A no-lose theorem for discovering the new physics of $(g - 2)_{\mu}$

Fermilab Physics Colloquium 14 April 2021

David Curtin University of Toronto

UNIVERSITY OF TORONTO

based on 2006.16277, 2101.10334 with **Rodolfo Capdevilla, Yonatan Kahn, Gordan Krnjaic**

Exciting!

7 April 2021:

Upshot:

BNL + Fermilab say

 $\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$

which is disagreeing with SM prediction at 4.2 σ level.

If real:

BSM physics talks to the muon!

→ Muon physics program from ~ **GeV - 10 TeV will find new physics!**

2006.16277, 2101.10334

Outline

1.
$$(g-2)_{\mu}$$
 Overview

- 2. BSM physics in $(g 2)_{\mu}$
- 3. Model Exhaustive Approach
- 4. Experimental Target for discovering BSM Physics
- 5. Low Energy Experiments
- 6. Muon Colliders
- 7. A no-lose theorem for discovering the new physics of $(g 2)_{\mu}$

$(g-2)_{\mu}$ Overview

Current theoretical state-of-the-art:

 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP, LO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NNLO}} + a_{\mu}^{\text{HLbL}} + a_{\mu}^{\text{HLbL, NLO}}$ $= 116\,591\,810(43) \times 10^{-11}\,.$

2006.04822 g-2 Theory Initiative whitepaper

 $\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{\rm SM}$

E821 @ BNL (2004): $a_{\mu}^{\exp} = 116\,592\,089(63) \times 10^{-11}$ $\Delta a_{\mu} = (2.79 \pm 0.76) \times 10^{-9}$ 3.7σ

g-2 @ Fermilab (2021) $a_{\mu}^{\exp} = 116\,592\,040\,(54) \times 10^{-11}$

$$\Delta a_{\mu} = (2.30 \pm 0.69) \times 10^{-9}$$

 3.3σ

Combined: $\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$ (4.2 σ)

Future progress: experiment

Fermilab: uncertainty reduced by factor of 2 next summer, eventually by factor of 4

J-PARC: totally independent measurement with different method & similar precision, plans to take data 2024-26

slide by K. Ishida, 19 Sep 2019

Future progress: Theory

Future progress: Theory

Future progress: HVP

Most "controversial" part of SM prediction: Hadronic Vacuum Polarization (HVP)

A conservative data-driven approach using R-ratio measurement, and electroweak precision, favour anomaly. 2006.04822 g-2 Theory Initiative whitepaper

2002.12347

2003.04886

QCD Lattice calculations not yet converged, but BMWc'20 claims SM consistency.

Future progress: HVP

Current status: if BMW is correct, then Electroweak precision fits would be made only slightly worse (2.4 σ) while reducing tension with (g-2) data (~1.5 σ), but introducing additional > 2.xx σ tension with < GeV hadron data. **Demonstrates non-gaussianity of theory errors in** a_{μ}^{SM} !

New BMW lattice uncertainty is systematics dominated (continuum limit extrapolation). Vital for other lattice calculations to corroborate and check consistency. **Hopefully lattice updates within ~ a year.**

New experimental data would help as well, e.g. Belle-2 (soon?) or MUonE experiment at CERN (space-like HVP from *µe* scattering by ~2025) to **resolve BaBar-KLOE tension?**

CERN-SPSC-2019-026

If the (g-2)_{μ} anomaly is real....

... what does this mean for BSM physics?

BSM Physics in $(g - 2)_{\mu}$

Very simple:

Could be almost anything, as long as it couples to muons

 μ_L

Could be connected to dark matter, SUSY, axions, any other new physics motivation...

Below a GeV or above a TeV

Semi-visibly decaying dark photon

1902.05075 Mohlabeng

New electroweak scalars and fermions, including dark matter

1804.00009 Calibbi, Ziegler, Zupan

This is such a general new physics contribution that it could be embedded within almost any BSM theory.

Ask a simpler question...

What would it take to *guarantee* we discover this new physics, *regardless* of the complete theory?

Model Exhaustive Approach

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

 $\Delta a_{\mu} \gg \Delta a_{\mu}^{obs}$ auge Invariance

One Loop + Unitarity

$$\propto \left(\frac{g_{\psi}}{M_{\psi}}\right)^n$$

 $\Delta a_{\mu}^{S} \neq I a_{\mu}^{Obs}$ auge Invariance

We would love to discover this new physics DIRECTLY. Where the new {particles at??

One Loop + Unitarity

$$\propto \left(\frac{g_\psi}{M_\psi}\right)^n$$

General BSM analysis of (12)

Can we do this in full generality?

Model-Exhaustive Analysis

Assume new physics obeys perturbative unitarity.*

Assume new $(g - 2)_{\mu}$ contribution arises at one-loop.**

Then consider:

- all possible $SU(2)_L \otimes U(1)_V$ gauge representations for the new particles
- all possible Lorentz group representations*** for the new particles
- arbitrary multiplicity N_{RSM} of new particles
- all possible masses & couplings that generate Δa_{μ}^{exp}

Then ask: what are some irreducible experimental signatures?

*pushing couplings right up to unitarity limit should capture parametrics of non-perturbative solutions, they still have to obey qauge invariance.

