Status of Neutrino Physics after Neutrino 2016:

Stephen Parke - Fermilab WH3W #366

Status of Neutrino Physics after Neutrino 2016:

Stephen Parke - Fermilab WH3W #366

Preamble: Three Neutrino Flavors

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_{\tau} \\ v_{\tau} \end{pmatrix} \xrightarrow{\text{Mass Eigenstates Labeled by Decreasing } v_e \\ \text{content}$$
 flavor
$$\begin{pmatrix} V_1 \\ V_{\tau 1} \\ V_{\tau 2} \\ V_{\tau 3} \end{pmatrix} \xrightarrow{\text{Mass Eigenstates Eigenstates Eigenstates}$$

states

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \text{Mass Eigenstates Labeled by Decreasing } \frac{v_e}{v_e}$$
 flavor states

• $|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0$ SNO

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_{\theta} \\ \text{content} \end{pmatrix}$$

$$\text{Mass Eigenstates Labeled by Decreasing } v_e \\ \text{content}$$

$$\text{flavor }$$

$$\text{flavor }$$

$$\text{Mass Eigenstates Eigenstates }$$

• $|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0$ SNO

• Normal Ordering: $m_1^2 < m_2^2 < m_3^2$ and Inverted Ordering: $m_3^2 < m_1^2 < m_2^2$ NO ν A, LBNF, \cdots

7/21/2016

states

Stephen Parke, Fermilab

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_{\tau} \\ v_{\tau} \end{pmatrix} \xrightarrow{\text{Mass Eigenstates Labeled by Decreasing } v_e \\ \text{content}$$
 flavor
$$\begin{pmatrix} V_1 \\ V_{\tau} \\ V_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_{\tau} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} M_{\text{ass Eigenstates Labeled by Decreasing } v_{\tau} \\ V_{\tau} \\ V_{\tau} \\ v_{\tau} \end{pmatrix}$$

states

•
$$|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0$$
 SNO

• Normal Ordering:
$$m_1^2 < m_2^2 < m_3^2$$
 and Inverted Ordering: $m_3^2 < m_1^2 < m_2^2$ NO ν A, LBNF, \cdots

•
$$0.06 \text{ eV} < \sum m_i < 0.5 \text{ eV} \approx m_e/10^6$$

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_{\tau} \\ v_{\tau} \end{pmatrix} \xrightarrow{\text{Mass Eigenstates Labeled by Decreasing } v_e \\ \text{content}$$
 flavor
$$\begin{pmatrix} V_1 \\ V_{\tau 1} \\ V_{\tau 2} \\ V_{\tau 3} \end{pmatrix} \xrightarrow{\text{Mass Eigenstates Eigenstates Eigenstates}$$

states

• $|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0 \ \text{SNO}$

• Normal Ordering: $m_1^2 < m_2^2 < m_3^2$ and Inverted Ordering: $m_3^2 < m_1^2 < m_2^2$ NO ν A, LBNF, \cdots

• $0.06 \text{ eV} < \sum m_i < 0.5 \text{ eV} \approx m_e/10^6$

Stephen Parke, Fermilab

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_e \\ \text{content} \end{pmatrix}$$
Mass Eigenstates Labeled by Decreasing v_e content v_e content

flavor states Mass Eigenstates

•
$$|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0 \ \text{SNO}$$

• Normal Ordering:
$$m_1^2 < m_2^2 < m_3^2$$
 and Inverted Ordering: $m_3^2 < m_1^2 < m_2^2$ NO ν A, LBNF, \cdots

•
$$0.06 \text{ eV} < \sum m_i < 0.5 \text{ eV} \approx m_e/10^6$$

Usual representation:

23

13

12

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Atmospheric

$$\left(egin{aligned} \mu
ightarrow au \ 500 \ ext{Km/GeV} \end{aligned}
ight)$$

Reactor/Interference

$$\frac{\mu \leftrightarrow e}{500 \text{ Km/GeV}}$$

Sola

$$\begin{array}{c}
\mu \rightarrow e \\
15,000 \text{ Km/GeV}
\end{array}$$

<u>Usual representation:</u>

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

$$\begin{array}{c}
\mu \rightarrow \tau \\
500 \text{ Km/GeV}
\end{array}$$

$$\mu \leftrightarrow e$$
 500 Km/GeV

AtmosphericReactor/InterferenceSolar
$$\mu \to \tau$$
 $\mu \leftrightarrow e$ $\mu \to e$ 500 Km/GeV500 Km/GeV15,000 Km/GeV

