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which is disagreeing with SM 
prediction at 4.2  level.


If real:  

BSM physics talks to the muon!


 Muon physics program from ~ 
GeV - 10 TeV will find new physics!

Δaμ = (2.51 ± 0.59) × 10−9

σ

→

Upshot:
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FIG. 1. Leading hadronic contribution to the muon gµ � 2.
The shaded circle denotes all corrections to the internal pho-
ton propagator from the vacuum polarization of u, d, s, c,
and b quarks in the leading one-loop muon vertex diagram.
Diagrams in which the photon creates a quark-antiquark pair,
which propagate while interacting via the strong and electro-
magnetic forces, and subsequently annihilate back into a pho-
ton, are called “quark-connected” diagrams. Those in which
the quark-antiquark pair annihilates into gluons are referred
to as “quark-disconnected” diagrams.

result with an uncertainty at 0.3 ppm and a tantalizing
3.5–4 � discrepancy with existing experiment. This the-
oretical precision is su�cient to achieve a greater than
5� significance for the discrepancy if the central value
does not change with the upcoming experimental results.
It is nevertheless important to test the uncertainty in
the Standard-Model result using di↵erent approaches to
make sure that it is robust.

The results of Refs. [5–7] use experimental input for
the cross section for e+e� annihilation via a photon to
hadrons as a function of center-of-mass energy to deter-
mine an important hadronic contribution to aµ known
as the leading-order hadronic vacuum polarization con-
tribution, aHVP,LO

µ . This contribution, which appears at
order ↵2, where ↵ is the fine structure constant, is illus-
trated in Fig. 1. The uncertainty on its value is one of the
two largest sources of error in the Standard-Model result.
The leading-order hadronic vacuum polarization contri-
bution can also be calculated from first principles using
numerical lattice QCD, and there has been a great deal of
progress in the past few years on improving lattice-QCD
calculations of this quantity.1 The aim of this e↵ort is to
reduce the uncertainty from lattice QCD first to a level
commensurate with that from using �(e+e� ! hadrons),
and then to the ⇠0.2% target precision of the Fermilab
E989 and J-PARC experiments. In the meantime, how-
ever, lattice-QCD calculations already provide a strong
test of those results from a completely di↵erent method
with very di↵erent systematic errors.

As illustrated in Fig. 1, aHVP,LO
µ requires knowledge of

the quark vacuum-polarization function that couples to
a photon [10, 11]. In lattice QCD, individual diagram-
matic contributions to the quark vacuum polarization can

1 Another key uncertainty in the Standard-Model result comes
from a higher-order hadronic piece known as the hadronic-light-
by-light contribution. This is also being calculated in lattice
QCD [8, 9].

be considered separately via suitably constructed vector
current-current correlation functions in Euclidean time.
The vacuum polarization includes quark-line connected
and disconnected diagrams, but the disconnected dia-
grams, where the quark loops are connected by inter-
mediate gluons, contribute less than 2% to aHVP,LO

µ [12–
18]. The quark-connected contribution can be further
separated into contributions from the individual quark
flavors, up, down, strange, charm, and bottom. Accu-
rate lattice-QCD results for the separate s-, c- and (neg-
ligible) b-quark connected contributions to aHVP,LO

µ were
first obtained in Refs [19–21]. Subsequent lattice-QCD
calculations [14–17, 22–24] using di↵erent methods and
quark formulations are in excellent agreement with these
results.

The dominant quark-line connected contribution to
aHVP,LO

µ comes from the light (u/d) quarks, however,
and is the target of this work. Here lattice-QCD calcula-
tions carry a number of additional technical challenges.
The vector current-current correlator falls more slowly
with Euclidean time at lighter quark masses, but at
the same time the signal-to-noise degrades more rapidly.
This means that the light-quark connected contribution
to aHVP,LO

µ receives contributions from larger Euclidean
times than those from heavy quarks and that the data
at these times are noisier. Hence controlling statistical
errors is a challenge. In addition large physical volumes
are needed for the lattice-QCD calculation to avoid sys-
tematic e↵ects from squeezing light states (e.g., pions)
into a small box.