** higher loop contributions require lower BSM mass scales, should be discoverable with the experiments we consider

*** Spin 0, 1/2 and 1. Higher spin g-2 contributions highly suppressed, 2104.03231.

Model-Exhaustive Analysis

Assume new physics obeys perturbative unitarity.*

Assume new $(g - 2)_{\mu}$ contribution arises at one-loop.**

Then consider:

- all possible Lorentz group representations*** for the new particles
- arbitrary multiplicity N_{RSM} of new particles
- all possible masses & couplings that generate Δa_{μ}^{exp}

Then ask: what are some irreducible experimental signatures?

*pushing couplings right up to unitarity limit should capture parametrics of non-perturbative solutions, they still have to obey qauge invariance.

** higher loop contributions require lower BSM mass scales, should be discoverable with the experiments we consider

*** Spin 0, 1/2 and 1. Higher spin g-2 contributions highly suppressed, 2104.03231.

- all possible $SU(2)_L \otimes U(1)_V$ gauge representations for the new particles

Divide BSM Theory Space into two classes

Singlet Scenarios:

new physics in $(g - 2)_{\mu}$ is SM singlets only

simple theory space, more complicated phenomenology

Electroweak Scenarios:

complicated theory space, simple phenomenology (new charged particles!)

everything else: i.e. new particles with non-trivial EW representations in loop

Singlets in muon annihilation and scattering

Singlet Scenarios

New particles in $(g - 2)_{\mu}$ loops: only SM singlets

Signature: direct production of SM singlet states

Discovery: requires inclusive search for singlet, with $g \propto m$

Space of BSM Theories that generate $\Delta a_{\mu} = a_{\mu}^{obs}$

Electroweak Scenarios

Boundary of perturbative unitarity

New particles in $(g - 2)_{\mu}$ loops: *not* only SM singlets

Signature: direct production of *new charged states*

Discovery: discoverable at lepton collider for "all" $m \leq \sqrt{s/2}$

2012.02769 Buttazzo, Paradisi 2012.03928 Yin, Yamaguchi

Model Exhaustive Approach

Singlet Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Vector

 $\mathcal{L}_{\rm V} \supset g_V V_\alpha (\mu_L^{\dagger} \bar{\sigma}^{\alpha} \mu_L + \mu^c^{\dagger} \bar{\sigma}^{\alpha} \mu^c) + \frac{m_V^2}{2} V_\alpha V^\alpha$ $\mathcal{L}_{\rm S} \supset -\left(g_S S \mu_L \mu^c + \text{h.c.}\right) - \frac{1}{2} m_S^2 S^2$ $|Sh| | h_h$ \mathcal{U} \mathcal{U} \mathcal{U} $i^v F^c$ $\mu^{c}\!\mu^{c}$ $\mu \mu_L$ $\mu^{c}\!\mu^{c}$ $\mu^{c}\mu^{a}L$ $\mu^c \mu^c$ μ_L $\Delta a^{S}_{\mu}/\Lambda$ Singlet S $e^{\frac{2}{S}}_{et}\left(\frac{700 \text{ GeV}}{\text{S}}\right)$

Scalar

 $(g-2)_{\mu}$ contributions from RHN-type singlet fermion is suppressed by m_{ν} and too small. Interesting edge case: $aF_{\mu\nu}\tilde{F}_{D}^{\mu\nu}$ axion-dark-photon contribution (2104.03276), but is also discoverable.

Singlet Scenarios

Requires singlet below 3 TeV

couples to muon $g_S \propto m_S$

Model Exhaustive Approach

Electroweak Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Electroweak Scenarios

Singlet V

Singlet S In general a complicated model space: all non-singlet one-loop possibilities!

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

$$M_{\rm BSM,charged}^{\rm max} \equiv ma$$

BSM theory space

$$\Delta a_{\mu} = \Delta a_{\mu}^{\text{ol}}$$

 \mathbf{bs}

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

Electroweak Scenarios $(g - 2)_{\mu}$ loops: inglets production of states res inclusive , with $g \propto m$ **Electroweak Scenarios** New particles in $(g - 2)_{\mu}$ loop *not* only SM singlets Signature: direct production *new charged states* Discovery: discoverable at lep collider for "all" $m \leq \sqrt{s/2}$

Space of BSM Theorie that generate $\Delta a_{\mu} = a_{\mu}^{ol}$

> $M_{\rm BSM,charged}^{\rm max} \equiv \max$ ${\rm Max}_{\rm BSM,charged} \equiv \max$ ${\rm BSM \ theory \ space}$ ${\rm Some \ all \ ewsplain \ (g-2)...}$ ${\rm explain \ (g-2)...}$

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

Electroweak Scenarios Electroweak Scenarios New particles in $(g - 2)_{\mu}$ loops not only SM singlets Signature: frect production of *new charged states* Discovery: discoverable at lepte collider for "fill" $m \le \sqrt{s/2}$

Space of BSM Theories that generate $\Delta a_{\mu} = a_{\mu}^{\text{ol}}$

> $M_{\rm BSM,charged}^{\rm max} \equiv \max$ ${\rm Max}_{\rm BSM,charged} \equiv \max$ ${\rm BSM \ theory \ space}$ ${\rm Some \ all \ ewsplain \ (g-2)...}$ ${\rm explain \ (g-2)...}$