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}}).$$

<u>Usual representation:</u>

13

12

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Atmospheric

$$egin{pmatrix} \mu
ightarrow au \ 500 \ ext{Km/GeV} \ \end{bmatrix}$$

$$\mu \leftrightarrow e$$
 500 Km/GeV

Reactor/Interference Solar
$$\mu \leftrightarrow e$$
 500 Km/GeV
$$15,000 \text{ Km/GeV}$$

$$\times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$
.

<u>Usual representation:</u>

23

13

12

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Atmospheric

$$500 \text{ Km/GeV}$$

$$\mu \leftrightarrow e$$
 500 Km/GeV

TARITY IS BUILT IN: $U^{\dagger}U = 1$

• Labeling massive neutrinos: $|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$

Fractional Flavor Content

• Labeling massive neutrinos: $|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$

Fractional Flavor Content

$$\delta m_{sol}^2 = +7.6 \times 10^{-5} \text{ eV}^2$$

$$|\delta m^2_{atm}| = 2.4 \times 10^{-3} \; \mathrm{eV}^2$$

$$\sqrt{\delta m_{atm}^2} = 0.05 \text{ eV} < \sum m_{\nu_i} < 0.5 \text{ eV}.$$

• Labeling massive neutrinos:

$$|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$$

Fractional Flavor Content

$$\delta m_{sol}^2 = +7.6 \times 10^{-5} \text{ eV}^2$$
 $\sin^2 \theta_{12} \sim \frac{1}{3}$ $|\delta m_{atm}^2| = 2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} \sim \frac{1}{2}$ $\sqrt{\delta m_{atm}^2} = 0.05 \text{ eV} < \sum m_{\nu_i} < 0.5 \text{ eV}.$ $\sin^2 \theta_{13} \sim 0.02$

• Labeling massive neutrinos:

$$|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$$

Fractional Flavor Content

$$\delta m_{sol}^2 = +7.6 \times 10^{-5} \text{ eV}^2$$
 $\sin^2 \theta_{12} \sim \frac{1}{3}$ $|\delta m_{atm}^2| = 2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} \sim \frac{1}{2}$ $0 \le \delta < 2\pi$ $\sqrt{\delta m_{atm}^2} = 0.05 \text{ eV} < \sum m_{\nu_i} < 0.5 \text{ eV}.$ $\sin^2 \theta_{13} \sim 0.02$

3 Flavor Oscillation Probabilities

$$P(
u_lpha
ightarrow
u_eta) = |\sum_i \; oldsymbol{U_{lpha i}^*} \; e^{-im_i^2L/2E} \; oldsymbol{U_{eta i}} \; |^2$$

3 Flavor Oscillation Probabilities

$$P(
u_{lpha}
ightarrow
u_{eta}) = |\sum_{m{i}} m{U}_{m{lpha}m{i}}^* e^{-im_{m{i}}^2L/2E} m{U}_{m{eta}m{i}}|^2$$

decompose flavor states into mass eigenstates

⇒ then propagator

⇒ decompose mass eigenstates into flavor states

3 examples:

Using:
$$\Delta_{ij}=\Delta m_{ij}^2L/4E=1.27...$$
 $\left(rac{\Delta m_{ij}^2\ L}{eV^2\ km}
ight)$ $\left(rac{GeV}{E}
ight)$

(derive the number 1.27... by putting in \hbar and c's)

Disappearance Probabilities (in vacuum):

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}.$$

3 examples:

Using:
$$\Delta_{ij}=\Delta m_{ij}^2L/4E=1.27...$$
 $\left(rac{\Delta m_{ij}^2\ L}{eV^2\ km}
ight)$ $\left(rac{GeV}{E}
ight)$

(derive the number 1.27... by putting in \hbar and c's)