The first lattice-QCD calculation of aud
µ (conn.), the

light-quark connected contribution to aHVP,LO
µ that

included physical-mass u/d quarks was presented in
Ref. [25], followed by several other lattice-QCD re-
sults [14–17, 23]. All of these results were obtained in
the isospin-symmetric limit, but the calculations di↵er in
the quark formulation used, the lattice spacings and vol-
umes available, and in the treatment of statistical errors
and finite-volume e↵ects. The agreement between di↵er-
ent lattice-QCD calculations done independently will in
the end be an important test of the results. Currently
the lattice-QCD results for aud

µ (conn.) are spread over a
range of several percent, with uncertainties at the same
level. These errors are several times larger than those ob-
tained using the experimental information from cross sec-
tions for e+e� ! hadrons. This means that lattice-QCD
calculations are not yet in a position to add significant
information to that available from e+e� ! hadrons [15].
This first round of complete lattice-QCD calculations
has, however, crystallized the issues that must be ad-
dressed to improve current results and ultimately reach
the target experimental precision.

In this paper we present a calculation of the light-
quark connected contribution to aHVP,LO

µ in the isospin-
symmetric limit. Like Ref. [25], our work uses the highly
improved staggered quark (HISQ) action [26] and MILC
ensembles with four flavors of HISQ sea quarks [27]. It
also shares analysis strategies, a small set of common vec-

Current theoretical state-of-the-art:
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Figure 99: Tenth-order vertex diagrams. There are 12 672 diagrams in total, and they are divided into 32 gauge-invariant subsets over six super
sets. Typical diagrams of each subsets are shown as I(a)–(j), II(a)–(f), III(a)–(c), IV, V, and VI(a)–(k). There are 208 Set I diagrams (1 for I(a),
9 for I(b), 9 for I(c), 6 for I(d), 30 for I(e), 3 for I(f), 9 for I(g), 30 for I(h), 105 for I(i), and 6 for I(j)), 600 Set II diagrams (24 for II(a), 108 for
II(b), 36 for II(c), 180 for II(d), 180 for II(e), and 72 for II(f)), 1140 Set III diagrams (300 for III(a), 450 for III(b), and 390 for III(c)), 2072 Set IV
diagrams, 6354 Set V diagrams, and 2298 Set VI diagrams (36 for VI(a), 54 for VI(b), 144 for VI(c), 492 for VI(d), 48 for VI(e), 180 for VI(f),
480 for VI(g), 630 for VI(h), 60 for VI(i), 54 for VI(j), and 120 for VI(k)). The straight and wavy lines represent lepton and photon propagators,
respectively. The external photon vertex is omitted for simplicity and can be attached to one of the lepton propagators of the bottom straight line in
super sets I–V or the large ellipse in super set VI. Reprinted from Ref. [773].
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [775], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [775], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [775], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Δaμ = (2.79 ± 0.76) × 10−9

3.7σ

 
 

Δaμ = (2.30 ± 0.69) × 10−9

3.3σ

Combined:     ( )Δaμ = (2.51 ± 0.59) × 10−9 4.2σ



Future progress: experiment

Fermilab: uncertainty reduced by 
factor of 2 next summer, eventually by 
factor of 4

slide by K. Ishida, 19 Sep 2019

J-PARC: totally independent measurement 
with different method & similar precision, 
plans to take data 2024-26



Future progress: Theory



Future progress: Theory



A conservative data-driven approach using R-ratio measurement, and electroweak 
precision, favour anomaly. 


QCD Lattice calculations not yet converged, but BMWc’20 claims SM consistency.

Future progress: HVP
Most “controversial” part of SM prediction:  
Hadronic Vacuum Polarization (HVP)

1711.03085 & (g-2) Theory Initiative

2002.12347

2003.048862006.04822 g-2 Theory Initiative whitepaper

2002.12347



Future progress: HVP
Current status: if BMW is correct, then Electroweak precision 
fits would be made only slightly worse (2.4 ) while reducing 
tension with (g-2) data (~1.5 ), but introducing additional > 
2.xx  tension with < GeV hadron data.  
Demonstrates non-gaussianity of theory errors in !


New BMW lattice uncertainty is systematics dominated 
(continuum limit extrapolation). Vital for other lattice 
calculations to corroborate and check consistency.  
Hopefully lattice updates within ~ a year.


New experimental data would help as well, e.g. Belle-2 
(soon?) or MUonE experiment at CERN (space-like HVP from 

 scattering by ~2025) to resolve BaBar-KLOE tension?

σ
σ

σ
aSM

μ

μe
CERN-SPSC-2019-026



If the (g-2)  anomaly is real…. 

… what does this mean for BSM physics?

