

Neutrino oscillations are a **rich laboratory** for understanding the **implications of neutrino mass** 

































(... so the global program is healthy and diverse!)

Neutrino oscillations are a **rich laboratory** for understanding the **implications of neutrino mass** 











NOvA is uniquely positioned to investigate several of the biggest remaining physics questions:

Neutrino oscillations are a **rich laboratory** for understanding the **implications of neutrino mass** 





NOvA is uniquely positioned to investigate several of the biggest remaining physics questions:

```
Is there a symmetry governing the v_{\mu}/v_{\tau} mixing into the mass states? (Is \theta_{23} "maximal" = 45°?) v_{3} = \frac{?}{v_{e}} v_{\mu} v_{\tau}
```

Neutrino oscillations are a **rich laboratory** for understanding the **implications of neutrino mass** 





NOvA is uniquely positioned to investigate several of the biggest remaining physics questions:

Is there a symmetry governing the  $v_{\mu}/v_{\tau}$  mixing into the mass states? (Is  $\theta_{23}$  "maximal" = 45°?)  $v_{3}$ = ?

Is there a symmetry between the ordering of the neutrino & charged lepton mass states?

(Is the mass hierarchy
"normal" or "inverted?")

VS

Neutrino oscillations are a **rich laboratory** for understanding the **implications of neutrino mass** 











NOvA is uniquely positioned to investigate several of the biggest remaining physics questions:





$$\Delta P_{\nu\bar{\nu}} \propto \sin \delta_{CP}$$

Is there 'direct' violation of CP symmetry by leptons? (Is  $\delta_{CP}/\pi$  non-integral?)



- NOvA investigates with:
  - 700 kW NuMI beam
  - 810km baseline from FNAL to Ash River, MN
  - 300t Near and 14kt Far detectors 14mrad off axis



- NOvA investigates with:
  - 700 kW NuMI beam

#### Thank you Fermilab!!

758 kW peak hourly avg:

currently highest in the world

(even higher beam power to be realized with higher power NuMI target, planned accelerator improvements)



(See also New Perspectives talk from Y. Yu)

- NOvA investigates with:
  - 700 kW NuMI beam

Combined with 99.23% detector uptime,

78% increase in  $\mathbf{v}$  exposure

 $(6.91 \times 10^{20} \rightarrow 12.33 \times 10^{20} \text{ POT})$ 

since last year's Users Meeting

New results unveiled today!



(See also New Perspectives talk from Y. Yu)

- NOvA investigates with:
  - 700 kW NuMI beam
  - 810km baseline from FNAL to Ash River, MN
  - 300t Near and 14kt Far detectors 14mrad off axis



- Neutrino scattering /cross sections
   (new: arXiv:1902.00558)
- Short-baseline sterile  $\mathbf{v}$  searches

Capable all-purpose detectors also conducting many other measurements! (Posters from S. Lin, S. Calvez, M. Judah)

- NOvA investigates with:
  - <sup>-</sup> 700 kW NuMI beam
  - 810km baseline from FNAL to Ash River, MN
  - 300t Near and 14kt Far
     detectors 14mrad off axis



## Long-baseline sterile **v** searches

- Seasonal cosmic ray studies (new: arXiv:1904.12975)
- Supernova vs
- Exotic searches:
  - Magnetic monopoles
  - N-N oscillations
  - Gravitational wave coincidence

• • •

Capable all-purpose detectors also conducting many other measurements!

(Poster from A. Norrick)

$$P(\widetilde{\nu}_{\mu} \to \widetilde{\nu}_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)^*$$



<sup>\*</sup> In fits to data the full three-flavor probability is used with no approximations

$$P(\tilde{\nu}_{\mu} \to \tilde{\nu}_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

$$v_{3} = \frac{(\text{Is } \theta_{23} \text{ "maximal"} = 45^\circ?)}{v_{e} v_{\mu} v_{\tau}}$$

## Muon neutrino disappearance $\rightarrow \theta_{23}$

$$P(\dddot{\nu}_{\mu} \rightarrow \dddot{\nu}_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)$$



[Nunokawa, Parke, Valle, Prog. Part. Nucl. Phys. 60, 338]

$$P\left(\overrightarrow{\nu}_{\mu} \to \overleftarrow{\nu}_{e}\right) \approx \left|\sqrt{P_{\text{atm}}}e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}}\right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}P_{\text{sol}}}\left(\cos\Delta_{32}\cos\delta_{CP} \mp \sin\Delta_{32}\sin\delta_{CP}\right)^{*}$$

with

$$\sqrt{P_{\text{atm}}} \equiv \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31}$$

$$\sqrt{P_{\text{sol}}} \equiv \cos \theta_{23} \cos \theta_{13} \sin 2\theta_{12} \sin \Delta_{21}$$