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

 $M_{\rm BSM,charged}^{\rm max} \equiv \max$ $M_{\rm BSM,charged}^{\rm max} \equiv \max$ ${\rm BSM \ theory \ sp}$ $\Delta a_{\mu} = \Delta a_{\mu}^{\rm obs}$ $\Delta a_{\mu} = \Delta a_{\mu}^{\rm obs}$

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

 $M_{\rm BSM,charged}^{\rm max} \equiv \max$ $M_{\rm BSM,charged}^{\rm max} \equiv \max$ ${\rm BSM \ theory \ space}$ $\Delta a_{\mu} = \Delta a_{\mu}^{\rm obs}$ $\Delta a_{\mu} = \Delta a_{\mu}^{\rm obs}$

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the **lightest** BSM charged state?

 $M_{\rm BSM,charged}^{\rm max} \equiv \max$ ${\rm Max}_{\rm BSM,charged} \equiv \max$ ${\rm BSM \ theory \ space}$ ${\rm Some \ all \ EW \ Scenarios,}$ ${\rm for \ all \ possible \ masses}$ ${\rm for \ all \ possible \ masses}$ ${\rm for \ all \ possible \ masses}$ ${\rm for \ all \ couplings \ that}$ ${\rm explain \ (9^{-2})...}$

New Charged Particles

Those are the "easiest to discover":

- guaranteed Drell-Yan Production
- have to leave some visible signal in your detector

Main question: how much collider energy \sqrt{s} do I need to produce at least the lightest BSM charged state?

 $M_{\rm BSM,charged}^{\rm max}$ max \equiv Consider all EW Scenarios, for all possible masses BSM theory space $\Delta a_{\mu} = \Delta a_{\mu}^{\text{obs}}$ and couplings that explain (9-2)...

... what is the HEAVIEST that this lowestlying new charged state could be? $\left\{ \min_{i \in \text{BSM spectrum}} \left(m_{\text{charged}}^{(i)} \right) \right\}$

... for each such scenario, find the mass of the LIGHTEST BSM charged state...

Electroweak Simplified Models

Model-exhaustive analyses are not a new idea, but this theory space maximization to find the largest possible BSM charged mass is non-trivial.

heaviest possible BSM charged masses while explaining (g-2)!

Engineering specs:

- need BSM (i.e. large) chiral flip insertion
- need BSM (i.e. large) Higgs vev insertion
- **need three new fields** (boson, fermion, and two of something)
- no new sources of EWSB (those have their own lower-mass signatures)

- We will define some simplified models which are engineered to produce the
- Maximizing over the space of those simplified models will give us our answer!

Electrow Singlet V Simplifi Singlet V S Jdels

Consider all possible choices of $SU(2)_L \otimes U(1)_V$ representations.

Arbitrary number of BSM degrees of freedom (copies) N_{RSM} .

smaller $\Delta a_{\mu} \rightarrow$ lower masses for new charged states \rightarrow do not affect theory space maximization

 $\begin{array}{c|c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$

We have checked that other simplified models with fewer BSM fields, or involving Majorana fermions, new vectors, etc give

Turn the crank: all possible EW representations

Model	R	R_A	R_B
	1_{-1}	$2_{1/2}$	10
	$ 1_{-2}$	$2_{3/2}$	1_1
	1_0	$2_{-1/2}$	1_{-1}
	1_1	$2_{-3/2}$	1_{-2}
	$2_{-1/2}$	30	$2_{-1/2}$
SSF	$2_{-3/2}$	3_1	$2_{1/2}$
	$2_{1/2}$	3_{-1}	$2_{-3/2}$
	$2_{-1/2}$	10	$2_{-1/2}$
	$2_{-3/2}$	1_1	$2_{1/2}$
	$2_{1/2}$	1_1	$2_{-3/2}$
	3_{-1}	$2_{1/2}$	30
	3_0	$2_{-1/2}$	3_{-1}

Consider SU(2) representations up to triplets and electric charges $|Q| \leq 2$ Arbitrary N_{BSM} but ≤ 10 motivated by... reasonableness... All of the above is also motivated by avoiding Electroweak Landau Poles.

Model	R	R_A	R_B
	1_{-1}	$2_{1/2}$	10
	1_{-2}	$2_{3/2}$	1_{1}
	1_0	$2_{-1/2}$	1_{-1}
	11	$2_{-3/2}$	1_{-2}
	$2_{-1/2}$	3_0	$2_{-1/2}$
FFS	$2_{-3/2}$	3_1	$2_{1/2}$
	$2_{1/2}$	3_{-1}	$2_{-3/2}$
	$2_{-1/2}$	1_0	$2_{-1/2}$
	$2_{-3/2}$	1_1	$2_{1/2}$
	$2_{1/2}$	1_{-1}	$2_{-3/2}$
	3_{-1}	$2_{1/2}$	30
	3_0	$2_{-1/2}$	3_{-1}

What's the result?

$$M_{\rm BSM,charged}^{\rm max} \equiv \max$$

BSM theory space

$$\Delta a_{\mu} = \Delta a_{\mu}^{\text{ol}}$$

 $\mathbf{b}\mathbf{b}\mathbf{s}$

Imposing Unitarity Only

Two representative models:

