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13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =

⎡

⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i ̸= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 ̸= 0 and ∆m2
31 ̸= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator

June 18, 2012 16:19

23 13 12



Usual representation:

4
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =

⎡

⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i ̸= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 ̸= 0 and ∆m2
31 ̸= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator

June 18, 2012 16:19

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =

⎡

⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i ̸= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 ̸= 0 and ∆m2
31 ̸= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator

June 18, 2012 16:19

23 13 12



Usual representation:

4
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =

⎡

⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i ̸= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 ̸= 0 and ∆m2
31 ̸= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator

June 18, 2012 16:19

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =

⎡

⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i ̸= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 ̸= 0 and ∆m2
31 ̸= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2
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3

∑

j=1

Ulj νjL(x), (13.78)
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be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
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⎣
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s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤

⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
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Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!
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Neutrino Mixing Matrix: PMNS
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André de Gouvêa Northwestern

Phenomenological Understanding of Neutrino Masses & Mixing

(The Standard Massive Neutrino Paradigm)
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The Neutrino Masses:
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!
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Neutrino Standard Model:

Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass

eigenstates, ⌫
1

, ⌫
2

, ⌫
3

, are related as follows:
0

B

B

@

⌫e

⌫µ

⌫⌧

1

C

C

A

=

0

B

B

@

Ue1 Ue2 Ue3

Uµ1

Uµ2

Uµ3

U⌧1

U⌧2

U⌧3

1

C

C

A

0

B

B

@

⌫
1

⌫
2

⌫
3

1

C

C

A

(2)

where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2

2

> m2

1

or �m2

21

> 0.

The atmospheric neutrino mass ordering, m2

3

> or < m2

2

, m2

1

is still to be

determined, see Fig. 1. If m2

3

> m2

2

, the ordering is known as the normal hierarchy

(NH), whereas if m2

3

< m2

1

the ordering is known as the inverted hierarchy (IH). Fig. 2

shows the masses as a function of the lightest neutrino mass.
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!
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2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass
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where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2

2

> m2

1

or �m2

21

> 0.

The atmospheric neutrino mass ordering, m2

3

> or < m2

2

, m2

1

is still to be

determined, see Fig. 1. If m2

3

> m2

2

, the ordering is known as the normal hierarchy

(NH), whereas if m2

3

< m2

1

the ordering is known as the inverted hierarchy (IH). Fig. 2

shows the masses as a function of the lightest neutrino mass.

The sum of the masses of the neutrinos satisfies
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atm = 0.05 eV <
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m⌫i < 0.5 eV. (3)

So the
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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Matter effect
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!
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Neutrino Standard Model:

Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass

eigenstates, ⌫
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, ⌫
3

, are related as follows:
0

B

B

@

⌫e

⌫µ

⌫⌧

1

C

C

A

=

0

B

B

@

Ue1 Ue2 Ue3

Uµ1

Uµ2

Uµ3

U⌧1

U⌧2

U⌧3

1

C

C

A

0

B

B

@

⌫
1

⌫
2

⌫
3

1

C

C

A

(2)

where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2

2

> m2

1

or �m2

21

> 0.

The atmospheric neutrino mass ordering, m2

3

> or < m2

2

, m2

1

is still to be

determined, see Fig. 1. If m2

3

> m2

2

, the ordering is known as the normal hierarchy

(NH), whereas if m2

3

< m2

1

the ordering is known as the inverted hierarchy (IH). Fig. 2

shows the masses as a function of the lightest neutrino mass.

The sum of the masses of the neutrinos satisfies
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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|�m2
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atm| ⇧ 0.03
⇥
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atm = 0.05 eV <

�
m�i < 0.5 eV = 10�6 ⇥me
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sin2 ⇥13 < 3%

0 ⇤ � < 2⇤
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�m2
sol

Fermion Mass
(Neutrino Mass)

Mass is a coupling between the
RIGHT and the LEFT

components of the Fermion Field.

P 2 = M2, S2 = �1, and P · S = 0

then (P ± MS)2 = 0

Dirac spinor:

U(P, S) = (1+�5)
2 U(P+MS

2 ) + ei� (1��5)
2 U(P �MS

2 )

Right massless spinor Left massless spinor

for massless particles chirality and helicity are the identical
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SK & OPERA Tau’s
|U⌧3|2

|Ue1|2

|Ue2|2 + |Uµ2|2 + |U⌧2|2
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KamLAND wiggles|U⌧3|2

|Ue1|2

|Ue2|2 + |Uµ2|2 + |U⌧2|2
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P (⌫↵ ! ⌫�) = |
P

i U⇤
↵i e

�im2
iL/2E U�i |2

decompose flavor states into mass eigenstates

) then propagator

) decompose mass eigenstates into flavor states
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Neutrino oscillations in vacuum: disappearance
For example, it is easy to calculate the exact disappearance
expression in vacuum:

P(⌫↵ ! ⌫↵) = 1 � 4
X

i<j

|U↵i |2|U↵j |2 sin2�ji .