μ



BSM Physics in (g − 2)μ



μL
μR

γ

new 
particles

Very simple:

Could be almost anything, as long as it couples to muons


Could be connected to dark matter, SUSY, axions, …. any other new physics motivation…

 papers  
 over past decades 
≳ O(103)

BSM Physics in (g − 2)μ



Below a GeV or above a TeV

1902.05075 Mohlabeng

Semi-visibly decaying dark photon  New electroweak scalars and 
fermions, including dark matter

1804.00009 Calibbi, Ziegler, Zupan



This is such a general new physics 
contribution that it could be embedded 

within almost any BSM theory. 

Ask a simpler question…  

What would it take to *guarantee* we 
discover this new physics, *regardless* of 

the complete theory? 



Model Exhaustive Approach

2006.16277, 2101.10334 

Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic
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Assumptions  gauge invariance
Δaμ = aobs

μ
U(1)em SM gauge invariance

Δaμ = aobs
μ

SM gauge invariance
Perturbativity

Δaμ = aobs
μ

Model-Independent “Model-Exhaustive”

1
M2 H†(Lσνρμc)Fνρ

1
M

(μLσνρμc)Fνρ
Specific choices of BSM particles and 

their SM quantum numbers in loop

 
diagram
(g − 2)μ

How to predict 
new signatures

General BSM analysis of (g − 2)μ

EFT analysis suggests ….  Really? M ≲ 250 TeV
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U(1)em SM gauge invariance
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μ

SM gauge invariance
Perturbativity

Δaμ = aobs
μ

Model-Independent “Model-Exhaustive”

1
M2 H†(Lσνρμc)Fνρ

1
M

(μLσνρμc)Fνρ
Specific choices of BSM particles and 

their SM quantum numbers in loop

 
diagram
(g − 2)μ

How to predict 
new signatures

General BSM analysis of (g − 2)μ

EFT analysis suggests ….  Really? M ≲ 250 TeV

We would love to discover 
this new physics DIRECTLY. 


Where the new particles at?? 



3

µcµL

�

3

µ
cµL

�

µ
c

hHi

µL

�

3

µ
cµL

�

µ
c

hHi

µL

�

µ
c

hHi

µL

�

{ i}

4

µ
c

hHi

µL

�

{ i}

3

µcµL

�

3

µ
cµL

�

µ
c

hHi

µL

�

3

µ
cµL

�

µ
c

hHi

µL

�

µ
c

hHi

µL

�

{ i}

4

µ
c

hHi

µL

�

{ i}

3

µcµL

�

3

µ
cµL

�

µ
c

hHi

µL

�

3

µ
cµL

�

µ
c

hHi

µL

�

µ
c

hHi

µL

�

{ i}

4

µ
c

hHi

µL

�

{ i}

3

µcµL

�

3

µ
cµL

�

µ
c

hHi

µL

�

3

µ
cµL

�

µ
c

hHi

µL

�

µ
c

hHi

µL

�

{ i}

4

µ
c

hHi

µL

�

{ i}

Assumptions  gauge invariance
Δaμ = aobs

μ
U(1)em SM gauge invariance

Δaμ = aobs
μ

SM gauge invariance
Perturbativity

Δaμ = aobs
μ

Model-Independent “Model-Exhaustive”

1
M2 H†(Lσνρμc)Fνρ

1
M

(μLσνρμc)Fνρ
Specific choices of BSM particles and 

their SM quantum numbers in loop

 
diagram
(g − 2)μ

How to predict 
new signatures

General BSM analysis of (g − 2)μ

If we assume perturbative unitarity, we can look inside the 4-point function! 
Can we do this in full generality?



Model-Exhaustive Analysis
Assume new physics obeys perturbative unitarity.*


Assume new  contribution arises at one-loop.**


Then consider:


- all possible  gauge representations for the new particles


- all possible Lorentz group representations*** for the new particles


- arbitrary multiplicity  of new particles


- all possible masses & couplings that generate 


Then ask: what are some irreducible experimental signatures?

(g − 2)μ

SU(2)L ⊗ U(1)Y

NBSM

Δaexp
μ

*pushing couplings right up to 
unitarity limit should capture 
parametrics of non-perturbative 
solutions, they still have to obey 
gauge invariance. 