Disappearance Probabilities (in vacuum):

$$P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}.$$

$$egin{array}{ll} P(
u_e
ightarrow
u_e) &pprox & 1-\sin^22 heta_{13}\sin^2\Delta_{ee} \ &-\cos^4 heta_{13}\sin^22 heta_{12}\sin^2\Delta_{21} \end{array}$$

$$egin{array}{ll} P(
u_{\mu}
ightarrow
u_{\mu}) &pprox & 1 - 4\cos^2 heta_{13}\sin^2 heta_{23} \; (1 - \cos^2 heta_{13}\sin^2 heta_{23} \;) \sin^2\Delta_{\mu\mu} \ &+ \mathcal{O}(\Delta_{21}^2) \end{array}$$

$$\Delta_{ee} pprox \Delta_{31}$$
 and $\Delta_{\mu\mu} pprox \Delta_{32}$

3 examples:

Using:
$$\Delta_{ij}=\Delta m_{ij}^2L/4E=1.27...$$
 $\left(rac{\Delta m_{ij}^2\ L}{eV^2\ km}
ight)$ $\left(rac{GeV}{E}
ight)$

(derive the number 1.27... by putting in \hbar and c's)

Disappearance Probabilities (in vacuum):

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}.$$

$$egin{array}{lll} P(
u_e
ightarrow
u_e) &pprox & 1 - \sin^2 2 heta_{13} \sin^2 \Delta_{ee} \ & -\cos^4 heta_{13} \sin^2 2 heta_{12} \sin^2 \Delta_{21} \ & P(
u_\mu
ightarrow
u_\mu) &pprox & 1 - 4\cos^2 heta_{13} \sin^2 heta_{23} \; (1 - \cos^2 heta_{13} \sin^2 heta_{23} \;) \sin^2 \Delta_{\mu\mu} \end{array}$$

$$\Delta_{ee} pprox \Delta_{31}$$
 and $\Delta_{\mu\mu} pprox \Delta_{32}$

Appearance Probabilities (in vacuum):

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx ?$$

 $+\mathcal{O}(\Delta_{21}^2)$

Reactor θ₁₃ Experiments

Daya Bay

RENO

Double Chooz

Flux & Cross Section:

Total is 2 x 10^20 /sec/GW-Th

nu e Disappearance

The fraction of ν_3 that is ν_e : (aka $|U_{e3}|^2 = \sin^2 \theta_{13}$)

(aka
$$|U_{e3}|^2 = \sin^2 \theta_{13}$$
)

$$\begin{aligned} \sin^2 &2\theta_{13} = [8.41 \pm 0.27 (\text{stat.}) \pm 0.19 (\text{syst.})] \times 10^{-2} \\ &|\Delta m^2_{\text{ee}}| = [2.50 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})] \times 10^{-3} \text{eV}^2 \\ &\chi^2/\text{NDF} = 232.6/263 \end{aligned}$$

$$\left| \Delta m_{ee}^2 \right| = 2.62_{-0.23}^{+0.21} (\text{stat.})_{-0.13}^{+0.12} (\text{syst.}) \ (\times 10^{-3} \, eV^2)$$

$$\sin^2 2\theta_{13} = 0.082 \pm 0.009 \text{(stat.)} \pm 0.006 \text{(syst.)}$$

θ₁₃

The fraction of ν_2 that is ν_e :

(aka
$$|U_{e2}|^2 = \cos^2 \theta_{13} \sin^2 \theta_{12} \approx \sin^2 \theta_{12}$$
)

Super-K+SNO vs. KamLAND

Stephen Parke, Fermilab

The fraction of ν_2 that is ν_e :

(aka
$$|U_{e2}|^2 = \cos^2 \theta_{13} \sin^2 \theta_{12} \approx \sin^2 \theta_{12}$$
)

Super-K+SNO vs. KamLAND

Important Questions:

· Dominant Flavor Content of v_3

· Mass Ordering

· Is there CP Violation

· Dirac OR Majorana

· Beyond Nu Standard Model

· Dominant Flavor Content of v_3

 $ls \sin^2 \theta_{23} < or > 0.5$?

· Dominant Flavor Content of v_3

 $ls sin^2 \theta_{23} < or > 0.5$?