Consistent with parametric expectation: $\Delta a_{\mu} \propto \frac{m_{\mu}g_{\text{BSM}}v}{M_{\text{BSM}}^2}$, $M_{\text{BSM}} \simeq 20 \text{ TeV}$

All the models:

				Highest possible mass (TeV)								
				of lightest charged BSM state								
				Unita	arity	Unitar	rity +	Unita	rity +	Unitarity +		
				only		MFV N		Natur	Naturalness		Naturalness +	
										M	MFV	
				$N_{\rm BSM}$:		$N_{\rm BS}$	ы.	M: $N_{\rm B}$		N_1	I _{BSM} :	
Model	R	R_A	R_B	1	10	1	10	1	10	1	10	
	1_1	$2_{1/2}$	1_0	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	1_{-2}	$2_{3/2}$	1_1	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	1_{0}	$2_{-1/2}$	1_1	46.2	176	9.41	34.1	15.6	17.5	5.93	8.56	
	1_1	$2_{-3/2}$	1_{-2}	81.8	302	17.1	63.7	19.3	19.3	8.38	12.1	
	$2_{-1/2}$	3_0	$2_{-1/2}$	21.4	107	4.2	15.5	7.47	8.99	3.23	5.0	
SSF	$2_{-3/2}$	3_1	$2_{1/2}$	83.7	308	16.6	60.7	13.4	13.4	7.06	10.6	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	95.5	356	18.3	67.8	15.6	15.6	7.75	11.3	
	$2_{-1/2}$	1_0	$2_{-1/2}$	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	$2_{-3/2}$	1_1	$2_{1/2}$	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	44.8	155	8.8	32.3	10.9	10.9	5.64	8.56	
	3_1	$2_{1/2}$	30	95.4	359	19.4	73	20.1	30	7.75	11.5	
	3_0	$2_{-1/2}$	3_{-1}	39.4	144	7.82	28.6	10.8	15.1	4.14	6.08	
	1_1	$2_{1/2}$	10	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	1_{-2}	$2_{3/2}$	1_1	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	1_0	$2_{-1/2}$	1_{-1}	59.1	187	13.2	41.8	12.4	17.2	4.02	6.28	
	11	$2_{-3/2}$	1_{-2}	73.2	231	17.4	55	13.9	19.7	5.04	7.25	
	$2_{-1/2}$	3_0	$2_{-1/2}$	40	126	9.38	29.7	8.0	11.5	2.88	4.34	
FFS	$2_{-3/2}$	3_1	$2_{1/2}$	56.3	178	13.6	42.9	11.8	16.2	4.26	6.1	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	82.3	260	19.2	60.6	13.6	19	4.93	7.0	
	$2_{-1/2}$	1_0	$2_{-1/2}$	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	$2_{-3/2}$	1_1	$2_{1/2}$	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	46.2	146	11.2	35.4	9.83	13.8	3.49	5.18	
	3_1	$2_{1/2}$	30	71	225	17	53.6	13.1	18.1	4.04	6.97	
	3_0	$2_{-1/2}$	3_{-1}	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2.73	4.03				
$M_{\rm BSM,ch}^{\rm max}$	arged (ma	ax in eac	h column)	95.5	359	19.4	73	20.1	30	8.41	12.3	

 $M_{\rm BSM,charged}^{\rm max,unitarity} \approx (100 \,{\rm TeV}) \cdot N_{\rm BSM}^{1/2}$

From unitarity alone, $(g-2)_{\mu}$ could be explained by ~ 100 TeV charged states

But let's put our (model-agnostic) theorist hat back on. What would this *mean* for nature/physics/the universe?

$_{\rm V}$ The Hiera $_{\rm Singlet\ S}$ Problem Made Real

If $(g - 2)_{\mu}$ is explained by such crazy heavy physics, then there **have to be** calculable, finite but **large** Higgs mass corrections.

 $\Delta m_H^2 \sim \frac{1}{4\pi} g_{SM}^2 m_{BSM}^2 \gg (125 \text{ GeV})^2$

V ... but wa $_{\text{Singlet S}}$ re's more: a μ -archy Problem!

new fermions couple to muon and share its chiral symmetry

 $e^{c}e^{c}$

B

Calculable, finite but large muon Yukawa correction. Muon mass no longer technically natural!

Discovering these super-high-scale BSM solutions to $(g - 2)_{\mu}$ would *prove* that the universe is *calculably* fine-tuned!

So what would happen if the universe is *not* super-fine-tuned?

Impose conservative naturalness constraint

Let's "allow" both the Higgs and muon mass to be 1% tuned.

This stops couplings and masses from being super-large and lowers the charged mass upper bound.

 $M_{\rm BSM,charged}^{\rm max,naturalness} \approx (20 \,{\rm TeV}) \cdot N_{\rm BSM}^{1/6}$

That's more like it!