(in vacuum)

<sup>\*</sup> In fits to data the full three-flavor probability is used with no approximations

[Nunokawa, Parke, Valle, Prog. Part. Nucl. Phys. 60, 338]

$$P\left(\overrightarrow{\nu}_{\mu} \rightarrow \overrightarrow{\nu}_{e}\right) \approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32}+\delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2}$$

$$\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}P_{\rm sol}\left(\cos\Delta_{32}\cos\delta_{CP}\right) \mp \sin\Delta_{32}\sin\delta_{CP}$$
with
$$\sqrt{P_{\rm atm}} \equiv \sin\theta_{23}\sin2\theta_{13}\sin\Delta_{31}$$

$$\sqrt{P_{\rm sol}} \equiv \cos\theta_{23}\cos\theta_{13}\sin2\theta_{12}\sin\Delta_{21}$$

$$\sqrt{P_{\rm sol}} \equiv \cos\theta_{23}\cos\theta_{13}\sin2\theta_{12}\sin\Delta_{21}$$

$$\Delta P_{\nu\bar{\nu}} \propto \sin\theta_{23}$$
Is  $\delta_{\rm CP}/\pi$  non-interest to  $\delta_{\rm CP}/\pi$ 



(in vacuum)















 $\Delta P_{\nu\bar{\nu}} \propto \sin \delta_{CP}$ Is  $\delta_{CP}/\pi$  non-integral?

(in *matter*)





$$\Delta P_{
uar
u} \propto \sin\delta_{\it CP}$$
 Is  $\delta_{\it CP}/\pi$  non-integral?



Electron neutrino appearance  $\rightarrow \theta_{23}$ , MH,  $\delta$ 

[Nunokawa, Parke, Valle, Prog. Part. Nucl. Phys. 60, 338]

$$P\left(\overrightarrow{\nu}_{\mu} \rightarrow \overleftarrow{\nu}_{e}\right) \approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32}+\delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2} \qquad \qquad \qquad \qquad \qquad \qquad \\ \approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}P_{\rm sol}}\left(\cos\Delta_{32}\cos\delta_{CP}\right) + \sin\Delta_{32}\sin\delta_{CP} \qquad \qquad \qquad \qquad \\ \text{with} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \sqrt{P_{\rm atm}} = \sin\left(\theta_{23}\right)\sin(2\theta_{13}) \frac{\sin\left(\Delta_{31} - aL\right)}{\Delta_{31} - aL}\Delta_{31} \qquad \qquad \qquad$$

**Electron neutrinos** in *both* (functionally identical) detectors:



## Identifying neutrino interactions



- Use convolutional neural network (CNN) called CVN
  - Technique borrowed from computer vision community
  - Learns topological "features", eventually mapped onto desired output categories
- NOvA pioneered this use in particle physics (JINST 11, P09001)
  - ightarrow effective exposure increase of 30% for  $v_{\rm e}$  selection
- 3 theses, 3 papers (and counting) from Deep Learning applications to NOvA

(NP talk G. Nikseresht)

## Identifying neutrino interactions



Thank you
Fermilab
for
support!

Further PID & energy scale validation coming soon using

#### **NOvA Test Beam**

Efforts from **7 postdocs, 11 grad students, 11 undergrads**Taking **cosmic & beam commissioning data** now – beam run in fall 2019

(Poster from D. Phan; NP talk T. Lackey)



Converting an oscillation probability

to a prediction (event count) we can use to extract parameters from data is a deceptively complex process...



# **Detector** response

to charged particles and light propagation





# **Detector** response

to charged particles and light propagation





**VS** 



GENIE 2.12.2 (our default) post hoc

- Elastic-like (no pions produced):
  - Multi-nucleon knockout (short range): tuned empirical model
  - Nuclear charge screening (long range): theory-based corrections<sup>†</sup>
- Pion production:
  - Empirical correction inspired by observed suppression in data
    - † "Model uncertainties for Valencia RPA effect for MINERvA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932

 $p, \Pi^{\pm}, \dots$ 

(NP talk from M. Martinez Casales)





Nuclear physics is important (and hard)

Some effects need to be added to GENIE 2.12.2 (our default) post hoc

- Elastic-like (no pions produced):
  - Multi-nucleon knockout (short range): tuned empirical model
  - Nuclear charge screening (long range): theory-based corrections<sup>+</sup>
- Pion production:
  - Empirical correction inspired by observed suppression in data
    - "Model uncertainties for Valencia RPA effect for MINERvA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932

(NP talk from M. Martinez Casales)



Knock out two nucleons with an elastic-like interaction.