NOvA Nu mu Disappearance:

NOvA Nu mu Disappearance:

- □ 473±30 with no oscillation
- 82 at best oscillation fit
- 3.7 beam BG + 2.9 cosmic

Best Fit (in NH):

$$|\Delta m_{32}^2| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$$

 $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

NOvA conti

NOvA Preliminary

Maximal mixing excluded at 2.5σ

<u>SK -only</u> <u>Atmospheric Neutrinos</u>

T2K anti-nu_mu Disappearance:

FIRST ANTINEUTRINO RESULTS

- 2015 \bar{v}_{μ} disappearance analysis
 - Competitive measurement of antineutrino disappearance parameters with 1 year of data.
 - Phys.Rev.Lett. 116 (2016) no.18, 181801
- \bar{v}_e appearance results
 - 3 events observed
 - 3.2 expected with current best-fit values ($\delta_{CP} \sim -\pi/2$)

17

OR

OR

	NH	ΙH	SUM
$\sin^2\theta_{23} \le 0.5$	0.218	0.072	0.290
$\sin^2\!\theta_{23} > 0.5$	0.529	0.181	0.710
SUM	0.747	0.253	1.000

S	K-	Oľ	γ	V
				J

SK : $\Delta \chi^2$ (IH-NH)=4.3

	NΗ	ΙH	SUM
$\sin^2\!\theta_{23} \le 0.5$	0.218	0.072	0.290
$\sin^2\!\theta_{23} > 0.5$	0.529	0.181	0.710
SUM	0.747	0.253	1.000

NOVA: $\Delta \chi^2$ (IH-NH)=0.47

	OH	m_{atm}^{-}
		3
·		J

SI	K -	-OI	\cap	У
				_

SK : $\Delta \chi^2$ (IH-NH)=4.3

	NH	ΙΗ	SUM
$\sin^2\theta_{23} \le 0.5$	0.218	0.072	0.290
$\sin^2\!\theta_{23} > 0.5$	0.529	0.181	0.710
SUM	0.747	0.253	1.000

Global fits:

Absolute minimum in NO, $\Delta \chi^2(IO-NO) = 3.1$

· Is there CP Violation

$$P(
u_{\mu}
ightarrow
u_{e})
eq P(ar{
u}_{\mu}
ightarrow ar{
u}_{e})$$
 in vacuum

· Is there CP Violation

$$P(
u_{\mu}
ightarrow
u_{e})
eq P(ar{
u}_{\mu}
ightarrow ar{
u}_{e})$$
 in vacuum

Fractional Flavor Content varying $\cos \delta$

· Is there CP Violation

Vacuum LBL:
$$\nu_{\mu} \rightarrow \nu_{e}$$
Vacuum \sim 1 \sqrt{D} $e^{-i(\Delta_{32}\pm\delta)}$

$$P_{\mu
ightarrow e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$$

$$\Delta_{ij} = \delta m_{ij}^2 L/4E$$

CP violation !!!

where
$$\sqrt{P_{atm}}=\sin\theta_{23}\sin2\theta_{13}~\sin\Delta_{31}$$
 and $\sqrt{P_{sol}}=\cos\theta_{23}\sin2\theta_{12}~\sin\Delta_{21}$

$$\nu_{\mu} \rightarrow \nu_{e}$$

Vacuum LBL:
$$u_{\mu} \to
u_{e}$$
Vacuum $P_{\mu \to e} \approx |\sqrt{P_{atm}}e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}}|^{2}$

$$\Delta_{ij} = \delta m_{ij}^2 L/4E$$

CP violation !!!

where
$$\sqrt{P_{atm}}=\sin\theta_{23}\sin2\theta_{13}~\sin\Delta_{31}$$
 and $\sqrt{P_{sol}}=\cos\theta_{23}\sin2\theta_{12}~\sin\Delta_{21}$

$$P_{\mu
ightarrow e} ~pprox ~P_{atm} + 2\sqrt{P_{atm}P_{sol}}\cos(\Delta_{32} \pm \delta) + P_{sol}$$

only CPV

$u_{\mu} \rightarrow \nu_{e}$

In Matter:

$$P_{\mu o e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$$

$$a = G_F N_e / \sqrt{2} = (4000 \ km)^{-1}$$
,

where
$$\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31}$$

and
$$\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}$$

Anti-Nu: Normal Inverted dashes $\delta=\pi/2$ solid $\delta=3\pi/2$

$$P_{\mu
ightarrow e} ~pprox ~P_{atm} + 2\sqrt{P_{atm}P_{sol}}\cos(\Delta_{32} \pm \delta) + P_{sol}$$

only CPV

$$\cos(\Delta_{32} \pm \delta) = \cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta$$

Correlations between Neutrino and Antineutrino nu e Appearance

Normal Ordering — Inverted Ordering

T2K/HK

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$
 $|U_{\mu3}|^2 \leftrightarrow (1-|U_{\mu3}|^2)$ degeneracy!