				Highest possible mass (TeV)								
					(of light	est cha	rged B	SM sta	ate		
				Unita	arity	Unitar	Unitarity + Ur		Unitarity +		Unitarity +	
				only		MFV		Naturalness		Naturalness $+$		
										MFV		
				$N_{\rm BSM}$:		$N_{\rm BS}$	зм:	$N_{\rm BSM}$:		$N_{\rm BSM}$:		
Model	R	R_A	R_B	1	10	1	10	1	10	1	10	
	1_1	$2_{1/2}$	1_0	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	1_{-2}	$2_{3/2}$	1_1	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	1_{0}	$2_{-1/2}$	1_1	46.2	176	9.41	34.1	15.6	17.5	5.93	8.56	
	1_{1}	$2_{-3/2}$	1_{-2}	81.8	302	17.1	63.7	19.3	19.3	8.38	12.1	
	$2_{-1/2}$	30	$2_{-1/2}$	21.4	107	4.2	15.5	7.47	8.99	3.23	5.0	
SSF	$2_{-3/2}$	3_1	$2_{1/2}$	83.7	308	16.6	60.7	13.4	13.4	7.06	10.6	
~~-	$2_{1/2}$	3_{-1}	$2_{-3/2}$	95.5	356	18.3	67.8	15.6	15.6	7.75	11.3	
	$2_{-1/2}$	1_{0}	$2_{-1/2}$	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	$2_{-3/2}$	1_1	$2_{1/2}$	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	44.8	155	8.8	32.3	10.9	10.9	5.64	8.56	
	3_1	$2_{1/2}$	30	95.4	359	19.4	73	20.1	30	7.75	11.5	
	3_0	$2_{-1/2}$	3_{-1}	39.4	144	7.82	28.6	10.8	15.1	4.14	6.08	
	1_1	$2_{1/2}$	10	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	1_{-2}	$2_{3/2}$	1_1	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	1_{0}	$2_{-1/2}$	1_1	59.1	187	13.2	41.8	12.4	17.2	4.02	6.28	
	1_1	$2_{-3/2}$	1_{-2}	73.2	231	17.4	55	13.9	19.7	5.04	7.25	
	$2_{-1/2}$	3_0	$2_{-1/2}$	40	126	9.38	29.7	8.0	11.5	2.88	4.34	
FFS	$2_{-3/2}$	3_1	$2_{1/2}$	56.3	178	13.6	42.9	11.8	16.2	4.26	6.1	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	82.3	260	19.2	60.6	13.6	19	4.93	7.0	
	$2_{-1/2}$	1_0	$2_{-1/2}$	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	$2_{-3/2}$	1_1	$2_{1/2}$	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	46.2	146	11.2	35.4	9.83	13.8	3.49	5.18	
	3_1	$2_{1/2}$	30	71	225	17	53.6	13.1	18.1	4.04	6.97	
	3_0	$2_{-1/2}$	3_{-1}	23.4	75	5.29	16.9	7.3	7.69	2.73	4.03	
$M_{\rm BSM,ch}^{\rm max}$	arged (ma	ax in eac	h column)	95.5	359	19.4	73	20.1	30	8.41	12.3	

Any notion of (calculable, concrete, conservative) naturalness pushes the upper bound to the ~10 TeV scale.

V Flavour C Singlet S aint Singlet V

Singlet S

Charged Lepton-Flavour-violating (CLFV) decay!

Flavour Constraints

 $Br(\mu \to e\gamma) < 4.2 \times 10^{-13}$ $Br(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$ $Br(\tau \to e\gamma) < 3.3 \times 10^{-8}$

> Flavour-anarchic models highly disfavoured! There needs to be some kind of flavour structure.

Simplest ansatz for avoiding CLFVs: Minimal Flavour Violation (MFV)! All flavour violation ~ SM Yukawas.

$$\frac{y_{1,2}^e}{y_{1,2}^\mu} \lesssim 10^{-5} \quad , \quad \frac{y_{1,2}^\tau}{y_{1,2}^\mu} \lesssim 10^{-1} \quad , \quad \frac{y_{1,2}^\tau}{y_{1,2}^\mu} \frac{y_{1,2}^e}{y_{1,2}^\mu} \lesssim 10^{-1}$$

Impose Minimal Flavour Violation

Some Muon-type and Tau-type BSM couplings are then related by $m_{\tau}/m_{\mu} \approx 17$.

The larger Tau-type coupling has to obey the unitarity bound.

 $M_{\rm BSM, charged}^{\rm max, MFV} \approx (20 \,{\rm TeV}) \cdot N_{\rm BSM}^{1/2}$.

Flavour points us below 20 TeV as well!