For the electron case this expression is simple:

P(⌫e ! ⌫e) = 1

� 4c212s
2
12c

4
13 sin

2�21

� 4c212c
2
13s

2
13 sin

2�31

� 4s212c
2
13s

2
13 sin

2�32 .

�ij =
�m2

ij L

4E
�m2

ij = m2
i � m2

j
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Appearance Probabilities (in vacuum):
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Xsec

Flux

Total is 
2 x 10^20 /sec/GW-Th
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Daya Bay
RENO

D-Chooz

JUNO
RENO 50
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Oscillation results 1230 days data

Poster Id: P2.063 by Maxim Gonchar

sin22θ13 = [8.41±0.27(stat.)±0.19(syst.)]× 10-2

|Δm2
ee|  = [2.50±0.06(stat.)±0.06(syst.)]× 10-3eV2

χ2/NDF = 232.6/263
Last publication:              sin22θ13 =   [8.4±0.5] × 10-2

P. R. L. 115, 111802 (2015)        |Δm2
ee|  =   ]2.42±0.11] × 10-3eV2
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2 = 2.62 −0.23

+0.21(stat.) −0.13
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θ13 Daya Bay: new results: 1230 days data 
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Important Questions:

• Dominant Flavor Content of v_3 

• Mass Ordering 

• Is there CP Violation 

• Dirac OR Majorana 

• Beyond Nu Standard Model

14
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Makes feasible long-baseline 
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neutrino mass hierarchy 
via matter effects that modify P(𝜈𝜇→𝜈e) 

Implications for: 0𝜈𝛽𝛽 data and Majorana nature of 𝜈; approach to m𝛽; 
astrophysics; theoretical frameworks for mass generation, quark/lepton unification; 
Is the lightest charged lepton associated with the heaviest light neutrino?  

CP violation 
via dependence of P(𝜈𝜇→𝜈e) on CP phase 𝛿.  Amplified by 𝜈/𝜈 ̅  comparisons. 

baryon asymmetry through see-saw/leptogenesis; fundamental question 
in the Standard Model (is CP respected by leptons?) 

𝜈  flavor mixing 
via leading-order factor sin2(𝜃23)  

Is 𝜈3 more strongly coupled to 𝜇 or 𝜏 flavor?; 
frameworks for mass generation, unification 
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NOvA Nu_mu Disappearance:

Neutrino oscillations
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SK$only$parameter$determina=on�

•  SK$only$(θ13$fixed):$Δχ2$=$χ2NH5χ2IH=$54.3$(53.1$expected)$
•  Under$IH$hypothesis,$the$probability$to$obtain$Δχ2$of$54.3$or$less$is$

0.031$(sin2θ23=0.6)$and$0.007$(sin2θ23=0.4).$Under$NH$hypothesis,$the$
probability$is$0.45$(sin2θ23=0.6).$

preliminary$

Fit$(517$dof)� χ2� sin2θ13� δCP� sin2θ23� |Δm2
32|eV2�

SK$(IH)$ 576.08� 0.0219$(fix)� 4.189� 0.575� 2.5x1053�

SK$(NH)� 571.74� 0.0219$(fix)� 4.189� 0.587� 2.5x1053�

11$

|Δm2
32|$

|Δm2
13|�

δCP�sin2θ23�
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eV2�

IO 
NO



T2K anti-nu_mu Disappearance:

20
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

F I R S T  A N T I N E U T R I N O  R E S U LT S

• 2015 νµ disappearance analysis 

• Competitive measurement of antineutrino 
disappearance parameters with 1 year of data. 

• Phys.Rev.Lett. 116 (2016) no.18, 181801  

• νe appearance results 

• 3 events observed 

• 3.2 expected with current best-fit values (δCP~ -π/2)

17

4.0x1020 POT
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• Mass Ordering
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• Mass Ordering

Flavor Content of Mass Eigenstates:

15
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!

