program

First measurement of production cross section of polarised W[±]W[±] pairs in pp collisions

simultaneous measurement of $W_L W_L \& W_T W_X$, or $W_L W_X \& W_T W_T$ production

- EW production with at least one W₁ measured with 2.3 σ (3.1 σ) obs (exp)
- Upper limits (95% CL) for W_LW_L production at 1.17fb (0.88fb) obs (exp)

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32\substack{+0.42 \\ -0.40}$	0.44 ± 0.05
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11\substack{+0.49\\-0.47}$	1.94 ± 0.21

fiducial cross sections in the WW frame

cross section