Theory is a work in progress... ("meson exchange currents," **MEC**)



Knock out two nucleons with an elastic-like interaction.

Theory is a work in progress...

employ fits based on

empirical model\* in meantime



#### **Empirical prediction + uncertainties based on fits to ND data**



<sup>\* &</sup>quot;Meson Exchange Current (MEC) Models in Neutrino Interaction Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014

## Constraining predictions



High-stats, unoscillated **Near Detector data constrains predictions** (*including systematics*)

(Poster K. Warburton; NP talk A. Back)

# ND Data – ν<sub>μ</sub>



Intense beam → large sample of ND events

→ strong constraints on FD predictions

## ND Data - V



(NP talk A. Dombara)

## ND Data – ν<sub>μ</sub>



Muon neutrino candidate sample divided into four "quartiles" based on E<sub>had</sub> / E<sub>v</sub>:

∄8

6

## ND Data - v<sub>e</sub>



#### ND v candidates are all background (no oscillations yet):

correct & extrapolate each category separately; use corrected ND  ${m v}_{_{\! u}}$  prediction for  ${m v}_{_{\! e}}$  appearance signal correction

## FD data (with new $\bar{v}$ sample!)



| Data neutrino candidates  | 113 |
|---------------------------|-----|
| Best fit total prediction | 124 |
| total bkgd.:              | 4.2 |
|                           | 2.1 |
| ♭ beam bkgd.              | 2.1 |

3-flavor oscillations describe data well (goodness-of-fit p = 0.91)

| Data antineutrino candidates | 102 |
|------------------------------|-----|
| Best fit total prediction    | 96  |
| total bkgd.:                 | 2.2 |
| └ cosmic bkgd.               | 0.8 |
| beam bkgd.                   | 1.4 |



## FD data (with new $\bar{v}$ sample!)

| Data neutrino candidates                                 | 58   |
|----------------------------------------------------------|------|
| Best fit total prediction                                | 59   |
| total bkgd.:                                             | 15.0 |
| └ cosmic bkgd.                                           | 3.3  |
| Ь beam bkgd.                                             | 11.1 |
| $\downarrow$ wrong-sign (app. $\overline{\nu}_{\rm e}$ ) | 0.7  |

3-flavor oscillations describe data well (goodness-of-fit p = 0.91)

Now with 78% more v data!

| Data antineutrino candidates                   | 27   |
|------------------------------------------------|------|
| Best fit total prediction                      | 27   |
| total bkgd.:                                   | 10.3 |
| └ cosmic bkgd.                                 | 1.1  |
| ↓ beam bkgd.                                   | 7.0  |
| $\rightarrow$ wrong-sign (app. $\nu_{\rm e}$ ) | 2.2  |



# FD data (with new $\bar{v}$ sample!)

| Data neutrino candidates                                   | 58   |
|------------------------------------------------------------|------|
| Best fit total prediction                                  | 59   |
| total bkgd.:                                               | 15.0 |
| └ cosmic bkgd.                                             | 3.3  |
| ↓ beam bkgd.                                               | 11.1 |
| $ ightharpoonup$ wrong-sign (app. $\overline{ u}_{ m e}$ ) | 0.7  |

Evidence for  $\overline{\mathbf{v}}_{e}$  appearance at  $4.4\sigma$ 



| Data antineutrino candidates                | 27   |
|---------------------------------------------|------|
| Best fit total prediction                   | 27   |
| total bkgd.:                                | 10.3 |
| └ cosmic bkgd.                              | 1.1  |
| Ь beam bkgd.                                | 7.0  |
| $ ightarrow$ wrong-sign (app. $ u_{ m e}$ ) | 2.2  |





## FD data (with new $\bar{v}$ sample!)



#### Oscillation results





Best fit:

•  $\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$ 

• 
$$\Delta m_{32}^2 = +2.48_{-0.06}^{+0.11} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$$

 $\sin^2 \theta_{22}$  < 0.5 (lower octant) disfavored at 1.6 $\sigma$ 

[All contours and significances calculated using Feldman-Cousins method thanks to NERSC1

#### Oscillation results





Best fit:

• 
$$\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$$

• 
$$\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$$
  
•  $\Delta m_{32}^2 = +2.48^{+0.11}_{-0.06} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$ 

 $\sin^2 \theta_{23}$  < 0.5 (lower octant) disfavored at 1.6 $\sigma$ 

$$\sin^2 \theta_{23} = 0.5$$
 disfavored at  $1.2\sigma$ 
 $v_3 = \frac{?}{v_e}$ 
 $v_\mu$ 
 $v_\tau$ 