– Typeset by FoilTEX – 3
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Neutrino Standard Model:

O. Mena & SP 
hep-ph/0312131
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Neutrino Mixing Matrix: PMNS

10

André de Gouvêa Northwestern

Phenomenological Understanding of Neutrino Masses & Mixing

(The Standard Massive Neutrino Paradigm)
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The Neutrino Masses:
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Flavor Content of Mass Eigenstates:
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• Labeling massive neutrinos:

• To Be Majorana or Not To Be Majorana?

• We know (|Ue2|2, |Ue3|2, |Uµ3|2) with precision of (5,10,15)% but
have little information on the other 6 elements of the PMNS matrix without
assuming Unitarity.

• Stringent tests of the ⌫SM Paradigm, determining the Mass Hierarchy
& measuring CPV are the next steps. Unitarity Triangle? Tau’s?

• Are there lite Sterile neutrinos?
Can we exclude |Ue4|2 and |Uµ4|2 > 0.01, say, for �m2 ⇠ 1eV 2

• Solving the Neutrino Masses and Mixing pattern is di�cult challenge
for Theory!

– Typeset by FoilTEX – 3
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Neutrino Standard Model:

O. Mena & SP 
hep-ph/0312131
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Neutrino Mixing Matrix: PMNS
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André de Gouvêa Northwestern

Phenomenological Understanding of Neutrino Masses & Mixing

(The Standard Massive Neutrino Paradigm)
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The Neutrino Masses:
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4% �e
in the 3 state!

States 1 and 2 are �e rich.

E = mc2
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Neutrino Factory: 
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2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass

eigenstates, ⌫
1

, ⌫
2

, ⌫
3

, are related as follows:
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where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2

2

> m2

1

or �m2

21

> 0.

The atmospheric neutrino mass ordering, m2

3

> or < m2

2

, m2

1

is still to be

determined, see Fig. 1. If m2

3

> m2

2

, the ordering is known as the normal hierarchy

(NH), whereas if m2

3

< m2

1

the ordering is known as the inverted hierarchy (IH). Fig. 2

shows the masses as a function of the lightest neutrino mass.

The sum of the masses of the neutrinos satisfies
q

�m2

atm = 0.05 eV <
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m⌫i < 0.5 eV. (3)

So the
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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SK$only$parameter$determina=on�

•  SK$only$(θ13$fixed):$Δχ2$=$χ2NH5χ2IH=$54.3$(53.1$expected)$
•  Under$IH$hypothesis,$the$probability$to$obtain$Δχ2$of$54.3$or$less$is$

0.031$(sin2θ23=0.6)$and$0.007$(sin2θ23=0.4).$Under$NH$hypothesis,$the$
probability$is$0.45$(sin2θ23=0.6).$
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Increase of statistics and different exps continue to  favor NH 

Global fits: 
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Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings
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where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2
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or �m2

21

> 0.

The atmospheric neutrino mass ordering, m2

3

> or < m2
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1

is still to be

determined, see Fig. 1. If m2

3
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2

, the ordering is known as the normal hierarchy

(NH), whereas if m2

3

< m2

1

the ordering is known as the inverted hierarchy (IH). Fig. 2

shows the masses as a function of the lightest neutrino mass.
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• Mass Ordering
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Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings
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where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2
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as both ⌫
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and ⌫
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have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component

required by the small ⌫e involvement shown by the results of the SuperKamiokande

and Chooz experiments. The mass ordering of ⌫
1

and ⌫
2

was determined by matter

e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar

neutrinos, implies that the higher mass state has the lower ⌫e component i.e. m2
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The atmospheric neutrino mass ordering, m2
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is still to be
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, the ordering is known as the normal hierarchy

(NH), whereas if m2
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the ordering is known as the inverted hierarchy (IH). Fig. 2
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.
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• Is there CP Violation
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CP

⇤µ ⇤ ⇤e ⌅⇧ ⇤̄µ ⇤ ⇤̄e

T ⌃ CPT across diagonals ⌃ T

⇤e ⇤ ⇤µ ⌅⇧ ⇤̄e ⇤ ⇤̄µ

CP

CPT across diagonals:

• First Row: Superbeams where ⇤e contamination ⇥1 %

• Second Row: ⇤-Factory or �-Beams, no beam contamination

Even in matter, a vestige of CPT exists:
Instead of switch matter to anti-matter, switch neutrino hierarchy !!!
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Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!
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–
14

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!
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Vacuum LBL:

Pµ!e ⇥ |
⌅

Patme�i(�32±�) +
⌅

Psol |2

0 when �31 = ⇥/2

0 in vacuum

a = GF Ne/
⌅

2 = (4000 km)�1, �ij = |�m2
ij|L/4E

and ± = sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 17

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

⇥2
�

PatmPsol sin �32 sin � (10)