** higher loop contributions 
require lower BSM mass scales, 
should be discoverable with the 
experiments we consider


*** Spin 0, 1/2 and 1. Higher spin 
g-2 contributions highly 
suppressed, 2104.03231.
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Then consider:


- all possible  gauge representations for the new particles


- all possible Lorentz group representations*** for the new particles


- arbitrary multiplicity  of new particles


- all possible masses & couplings that generate 


Then ask: what are some irreducible experimental signatures?
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SU(2)L ⊗ U(1)Y
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*pushing couplings right up to 
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parametrics of non-perturbative 
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g-2 contributions highly 
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Divide BSM Theory Space into two classes
Singlet Scenarios:  

new physics in  is SM singlets only 

simple theory space, more complicated phenomenology


Electroweak Scenarios:  

everything else: i.e. new particles with non-trivial EW representations in loop


complicated theory space, simple phenomenology (new charged particles!)


(g − 2)μ



Space of BSM Theories
that generate Δaμ = aobs

μ

Boundary of perturbative unitarity

Singlet Scenarios Electroweak Scenarios

New particles in  loops:
only SM singlets

(g − 2)μ New particles in  loops:
not only SM singlets

(g − 2)μ

Signature: direct production of
SM singlet states

Signature: direct production of
new charged states

Discovery: requires inclusive
search for singlet, with g ∝ m

Discovery: discoverable at lepton 
collider for “all” m ≲ s /2

Indirect Signatures?

Singlets in muon 


annihilation and


scattering

new charged


particles!

2012.02769 Buttazzo, Paradisi

2012.03928 Yin, Yamaguchi



Model Exhaustive Approach

2006.16277, 2101.10334 

Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Singlet Scenarios
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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lepton collider with
p

s & 2m can directly pair-produce such states of mass m, and
as they have to either be detector-stable or decay into charged final states, they
should be discoverable in a clean detector environment regardless of their detailed
phenomenology. For EW Scenarios, our task is therefore to find the largest possible
mass that the new charged states could have.

EW Scenarios can generate diagrams of both types shown in Figure 1 (right). Of
particular interest is the second type where the Higgs insertion and chirality flip belong
to BSM particles in the loop, which would give �aµ / mµgBSMv/M

2
BSM without the

suppression of the small muon Yukawa. This can result in much heavier BSM mass
scales than Singlet Scenarios.

If we examine both of these possibilities exhaustively, we will have completed our model-
exhaustive analysis.

Singlet Scenarios are relatively straightforward to analyze. In the next Section 2.1
we define simplified models that cover all possibilities for this singlet. These models have
few parameters, and the parameter space can be explored in full generality. Electroweak
Scenarios present more of a challenge. To find the minimum muon collider energy that
would guarantee direct production and discovery of at least one BSM charged state, we
have to find the heaviest possible charged state consistent with resolving the anomaly. This
amounts to finding the following quantity:

M
max
BSM,charged ⌘ max

BSM theory space

�aµ=�a
obs
µ

⇢
min

i 2 BSM spectrum

⇣
m

(i)
charged

⌘ �
. (2.2)

This can be understood in the following algorithmic way. The outer maximization scans
over all possible BSM theories and possible values of their parameters that give �aµ = �a

obs
µ

while satisfying the constraints of perturbative unitarity. For each specific theory and given
values of its parameters, we find the lightest new charged state (inner bracket) and add
it to a list. The outer maximization then picks the maximum value from this list, giving
the heaviest possible mass of the lightest new charged state that must exist to resolve the
(g � 2)µ anomaly, and therefore the minimum energy of a muon collider that is guaranteed
to produce these particles. The difficulty obviously arises in performing the first theory
space maximization. In Section 2.2 we explain how this maximization can be performed,
allowing our model-exhaustive analysis to determine the heaviest possible masses of new
charged states with the generality of a traditional model-independent analysis.

2.1 Singlet Scenarios

In this case, SM singlets that could be below the GeV scale (or much heavier) generate
the new one-loop contributions to (g � 2)µ. The singlet could either be a scalar, vector,
or fermion. Our focus will be the case of a new real scalar S or vector V . The relevant
Lagrangian terms for the real scalar case are

LS � � (gSSµLµ
c + h.c.) �

1

2
m

2
SS

2
. (2.3)
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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Singlet Scenarios

Requires singlet below 3 TeV 

couples to muon gS ∝ mS
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Electroweak Scenarios



Electroweak Scenarios

Can generate  for much  
higher BSM masses due to 
large Higgs vev / chirality flip 
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In general a complicated model space: all non-singlet one-loop possibilities!

But perhaps the experimental signatures are simpler: new charged particles!