Correlations between Neutrino and Antineutrino nu e Appearance

Normal Ordering — Inverted Ordering

T2K/HK

/HK: L=295 km, E=0.65 GeV $|U_{\mu 3}|^2 = 0.6$ $\sin^2 2\theta_{13} = 0.09$ $P(\nu_{\mu} \rightarrow \nu_{e}) \%$

NOvA

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$
 $|U_{\mu3}|^2 \leftrightarrow (1-|U_{\mu3}|^2)$ degeneracy!

$$|U_{\mu 3}|^2 \leftrightarrow (1-|U_{\mu 3}|^2)$$
 degeneracy !

Correlations between Neutrino and Antineutrino nu e Appearance

Normal Ordering — Inverted Ordering

Same L/E as $NO\nu A$

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$
 $|U_{\mu3}|^2 \leftrightarrow (1-|U_{\mu3}|^2)$ degeneracy!

Correlations between Neutrino and Antineutrino nu e Appearance

Normal Ordering — Inverted Ordering

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$
 $|U_{\mu3}|^2 \leftrightarrow (1-|U_{\mu3}|^2)$ degeneracy!

δ_{CP} VS. θ_{13}

$\sin^2\theta_{23}$

0.6

7/21/2016

0.65

 $\sin^2(\theta_{23})$

NOVA

ν_e fit results

Constrain θ_{13} to reactor average $\sin^2 2\theta_{13} = 0.085 \pm 0.005$

NOvA

- $exttt{ iny Fit for hierarchy, $\delta_{ ext{CP}}$, $\sin^2\! heta_{23}$}$
 - □ Constrain Δm^2 and $\sin^2\theta_{23}$ with NOvA disappearance results
 - Not a full joint fit, systematics and other oscillation parameters not correlated
- Global best fit Normal Hierarchy

$$\delta_{CP} = 1.49\pi$$
 $\sin^2(\theta_{23}) = 0.40$

- best fit IH-NH, $\Delta \chi^2$ =0.47
- $lue{}$ both octants and hierarchies allowed at 1σ
- $oldsymbol{\square}$ 3σ exclusion in IH, lower octant around $oldsymbol{\delta}_{\mathrm{CP}} = \pi/2$

Antineutrino data will help resolve degeneracies, particularly for non-maximal mixing
Planned for Spring 2017

Stephen Parke, Fermilab

NOVA

· Is there CP Violation

Mass Ordering

· Dominant Flavor Content of v_3

Is there CP Violation

Fractional Flavor Content varying $\cos \delta$

Mass Ordering

· Dominant Flavor Content of v_3

Is there CP Violation

Fractional Flavor Content varying $\cos \delta$

Mass Ordering

OR

7/21/2016

· Dominant Flavor Content of v_3

Stephen Parke, Fermilab

Is there CP Violation

Fractional Flavor Content varying $\cos \delta$

OR

Mass Ordering

 δm_{sol}^2 2 δm_{atm}^2 3

· Dominant Flavor Content of v_3

 θ_{23} octant ?

Dirac or Majorana

· Dirac OR Majorana

Dirac 4 comps

helicity
$$l^ l^+$$

L 1 (

 $\mathsf{R} \qquad (\frac{m_{\nu}}{E})^2 \qquad \mathsf{C}$

$$\bar{\nu}$$

$$L = -1$$

L $(\frac{m_{\nu}}{E})^2$

$$(\frac{m_{
u}}{E})^2 = (\frac{1eV}{1GeV})^2 = 10^{-18}$$

· Dirac OR Majorana

Dirac 4 comps

helicity
$$l^-$$

L 1 (

 $\mathsf{R} \qquad \left(\frac{m_{\nu}}{E}\right)^2 \qquad \mathsf{C}$

$$\begin{array}{c}
\overline{\nu} \\
L = -1
\end{array}$$

L $(\frac{m_{\nu}}{E})^2$

$$(\frac{m_{
u}}{E})^2 = (\frac{1eV}{1GeV})^2 = 10^{-18}$$

 l^+

Majorana 2 comps

helicity
$$l^ l^+$$

$$egin{array}{cccc} \mathsf{L} & 1 & (rac{m_
u}{E})^2 \ \mathsf{R} & (rac{m_
u}{E})^2 & 1 \end{array}$$

$$\nu = \bar{\nu}$$

Majorana or Dirac:

 $Amp[0\nu\beta\beta] \propto \left| \sum_{i=1}^{n} m_{i}U_{ei}^{2} \right| \equiv m_{\beta\beta}$

The mass is the source of the lepton number violation.