�ij = �m2
ijL/4E

cos(�32 ± �) = cos �32 cos � ⇥ sin �32 sin � (11)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17

P (⇤µ ⌅ ⇤e) = | U⇥
µ1e

�im2
1L/2EUe1 + U⇥

µ2e
�im2

2L/2EUe2 + U⇥
µ3e

�im2
3L/2EUe3 |2

= |2U⇥
µ3Ue3 sin �31e

�i�32 + 2U⇥
µ2Ue2 sin �21|2

= |
�

Patme�i(�32+�) +
�

Psol|2

where
⌃

Patm = sin ⇥23 sin 2⇥13 sin �31
and

⌃
Psol ⇤ cos ⇥23 sin 2⇥12 sin �21

Pµ⇤e ⇤ Patm + 2
�

PatmPsol cos(�32 ± �) + Psol (6)

Pµ⇤e ⇤ Patm + 2
�

PatmPsol cos�32 cos � + Psol (7)

⇥2
�

PatmPsol sin �32 sin � (8)

P = Psol

– Typeset by FoilTEX – 16

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

⇥2
�

PatmPsol sin �32 sin � (10)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

⇥2
�

PatmPsol sin �32 sin � (10)

cos(�32 ± �) = cos �32 cos � ⇥ sin �32 sin � (11)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17
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where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!

sparkE – 17 Nov 2003 10

F
er

m
io

n
M

as
se

s:

el
ec

tr
on

p
os

it
ro

n

L
ef

t
C
hi

ra
l

e L
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–
14

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!

sparkE – 17 Nov 2003 10

Vacu
um LBL:

Pµ⇥e � |
⇥

Patme�i(�32±�) +
⇥

Psol |2

0 when �31 = ⇥/2

0 in vacuum

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E

and ± = sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 17

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

�2
�

PatmPsol sin �32 sin � (10)

�ij = �m2
ijL/4E

cos(�32 ± �) = cos �32 cos � � sin �32 sin � (11)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17
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In Matter:
�

Patm =sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

�
Psol = cos �23 sin 2�12

sin(aL)
(aL) �21

– Typeset by FoilTEX – 3

± = sign(�m2
31), a = GF Ne/

⇧
2 ⇥ (4000 km)�1

P (⇥̄, �m2
31, �) = P (⇥, ��m2

31, �+⇤)

dashes ⌅ solid and solid ⌅ dashes

a ⇤ �a and � ⇤ ��

Anti-Nu: Normal Inverted
dashes � = ⇤/2
solid � = 3⇤/2

– Typeset by FoilTEX – 4

Pµ⇥e � |
⇥

Patme�i(�32±�) +
⇥

Psol |2

0 when �31 = ⇥/2

0 in vacuum

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E

and ± = sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 17

P (�µ ⇥ �e) � |
�

Patme�i(�32+�) +
�

Psol|2

In Vacuum:
�

Patm =sin �23 sin 2�13 sin�31

�
Psol =cos �23 sin 2�12 sin�21

� = �m2L
4h̄cE = 1.27�m2L

4E

For L = 1200 km
and sin2 2�13 = 0.04

– Typeset by FoilTEX – 2

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �13 cos �23 sin 2�12
sin(aL)
(aL) �21
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Pµ⇥e � |
⇥

Patme�i(�31±�) +
⇥

Psol |2

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E and ± =

sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 12

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!
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–
14

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!
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Vacu
um LBL:

Pµ⇥e � |
⇥

Patme�i(�32±�) +
⇥

Psol |2

0 when �31 = ⇥/2

0 in vacuum

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E

and ± = sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 17

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

�2
�

PatmPsol sin �32 sin � (10)

�ij = �m2
ijL/4E

cos(�32 ± �) = cos �32 cos � � sin �32 sin � (11)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17

P (⇤µ ⌅ ⇤e) = | U⇥
µ1e

�im2
1L/2EUe1 + U⇥

µ2e
�im2

2L/2EUe2 + U⇥
µ3e

�im2
3L/2EUe3 |2

= |2U⇥
µ3Ue3 sin �31e

�i�32 + 2U⇥
µ2Ue2 sin �21|2

= |
�

Patme�i(�32+�) +
�

Psol|2

where
⌃

Patm = sin ⇥23 sin 2⇥13 sin �31
and

⌃
Psol ⇤ cos ⇥23 sin 2⇥12 sin �21

Pµ⇤e ⇤ Patm + 2
�

PatmPsol cos(�32 ± �) + Psol (6)