Precision measurement of atmospheric parameters

# Oscillation results | New | data!





#### Best fit:

- $\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$
- $\Delta m_{32}^2 = +2.48_{-0.06}^{+0.11} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$   $\delta_{\text{CP}} = 0.0_{-0.4}^{+1.3} \pi$

43

# Oscillation results data!





Best fit:

- $\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$   $\Delta m_{32}^2 = +2.48^{+0.11}_{-0.06} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$   $\delta_{\text{CP}} = 0.0^{+1.3}_{-0.4} \pi$

[All contours and significances calculated using Feldman-Cousins method thanks to NERSC1

## Oscillation results





## Oscillation results | New data!







**Disfavored** 1.6σ

**Disfavored**  $1.9\sigma$ 





Best fit:

- $\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03}$
- $\Delta m_{32}^2 = +2.48_{-0.06}^{+0.11} \times 10^{-3} \text{ eV}^2/\text{c}^4(\text{NH})$
- $\delta_{CP} = 0.0^{+1.3}_{-0.4} \pi$

#### $\Delta P_{\nu\bar{\nu}} \propto \sin \delta_{CP}$

NHUO: All values of  $\delta$  allowed at 1.1 $\sigma$ IH:  $\delta = \pi/2$  ruled out >  $4\sigma$ 

#### **Future**

- Currently running in neutrino mode
  - Run plan: 50:50 v:v
  - NOvA is expected to run until 2025
  - Beam improvements an important part of story!
- With current analysis, expect:
  - Potential 3-5
     σ sensitivity to hierarchy
     with favorable parameters
  - $^-$  Possible >2 $\sigma$  sensitivity to CP violation
- Anticipating improvements in simulations that should improve analysis robustness
  - <sup>-</sup> Test Beam / improved det. response model
  - GENIE 3.0 / improved cross section models



#### Summary

- With 8.85x10<sup>20</sup> POT neutrino + 12.33x10<sup>20</sup> POT antineutrino beam exposure, NOvA finds:
  - 4.4σ evidence for electron antineutrino appearance in a muon antineutrino beam
  - 1.9**σ** preference for the Normal neutrino mass hierarchy
  - 1.6σ preference for  $\theta_{23}$  residing in the Upper Octant (maximal mixing disfavored at 1.2σ)
- With continued running through 2025, NOvA anticipates:
  - Possible 3-5 $\sigma$  sensitivity to the mass hierarchy
  - <sup>-</sup> Potential sensitivity to CP violation  $>2\sigma$
  - Input from NOvA Test Beam program, neutrino interactions community to further improve robustness to systematics
- Come join the fun!
   30 doctoral / 9 masters / 1 bachelors NOvA theses (and counting)!

Paper reference for today's new result: arXiv:1906.04907



[June 2019 meeting @ Sussex University, Brighton, UK]

#### Overflow

#### **Systematics**







# Calculating significances



#### Feldman-Cousins method

Generate many pseudoexperiments w/ null hypothesis: measure *p*-value of data exclusion of null "empirically"



Compute p-values of both hypotheses; if  $p_{null}/p_{alt}$  is large, exclusion of null is suspicious.

$$CL_{s} = 0.094$$

## Neutron response

Neutron response is important in  $\bar{\nu}$  mode:





Search for  $\overline{\nu}$  QE-like events ( $\mu$  + no other tracks) with compact displaced energy deposits...



... and design uncertainty to bound data-simulation difference in observed energy



#### Neutron response

Neutron response is important in  $\bar{\nu}$  mode:



~1% effect shift in mean energy, negligible change to resolution, negligible change to selection efficiencies





#### Xsec model tuning: 2p2h



Knock out two nucleons with an elastic-like interaction.

Models are a work in progress... resort to fits based on empirical "model\*" in meantime



Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014



Fully empirical prescription for 2p2h derived from fitting data excess in ND

(w/ tunes from alternate base MC as uncertainties)





#### Xsec model tuning: pion production

#### Pion production

Apparent suppression at low momentum transfer (Q<sup>2</sup>) relative to model...

No theory to guide here. "Adapt" *elastic* long-range correlation model ("RPA")





#### Xsec model tuning





## Wrong-sign background





- ~10% systematic uncertainty on RHC wrong-sign from flux and cross section
  - Both in  $\nu_{\mu}$ -like and  $\nu_{e}$ -like events.
  - Does not include uncertainties from detector effects.
- Confirm using data-driven cross-checks of the wrong-sign contamination
  - 11% wrong-sign in the  $\nu_{\mu}$  sample checked using neutron captures.
  - 22% wrong-sign in beam  $\nu_e$  checked using identified protons and event kinematics.