· Beyond Nu Standard Model

More then 3 Neutrinos:

More than 3 neutrinos?

Non-unitary mixing

$$U^{N \times N} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \cdots & U_{eN} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots & U_{\mu N} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \cdots & U_{\tau N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ U_{s_{N_s}1} & U_{s_{N_s}2} & U_{s_{N_s}3} & \cdots & U_{s_{N_s}N} \end{pmatrix}$$

Results valid for Dirac or Majorana

Bounds on non-unitary mixing

For Dirac or Majorana

→ If sterile masses between eV and keV:

$$|U|_{3\sigma}^{\text{w/o Unitarity}}| = \\ \begin{pmatrix} 0.76 \rightarrow 0.85 & 0.50 \rightarrow 0.60 & 0.13 \rightarrow 0.16 \\ (0.79 \rightarrow 0.85) & (0.50 \rightarrow 0.59) & (0.14 \rightarrow 0.16) \\ 0.21 \rightarrow 0.54 & 0.42 \rightarrow 0.70 & 0.61 \rightarrow 0.79 \\ (0.22 \rightarrow 0.52) & (0.43 \rightarrow 0.70) & (0.62 \rightarrow 0.79) \\ 0.18 \rightarrow 0.58 & 0.38 \rightarrow 0.72 & 0.40 \rightarrow 0.78 \\ (0.24 \rightarrow 0.54) & (0.47 \rightarrow 0.72) & (0.60 \rightarrow 0.77) \end{pmatrix}$$
 [Parke, Ross-Lonergan, PRD 93 (2016) 113009]

→ If steriles heavier than electroweak scale:

$$\begin{split} \widetilde{U} &= \left(\mathbf{1} - \eta \right) U \\ 2 |\eta| &\leq \begin{pmatrix} 2.5 \times 10^{-3} & 2.4 \times 10^{-5} & 2.7 \times 10^{-3} \\ 2.4 \times 10^{-5} & 4.0 \times 10^{-4} & 1.2 \times 10^{-3} \\ 2.7 \times 10^{-3} & 1.2 \times 10^{-3} & 5.6 \times 10^{-3} \end{pmatrix} \quad \text{at } 2\sigma \end{split}$$

[Fernandez-Martinez, Gavela, Lopez-Pavon, Yasuda, PLB 649 (2007) 427] [Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, arXiv:1605.08774]

No positive results on steriles

Daya Bay, Minos and Bugey 3 combined

...except the deficit of absolute reactor neutrino fluxes

Daya Bay

• 4.4σ local significance at 4~6MeV

Fraction of 5 MeV excess: 2.46 ± 0.27

Significance of the 5 MeV excess: $\sim 9\sigma$

Huber

At $E_v \sim \#$ MeV : nuclear physics theoretical uncertitude $\sim 5\%$ while the "deficit" in reactor flux was $\sim 3\%$

* Intense theoretical analysis of 5MeV bump discovered by RENO: inconclusive

* Plus new expt. input, e.g. Daya Bay:

Or let us declare the reactor anomaly hibernating...

as possible hint of steriles
(exptal. program important to ensure
< % level in reactor physics)
Do the fits with 5% theoret, error

· Neutrino Astronomy

Neutrino Astronomy:

Energy Spectrum

54 events observed with 20±6 expected from atmosphere

Deposited EM-Equivalent Energy in Detector (TeV)

4 yr update of PRL2014, Science 2013

Antares:

Observed 19

Expected 13.5 +/-2, ~ 3 IC

Important Questions:

Dominant Flavor Content of v_3

· Mass Ordering

· Is there CP Violation

· Dirac OR Majorana

· Beyond Nu Standard Model

Stephen Parke, Fermilab