				Highest possible mass (TeV)								
				of lightest charged BSM state								
				Unita	arity	Unitarity +		Unitarity +		Unitarity +		
				on	ly	MFV		Naturalness		Naturalness $+$		
											FV	
				$N_{\rm BS}$	$N_{\rm BSM}$:		$N_{\rm BSM}$:		$N_{\rm BSM}$:		$N_{ m BSM}$:	
Model	R	R_A	R_B	1	10	1	10	1	10	1	10	
	1_1	$2_{1/2}$	1_0	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	1_{-2}	$2_{3/2}$	1_1	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	1_0	$2_{-1/2}$	1_1	46.2	176	9.41	34.1	15.6	17.5	5.93	8.56	
	11	$2_{-3/2}$	1_{-2}	81.8	302	17.1	63.7	19.3	19.3	8.38	12.1	
	$2_{-1/2}$	3_0	$2_{-1/2}$	21.4	107	4.2	15.5	7.47	8.99	3.23	5.0	
SSF	$2_{-3/2}$	3_1	$2_{1/2}$	83.7	308	16.6	60.7	13.4	13.4	7.06	10.6	
551	$2_{1/2}$	3_{-1}	$2_{-3/2}$	95.5	356	18.3	67.8	15.6	15.6	7.75	11.3	
	$2_{-1/2}$	1_{0}	$2_{-1/2}$	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	$2_{-3/2}$	1_1	$2_{1/2}$	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	44.8	155	8.8	32.3	10.9	10.9	5.64	8.56	
	3_1	$2_{1/2}$	3_0	95.4	359	19.4	73	20.1	30	7.75	11.5	
	3_0	$2_{-1/2}$	3_{-1}	39.4	144	7.82	28.6	10.8	15.1	4.14	6.08	
	1_1	$2_{1/2}$	1_0	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	1_{-2}	$2_{3/2}$	1_1	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	1_0	$2_{-1/2}$	1_{-1}	59.1	187	13.2	41.8	12.4	17.2	4.02	6.28	
	11	$2_{-3/2}$	1_{-2}	73.2	231	17.4	55	13.9	19.7	5.04	7.25	
	$2_{-1/2}$	3_0	$2_{-1/2}$	40	126	9.38	29.7	8.0	11.5	2.88	4.34	
FFS	$2_{-3/2}$	3_1	$2_{1/2}$	56.3	178	13.6	42.9	11.8	16.2	4.26	6.1	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	82.3	260	19.2	60.6	13.6	19	4.93	7.0	
	$2_{-1/2}$	1_0	$2_{-1/2}$	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	$2_{-3/2}$	1_1	$2_{1/2}$	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	46.2	146	11.2	35.4	9.83	13.8	3.49	5.18	
	3_1	$2_{1/2}$	30	71	225	17	53.6	13.1	18.1	4.04	6.97	
	3_0	$2_{-1/2}$	3_{-1}	23.4	75	5.29	16.9	7.3	7.69	2.73	4.03	
$M_{ m BSM,ch}^{ m max}$	narged (ma	ax in eac	h column)	95.5	359	19.4	73	20.1	30	8.41	12.3	

Flavour or Naturalness separately impose ~ 20 TeV charged mass upper bounds.

They're both pretty important. What if we impose them together?

Impose MFV + Naturalness

$M_{\rm BSM, charged}^{ m max, natural ness, MFV} \approx (9\,{\rm TeV}) \cdot N_{ m BSM}^{1/6}$

10 TeV scale, with little dependence on BSM multiplicity!

				Highest possible mass (TeV)								
				of lightest charged BSM state								
				Unit	arity	Unitarity + Uni		Unita	Unitarity +		Unitarity +	
				only		MFV		Naturalness		Natura	alness +	
										M	IFV	
				$N_{\rm BS}$	зм:	$N_{\rm B}$	sm:	$N_{\rm B}$	sm:	N_1	BSM:	
Model	R	R_A	R_B	1	10	1	10	1	10	1	10	
	1_1	$2_{1/2}$	10	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	1_{-2}	$2_{3/2}$	1_1	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	1_0	$2_{-1/2}$	1_1	46.2	176	9.41	34.1	15.6	17.5	5.93	8.56	
	1_1	$2_{-3/2}$	1_{-2}	81.8	302	17.1	63.7	19.3	19.3	8.38	12.1	
	$2_{-1/2}$	30	$2_{-1/2}$	21.4	107	4.2	15.5	7.47	8.99	3.23	5.0	
SSF	$2_{-3/2}$	3_1	$2_{1/2}$	83.7	308	16.6	60.7	13.4	13.4	7.06	10.6	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	95.5	356	18.3	67.8	15.6	15.6	7.75	11.3	
	$2_{-1/2}$	10	$2_{-1/2}$	65.2	241	12.9	47.1	11.5	11.5	6.54	10.1	
	$2_{-3/2}$	1_1	$2_{1/2}$	85.9	321	18.1	64.8	19.2	19.2	8.41	12.3	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	44.8	155	8.8	32.3	10.9	10.9	5.64	8.56	
	3_1	$2_{1/2}$	30	95.4	359	19.4	73	20.1	30	7.75	11.5	
	30	$2_{-1/2}$	3_{-1}	39.4	144	7.82	28.6	10.8	15.1	4.14	6.08	
	1_1	$2_{1/2}$	10	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	1_{-2}	$2_{3/2}$	1_1	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	10	$2_{-1/2}$	1_1	59.1	187	13.2	41.8	12.4	17.2	4.02	6.28	
	11	$2_{-3/2}$	1_{-2}	73.2	231	17.4	55	13.9	19.7	5.04	7.25	
	$2_{-1/2}$	30	$2_{-1/2}$	40	126	9.38	29.7	8.0	11.5	2.88	4.34	
FFS	$2_{-3/2}$	3_1	$2_{1/2}$	56.3	178	13.6	42.9	11.8	16.2	4.26	6.1	
	$2_{1/2}$	3_{-1}	$2_{-3/2}$	82.3	260	19.2	60.6	13.6	19	4.93	7.0	
	$2_{-1/2}$	1_0	$2_{-1/2}$	37.3	118	8.87	28	12.3	18.7	4.6	7.04	
	$2_{-3/2}$	1_{1}	$2_{1/2}$	67.3	213	15.8	50	13.5	18.8	4.86	6.93	
	$2_{1/2}$	1_{-1}	$2_{-3/2}$	46.2	146	11.2	35.4	9.83	13.8	3.49	5.18	
	3_1	$2_{1/2}$	30	71	225	17	53.6	13.1	18.1	4.04	6.97	
	30	$2_{-1/2}$	3_{-1}	23.4	75	5.29	16.9	7.3	7.69	2.73	4.03	
$M_{ m BSM,cl}^{ m max}$	_{narged} (m	ax in eac	h column)	95.5	359	19.4	73	20.1	30	8.41	12.3	