Pµ⇤e ⇤ Patm + 2
�

PatmPsol cos�32 cos � + Psol (7)

⇥2
�

PatmPsol sin �32 sin � (8)

P = Psol

– Typeset by FoilTEX – 16

2
�

PatmPsol cos(�32 ± �) = 2
�

PatmPsol cos�32 cos � (9)

⇥2
�

PatmPsol sin �32 sin � (10)

CPC only CPV

P = Psol

– Typeset by FoilTEX – 17
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hep-ph/0002108

Stephen Parke, Fermilab                                           TMEX @ U of Warsaw                                                                09/05/2014                      
17

In Matter:
�

Patm =sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

�
Psol = cos �23 sin 2�12

sin(aL)
(aL) �21

– Typeset by FoilTEX – 3

± = sign(�m2
31), a = GF Ne/

⇧
2 ⇥ (4000 km)�1

P (⇥̄, �m2
31, �) = P (⇥, ��m2

31, �+⇤)

dashes ⌅ solid and solid ⌅ dashes

a ⇤ �a and � ⇤ ��

Anti-Nu: Normal Inverted
dashes � = ⇤/2
solid � = 3⇤/2

– Typeset by FoilTEX – 4

Pµ⇥e � |
⇥

Patme�i(�32±�) +
⇥

Psol |2

0 when �31 = ⇥/2

0 in vacuum

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E

and ± = sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 17

P (�µ ⇥ �e) � |
�

Patme�i(�32+�) +
�

Psol|2

In Vacuum:
�

Patm =sin �23 sin 2�13 sin�31

�
Psol =cos �23 sin 2�12 sin�21

� = �m2L
4h̄cE = 1.27�m2L

4E

For L = 1200 km
and sin2 2�13 = 0.04

– Typeset by FoilTEX – 2

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �13 cos �23 sin 2�12
sin(aL)
(aL) �21
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Pµ⇥e � |
⇥

Patme�i(�31±�) +
⇥

Psol |2

a = GF Ne/
⇥

2 = (4000 km)�1, �ij = |�m2
ij|L/4E and ± =

sign(�m2
31)

⇥
⇥

2�13
�crit

� (aL)�13

⇤
⌅

� �31 cot �31

– Typeset by FoilTEX – 12

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

where
�

Patm = sin �23 sin 2�13 sin�31

and
�

Psol = cos �23 sin 2�12 sin�21

where
�

Patm = sin �23 sin 2�13
sin(�31�aL)
(�31�aL) �31

and
�

Psol = cos �23 sin 2�12
sin(aL)
(aL) �21

– Typeset by FoilTEX – 16

⇥µ ⇥ ⇥e

Pµ⌅e =
���

⇥
j U⇥µj Ueje

�im2
jL/2E

���
2

Elimate U⇥µ1Ue1

using unitarity of U.
Use �ij = �m2

ijL/4E = 1.27�m2
ijL/E

Pµ⌅e =
�� 2U⇥µ3Ue3 sin�31e�i�32 + 2U⇥µ2Ue2 sin�21

��2

Square of Atmospheric+Solar amplitude:

U⇥µ3Ue3 = s23s13c13e⇤i� for ⇥ and ⇥̄:

Approx. U⇥µ2Ue2 � c23c13s12c12 +O(s13):

Pµ⌅e �
�� 2s23s13c13 sin�31e�i(�32±�) + 2c23c13s12c12 sin�21

��2

Interference term di�erent for ⇥ and ⇥̄: CP violation !!!

sparkE – 17 Nov 2003 10

Fe
rm

io
n

M
as

se
s:

el
ec

tr
on

po
si
tr

on

Le
ft

C
hi

ra
l

e L
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ē L

U
(1

)

C
P
T

:
e L
⇥
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ē L

U
(1

)

C
P
T

:
e L
⇥
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T2K/HK

• Need |Uµ1| and |Uµ2| separately: L/E=15,000 km/GeV

• ⌫µ disappearance experiment to a detector in geo-synchronous orbit.

L = 1300 km, sin2 ✓13 = 0.023 and sin2 ✓23 = 0.5

⌫µ $ ⌫̄µ

NH $ IH

�(N ! l+��) 6= �(N ! l��+)

Inverted Hierarchy
Normal Hierarchy

sin2 2✓µµ ⌘ 4|Uµ3|2(1� |Uµ3|2) = 0.96 � 1.00

– Typeset by FoilTEX – 1

Normal Ordering — Inverted Ordering

P (⌫µ ! ⌫e) 6= P (⌫̄µ ! ⌫̄e)
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fit results

I Constrain ✓13 to reactor average
sin2 2✓13 = 0.085 ± 0.005

I Add �m

2
32/✓23 results from ⌫µ

analysis

I Not a full joint fit. No syst./osc.
param correlations. No FC.