Charged BSM Particle Mass Upper Bounds

$$M_{\rm BSM,charged}^{\rm max,X} \approx \left(\frac{2.8 \times 10^{-9}}{\Delta a_{\mu}^{\rm obs}}\right)^{\frac{1}{2}} \times \begin{cases} (100 \,{\rm TeV} \\ (20 \,{\rm TeV} \\ (20 \,{\rm TeV} \\ (9 \,{\rm TeV}) \end{cases} \right) \end{cases}$$

- V) $N_{\rm BSM}^{1/2}$ for $X = (\text{unitarity}^*)$
-) $N_{\text{BSM}}^{1/2}$ for X = (unitarity + MFV)
- () $N_{\rm RSM}^{1/6}$ for $X = (unitarity + naturalness^*)$
- () $N_{\rm BSM}^{1/6}$ for X = (unitarity + natural ness + MFV)

- Any "reasonable" theory wants to live below 10 TeV.
- Not discovering charged states below 10 TeV would then be **proof** of a tuned universe with flavour weirdness

Experimental Target for discovering BSM

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Relevant coupling

m_{BSM}

Relevant coupling

*m*_{BSM}

Low-Energy Experiments

Relevant coupling

*m*_{BSM}

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

Relevant coupling

m_{BSM}

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

O(10 TeV) Muon Collider

Relevant coupling

*m*_{BSM}

Relevant coupling

m_{BSM}

Universe "tastes" strange and is provably tuned

100 TeV

Low-Energy Experiments

O(100 GeV) - 3 TeV Muon Collider

O(10 TeV) Muon Collider

Indirect signatures at 30 TeV Muon Collider*

* 2012.02769 Buttazzo, Paradisi 2012.03928 Yin, Yamaguchi

Low Energy Experiments

Intensity Frontier Experiments

A lot of Singlet Scenario parameter space is already excluded below a few GeV.

See also e.g.:

Mohlabeng 1809.07768 Dark Sector Community Report 1707.04591 SHiP physics case 1504.04855 Krnjaic 1512.04119 Batell, Freitas, Ismail, McKeen 1712.10022 Chen, Pospelov, Zhong, 1701.07437 Bauer, Foldenauer, Jaeckel, 1803.05466

Muon Fixed Target Experiment

Could do fully inclusive search for \leq few GeV singlet coupling to muon.

muon beam on target.

S.N. Gninenko, N.V. Krasnikov, M.M. Kirsanov, D.V. Kirpichnikov 1604.08432

M³ proposal at Fermilab / NA64 μ at CERN: Complete coverage for 15 / 150 GeV

Kahn, Krnjaic, Tran, Whitbeck, 1804.03144

A muon fixed-target experiment would allow *fully inclusive* coverage for $\lesssim \text{GeV}$ solutions of the $(g-2)_{\mu}$ anomaly.

Very important near-term experimental opportunity!

Muon Colliders: not a crazy idea

A lepton collider to reach the highest energies?

Muon Colliders

1901.06150

The Muon Collider Working Group Jean Pierre Delahaye¹, Marcella Diemoz², Ken Long³, Bruno Mansoulié⁴, Nadia Pastrone⁵ (chair), Lenny Rivkin⁶, Daniel Schulte¹, Alexander Skrinsky⁷, Andrea Wulzer^{1,8}

Significant progress on muon cooling problem: Hot muons from pions

APS April Meeting 2021 Saturday–Tuesday, April 17–20, 2021; Virtual; Time Zone: Central Daylight Time, USA

Session Index

Focus Live

Sponsoring Units: DPB DPF Chair: Nadia Pastrone, INFN

or cold muons from positrons

The Muon Smasher's Guide 2103.14043

Hind Al Ali¹, Nima Arkani-Hamed², Ian Banta¹, Sean Benevedes¹, Dario Buttazzo³, Tianji Cai¹, Junyi Cheng¹, Timothy Cohen⁴, Nathaniel Craig¹, Majid Ekhterachian⁵, JiJi Fan⁶, Matthew Forslund⁷, Isabel Garcia Garcia⁸, Samuel Homiller⁹, Seth Koren¹⁰, Giacomo Koszegi¹, Zhen Liu^{5,11}, Qianshu Lu⁹, Kun-Feng Lyu¹², Alberto Mariotti¹³, Amara McCune¹, Patrick Meade⁷, Isobel Ojalvo¹⁴, Umut Oktem¹, Diego Redigolo^{15,16}. Matthew Reece⁹, Filippo Sala¹⁷, Raman Sundrum⁵, Dave Sutherland¹⁸, Andrea Tesi^{16,19}, Timothy Trott¹, Chris Tully¹⁴, Lian-Tao Wang¹⁰, and Menghang Wang¹

Session B08: Muon Collider Symposium I

4 dedicated sessions at APS this year! Interest is there, g-2 is more "value" added" for physics motivation

see Snowmass Muon Collider Forum for current status updates: https://indico.fnal.gov/event/48416/

Muon Colliders: energy and precision

Colliding elementary particles allows full beam energy to go into new particle production.