I Prefer NH, not statistically
significant ��2 = 0.46

I Exclude region in IH, lower
octant, around �CP = ⇡/2 at 3�

CPδ

2
3

θ
2

si
n

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 NH

CPδ

23θ2
sin

0

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 IH

I Antineutrino data will help to resolve degeneracies
I > 2⇥ di↵erence in ⌫̄e rate between solutions

C. Backhouse (Caltech) NOvA 42 / 43

⌫
e

fit results

I Constrain ✓13 to reactor average
sin2 2✓13 = 0.085 ± 0.005

I Add �m

2
32/✓23 results from ⌫µ

analysis

I Not a full joint fit. No syst./osc.
param correlations. No FC.

I Prefer NH, not statistically
significant ��2 = 0.46

I Exclude region in IH, lower
octant, around �CP = ⇡/2 at 3�

CPδ

2
3

θ
2

si
n

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 NH

CPδ

23θ2
sin

0

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 IH

I Antineutrino data will help to resolve degeneracies
I > 2⇥ di↵erence in ⌫̄e rate between solutions

C. Backhouse (Caltech) NOvA 42 / 43

⌫
e

fit results

I Constrain ✓13 to reactor average
sin2 2✓13 = 0.085 ± 0.005

I Add �m

2
32/✓23 results from ⌫µ

analysis

I Not a full joint fit. No syst./osc.
param correlations. No FC.

I Prefer NH, not statistically
significant ��2 = 0.46

I Exclude region in IH, lower
octant, around �CP = ⇡/2 at 3�

CPδ

2
3

θ
2

si
n

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 NH

CPδ

23θ2
sin

0

0.2

0.4

0.6

0.8

1

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 IH

I Antineutrino data will help to resolve degeneracies
I > 2⇥ di↵erence in ⌫̄e rate between solutions

C. Backhouse (Caltech) NOvA 42 / 43



NOvA

30
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

Contours 

¨  Fit for hierarchy, "CP, sin2θ23 

¤  Constrain Δm2 and sin2θ23 with NOvA 
disappearance results 

¤  Not a full joint fit, systematics and other 
oscillation parameters not correlated  

¨  Global best fit Normal Hierarchy 
 

 

¤  best fit IH-NH,  Δ!2=0.47 

¤  both octants and hierarchies allowed at 1σ 
¤  3σ exclusion in IH, lower octant around 
"CP=π/2   

 

P. Vahle, Neutrino 2016 27 

Antineutrino data will help resolve degeneracies, 
particularly for non-maximal mixing 

Planned for Spring 2017 
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Electron Neutrino FD Data 
P. Vahle, Neutrino 2016 57 

Contours 
P. Vahle, Neutrino 2016 46 
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fit results
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• Is there CP Violation 

• Mass Ordering 

• Dominant Flavor Content of ν_3
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Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass

eigenstates, ⌫
1

, ⌫
2

, ⌫
3

, are related as follows:
0

B

B

@

⌫e

⌫µ

⌫⌧

1

C

C

A

=

0

B

B

@

Ue1 Ue2 Ue3

Uµ1

Uµ2

Uµ3

U⌧1

U⌧2

U⌧3

1

C

C

A

0

B

B

@

⌫
1

⌫
2

⌫
3

1

C

C

A

(2)

where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the

⌫e component of ⌫
1

> ⌫e component of ⌫
2

> ⌫e component of ⌫
3

.

2.1. Masses

With this choice of labeling of the neutrino mass eigenstates, the solar oscillations are

governed by �m2

21

as both ⌫
1

and ⌫
2

have a significant ⌫e component. Whereas the

atmospheric oscillations are governed by �m2

31

⇡ �m2

32

as ⌫
3

has a small ⌫e component
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.

Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings
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The Three Important Questions:

• Is there CP Violation 

• Mass Ordering 

• Dominant Flavor Content of ν_3
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where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the
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e↵ects in the interior of the sun by the SNO experiment [2]. Their measurement of the

charge current to neutral current ratio of less than one half, for the 8B high energy solar
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(NH), whereas if m2
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Figure 1. What is known about the square of the neutrino masses for the two
atmospheric mass hierarchies.

Neutrinos: Theory and Phenomenology: 3

2. Neutrino Masses and Mixings

The three known neutrino flavor states, ⌫e, ⌫µ, ⌫⌧ , and the three neutrino mass

eigenstates, ⌫
1

, ⌫
2

, ⌫
3

, are related as follows:
0

B

B

@

⌫e

⌫µ

⌫⌧

1

C

C

A

=

0

B

B

@

Ue1 Ue2 Ue3

Uµ1

Uµ2

Uµ3

U⌧1

U⌧2

U⌧3

1

C

C

A

0

B

B

@

⌫
1

⌫
2

⌫
3

1

C

C

A

(2)

where the U matrix is unitary and referred to as the PMNS matrix. The mass eigenstates

are labelled such that |Ue1|2 > |Ue2|2 > |Ue3|2,which implies that, by definition, the
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𝜃13>0   ⇒  LBL 𝜈𝜇→𝜈e 
Makes feasible long-baseline 
measurements of… 
  

neutrino mass hierarchy 
via matter effects that modify P(𝜈𝜇→𝜈e) 

Implications for: 0𝜈𝛽𝛽 data and Majorana nature of 𝜈; approach to m𝛽; 
astrophysics; theoretical frameworks for mass generation, quark/lepton unification; 
Is the lightest charged lepton associated with the heaviest light neutrino?  

CP violation 
via dependence of P(𝜈𝜇→𝜈e) on CP phase 𝛿.  Amplified by 𝜈/𝜈 ̅  comparisons. 

baryon asymmetry through see-saw/leptogenesis; fundamental question 
in the Standard Model (is CP respected by leptons?) 

𝜈  flavor mixing 
via leading-order factor sin2(𝜃23)  

Is 𝜈3 more strongly coupled to 𝜇 or 𝜏 flavor?; 
frameworks for mass generation, unification 
 
  

3 

Ryan Patterson, Caltech 9 

in
cr

ea
si

ng
 m

as
s 

𝜈e 

𝜈𝜇 
𝜈𝜏 

𝜈e 

𝜈𝜇 𝜈𝜏 

𝜈3 
? 

Pheno, May 11, 2016 

Oscillation Parameters 

0.2 0.25 0.3 0.35 0.4

sin
2

θ
12

0

5

10

15
∆

χ
2

6.5 7 7.5 8 8.5

∆m
2

21
 [10

-5
 eV

2
]

0.3 0.4 0.5 0.6 0.7

sin
2

θ
23

0

5

10

15

∆
χ

2

-2.6 -2.4 -2.2

∆m
2

32
   [10

-3
 eV

2
]   ∆m

2

31

2.2 2.4 2.6 2.8

0.015 0.02 0.025 0.03

sin
2

θ
13

0

5

10

15

∆
χ

2

0 90 180 270 360

δ
CP

NO, IO (Huber)

NO, IO (Free + RSBL)

NuFIT 2.0 (2014)

•  NuFit 2014 
•  http://www.nu-fit.org/ 
•  Includes results through NOW 2014 
•  θ13, θ12, Δm2

21, |Δm2
32| each known to a 

few percent 
•  θ23 known to ~6% (octant unknown) 
•  Some preference for δCP < 0 

•  Further constraints expected from 
existing and planned experiments: 
•  Hints from T2K and NOvA suggest δCP < 0  
•  External constraints on mixing angles 

improve early sensitivity 
•  Measurements or hints of MH or δCP value 

could influence run plans 
•  Ultimate DUNE goals include precise 

measurements of θ13, θ23, Δm2
32, and 

δCP for unitarity and sum rule tests 

ETW: DUNE Oscillation Physics, Neutrino -- Latin America Workshop 3 

/ ⇢L sin2 ✓23

✓23 octant ?

⌫µ

⌫µ, ⌫e, ⌫⌧

Ar from ⇠ 10 km3 of air

• Need |Uµ1| and |Uµ2| separately: L/E=15,000 km/GeV

• ⌫µ disappearance experiment to a detector in geo-synchronous orbit.

L = 1300 km, sin2 ✓13 = 0.023 and sin2 ✓23 = 0.5

⌫µ $ ⌫̄µ

NH $ IH
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Dirac or Majorana
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Dirac v Majorana
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• Dirac OR Majorana