High energy and high precision = 'bestof-both-worlds' BSM reach

If cooling problem can be solved, O(10 TeV) energies being considered.

2005.10289 Constantini, De Lillo, Maltoni, Mantani, Mattelaer, Ruiz, Zhao

Huge enhancement for VBF production of EW states with $m \ll \sqrt{s}$

Higgs precision! $10 \text{ TeV} @ 10 \text{ ab}^{-1}$ $A \cdot \epsilon ~[\%]$ Rate [fb] Production Decay 74

		100		0.11
	сс	24	1.4	1.7
	jj	72	37	0.19
	$ au^+ au^-$	53	6.5	0.54
	$WW^*(jj\ell u)$	53	21	0.30
W-fusion	$WW^*(4j)$	86	4.9	0.49
	$ZZ^*(4\ell)$	0.1	6.6	12
	$ZZ^*(jj\ell^+\ell^-)$	2.1	8.9	2.3
	$ZZ^*(4j)$	11	4.6	1.4
	$\gamma\gamma$	1.9	33	1.3
	$Z(jj)\gamma$	0.9	27	2.0
	$\mu^+\mu^-$	0.2	37	0.37
7 fusion	bb	51	8.1	0.49
2-1051011	$WW^*(4j)$	8.9	6.2	1.3
W-fusion tth	bb	0.06	12	12

Muon Smasher's Guide 2103.14043

0.17

Muon colliders an incredibly attractive path to explore high energy physics.

Bonus:

They are also "guaranteed" to discover the **new physics of** $(g - 2)_{\mu}$

Discovering the singlet production in fully inclusive search: mono-photon + anything

Only *guaranteed* coupling of singlet is to muons: Muon Collider is special!

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Collider study including conservative detector effects shows lumi needed for discovery

s ~ 200 GeV - 3 TeV: Discovering Singlet Scenarios

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

A TeV-scale muon collider program would discover all Singlet solutions to the $(g - 2)_{\mu}$ anomaly.
$\sqrt{s} \sim 10$ TeV: Discovering EW Scenarios

$$M_{\rm BSM,charged}^{\rm max,X} \approx \left(\frac{2.8 \times 10^{-9}}{\Delta a_{\mu}^{\rm obs}}\right)^{\frac{1}{2}} \times \begin{cases} (100 \,{\rm TeV}) \\ (20 \,{\rm TeV}) \\ (20 \,{\rm TeV}) \\ (9 \,{\rm TeV}) \end{cases}$$

Lepton collider: if you can make the charged state, you should be able to discover it regardless of decay mode. $\Rightarrow \sqrt{s} \gtrsim 2m_{charged}$

10 TeV muon collider covers by far the most motivated parameter space... **30 TeV** if you "want to be sure" to catch all remotely natural possibilities.

V) $N_{\rm BSM}^{1/2}$ for $X = (\text{unitarity}^*)$

V) $N_{\text{BSM}}^{1/2}$ for X = (unitarity + MFV)

V) $N_{\rm BSM}^{1/6}$ for $X = (unitarity+naturalness^*)$

V) $N_{\rm BSM}^{1/6}$ for X = (unitarity+naturalness+MFV)

But what if you don't see anything?

A 30 TeV muon collider will discover all "reasonable" EW Scenarios that account for the $(g - 2)_{\mu}$ anomaly.

/s ~ 10 TeV: Indirect hγ Signal

2012.02769 Buttazzo, Paradisi 2012.03928 Yin, Yamaguchi

cm] 5% CL limit

If the new physics is heavier than 15 TeV, a 30 TeV muon collider could still see the

$\mu\mu \rightarrow h\gamma$

signal produced by the same operator

 $(L\sigma^{\nu\rho}\mu^{c})F_{\nu\rho}$

→ Proof of a very weird and tuned universe!

A 30 TeV muon collider will see either new charged states, and/or the indirect $\mu\mu \rightarrow h\gamma$ signal!

Therefore, if you don't see new charged states, you **know** the states are there but at higher masses.

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

No-Lose Theorem for $(g - 2)_{\mu}$

1. Confirm the $(g - 2)_{\mu}$ anomaly is real.

- 2. Look for \leq GeV Singlet Scenarios in μ fixed target experiments.
- 3. Build a TeV-scale muon collider. Discover all Singlet solutions (and probe deep into EW Scenario parameter space as well).
- 4. Build a 10-TeV-scale muon collider. Discover all "reasonable" Electroweak solutions, and/or observe $h\gamma$ signal.
- fine-tuned with weird flavour physics.

Either way, a comprehensive muon program revolutionizes our understanding of the universe.

5. Either find new particles, or prove the universe is explicitly, calculably