35
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

Dirac v Majorana

Dirac:

helicity l� l+

L 1 0

R (m�
E )2 0

R 0 1

L 0 (m�
E )2

– Typeset by FoilTEX – 3

Dirac v Majorana

Dirac:

helicity l� l+

L 1 0

R (m�
E )2 0

R 0 1

L 0 (m�
E )2

helicity l� l+

L 1 (m�
E )2

R (m�
E )2 1

– Typeset by FoilTEX – 3

�
L = 1

�̄
L = �1

– Typeset by FoilTEX – 4

�
L = 1

�̄
L = �1

– Typeset by FoilTEX – 4

�
L = 1

�̄
L = �1

� = �̄

(m�
E

)2 = ( 1eV
1GeV

)2 = 10�18

– Typeset by FoilTEX – 4

4 comps Dirac v Majorana

Dirac:

helicity l� l+

L 1 0

R (m�
E )2 0

R 0 1

L 0 (m�
E )2

helicity l� l+

L 1 (m�
E )2

R (m�
E )2 1

– Typeset by FoilTEX – 3

Dirac v Majorana

Dirac:

helicity l� l+

L 1 0

R (m�
E )2 0

R 0 1

L 0 (m�
E )2

helicity l� l+

L 1 (m�
E )2

R (m�
E )2 1

– Typeset by FoilTEX – 3

�
L = 1

�̄
L = �1

– Typeset by FoilTEX – 4

�
L = 1

�̄
L = �1

– Typeset by FoilTEX – 4

�
L = 1

�̄
L = �1

� = �̄

– Typeset by FoilTEX – 4

2 comps

• Dirac OR Majorana
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Nuclear ProcessNucl Nucl�
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SM vertex
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Mixing matrix

We anticipate that 0νββ is dominated by "
a diagram with light neutrino exchange "

and Standard Model vertices:

�The Standard Mechanism�

Majorana or Dirac:
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If the dominant mechanism is —!

Then —

νiνi

W– W–

e– e–

Nuclear ProcessNucl Nucl�

  Uei   Uei

SM vertex

∑
i

Mixing matrix

Mass (νi)

Amp[0νββ] ∝ )∑ miUei
2)≡ mββ

The mass is the source of "
the lepton number violation.!0νββ Status 

Gerda 

• This plot assumes 
gA=1.27 

• What’s going on about 
gA quenching? 

• Which strategies to 
have this parameter 
fixed? 

• … IH not favored 



37
Stephen Parke, Fermilab                                      Neutrino University / Fermilab                                               7/21/2016                      

• Beyond Nu Standard Model



More then 3 Neutrinos:
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 Non-unitary mixing 

Giunti 

More than 3 neutrinos? 

Results#valid#for#Dirac#or#Majorana##
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 Bounds on non-unitary mixing Giunti For#Dirac##
or#Majorana##

 ! If sterile masses between eV and keV : 

 ! If steriles heavier than electroweak scale: 
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No positive results on steriles 
Daya Bay, Minos and Bugey 3 combined 
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…except the deficit of absolute reactor neutrino fluxes 

Daya Bay 

which compares data with models that failed to predict the 5 GeV bump 
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Fraction of 5 MeV 
excess: 2.46 ± 0.27 

(%)
Significance of the 5 
MeV excess:  ~9σ

• Compare the prompt energy 
spectrum to the Huber+Mueller
model

• 3σ discrepancy at the 
full energy range

• χ2/NDF = 48.1/24

• 4.4σ local significance 
at 4~6MeV

• χ2/NDF = 37.4/8

16

Absolute νe spectrum 621 days data

2.6σ and 4.0σ in P.R.L. 116, 
061801, respectively

• Compare the prompt energy 
spectrum to the Huber+Mueller
model

• 3σ discrepancy at the 
full energy range

• χ2/NDF = 48.1/24

• 4.4σ local significance 
at 4~6MeV

• χ2/NDF = 37.4/8

16

Absolute νe spectrum 621 days data

2.6σ and 4.0σ in P.R.L. 116, 
061801, respectively

Daya Bay RENO
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Huber 

Yu 

Or let us declare the reactor anomaly 
                    hibernating...  
        as possible hint of steriles 
(exptal. program important to ensure 
        < % level in reactor physics) 
Do the fits with 5% theoret. error !

while the “deficit” in reactor flux was ~3%!

          At Eν ~ # MeV :  nuclear physics theoretical uncertitude ~ 5% 

* Intense theoretical analysis of 5MeV bump discovered by RENO: inconclusive  
* Plus new expt. input, e.g. Daya Bay: 

Theoret. 
uncertainty 
rather ~5%!
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• Neutrino Astronomy



Neutrino Astronomy:
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IceCube initiated ν-astronomy 

Antares: 
Observed 19 
Expected 13.5 +/-2, ~ 3 IC 
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Important Questions:

• Dominant Flavor Content of v_3 

• Mass Ordering 

• Is there CP Violation 

• Dirac OR Majorana 

• Beyond Nu Standard Model

46