New Charged Particles
Those are the “easiest to discover”: 


- guaranteed Drell-Yan Production 
- have to leave some visible signal in your detector

Main question: how much collider energy  do I need to produce at 
least the lightest BSM charged state?
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New Charged Particles
Those are the “easiest to discover”: 


- guaranteed Drell-Yan Production 
- have to leave some visible signal in your detector

Main question: how much collider energy  do I need to produce at 
least the lightest BSM charged state?

s

… for each such scenario, find the mass of the LIGHTEST BSM charged state…

… what is the HE
AVIEST that this low
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lying new charged state could be?

Consider all 
EW Scenar

ios, 

for all
 possib

le masses  

and coupli
ngs tha

t  

explain
 (g-2)…

__

__



Electroweak Simplified Models
Model-exhaustive analyses are not a new idea, but this theory space 
maximization to find the largest possible BSM charged mass is non-trivial. 


We will define some simplified models which are engineered to produce the 
heaviest possible BSM charged masses while explaining (g-2)!


Maximizing over the space of those simplified models will give us our answer! 


Engineering specs:


- need BSM (i.e. large) chiral flip insertion


- need BSM (i.e. large) Higgs vev insertion


- need three new fields (boson, fermion, and two of something)


- no new sources of EWSB (those have their own lower-mass signatures)



Electroweak Simplified Models

New complex scalars and vector-like fermions that acquire some mixing after EWSB. 


Consider all possible choices of  representations.


Arbitrary number of BSM degrees of freedom (copies) .


We have checked that other simplified models with fewer BSM fields, or involving Majorana fermions, new vectors, etc give 
smaller   lower masses for new charged states  do not affect theory space maximization

SU(2)L ⊗ U(1)Y

NBSM

Δaμ → →

2. a pair of these fields undergo mass-mixing with each other via a Higgs coupling after
electroweak symmetry breaking (EWSB);

3. all new fermions are vector-like under the SM to maximize allowed masses and avoid
constraints on new 4th generation fermions [84];

4. no VEVs for any new scalars with EW charge. Since we are primarily interested in
BSM states above the TeV scale, any new VEVs that break electroweak symmetry
will exceed the measured value v ⇡ 246 GeV for perturbative scalar self couplings.

As in our analysis for Singlet Scenarios, our default focus is on the most experimentally
pessimistic case in which these new BSM states only couple to the SM through their muonic
(and gauge) interactions. We find that scenarios with new vectors generate smaller �aµ

contributions than the analogous scenario with a new scalar, and likewise for Majorana
fermions or real scalars. Since this results in a lower BSM mass scale that would be easier
to probe, we focus on EW Scenarios with new complex scalars and vector-like fermions only.
This leaves just two classes of models, which we label SSF and FFS by their field content.

The SSF simplified model is defined by two complex scalars �A, �B in SU(2)L
representations R

A
, R

B with hypercharges Y
A
, Y

B and a single vector-like fermion pair
F (F c) in SU(2)L representation R (R̄) with hypercharge Y (�Y ):

LSSF � �y1F
c
L(µ)�

⇤
A � y2Fµ

c�B � H�⇤
A�B

�m
2
A|�A|

2
� m

2
B|�B|

2
� mFFF

c + h.c. . (2.5)

Here y1, y2 are new Yukawa couplings and  is a trilinear coupling with dimensions of mass.
L(µ) = (⌫L, µL) and µ

c are the two 2-component second-generation SM lepton fields, and
H is the Higgs doublet. A typical SSF contribution to (g � 2)µ is shown in Figure 3 (b).
Note that the chirality flip comes from the heavy vector-like fermion F while the Higgs
VEV insertion arises due to mixing of the new scalars.

The FFS simplified model is analogously defined but reverses the role of fermions and
scalars, featuring two vector-like fermion pairs FA, FB (F c

A
, F

c

B
) in SU(2)L representations

R
A
, R

B (R̄A
, R̄A) with hypercharges Y

A
, Y

B (�YA, �YB) and a single complex scalar S in
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There are now two renormalizable Yukawa couplings y12, y
0
12 which control the mixing of

the A and B fermions via the Higgs. A typical FFS contribution to (g � 2)µ is shown in
Figure 3 (c). The chirality flip and Higgs VEV insertion both arise in the loop due to the
Higgs couplings of the new fermions.
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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FFS



Turn the crank: all possible EW representations

Consider SU(2) representations up to triplets and electric charges 


Arbitrary  but  motivated by… reasonableness…


All of the above is also motivated by avoiding Electroweak Landau Poles.

|Q | ≤ 2

NBSM ≲ 10

Highest possible mass (TeV)

of lightest charged BSM state

Unitarity Unitarity + Unitarity + Unitarity +
only MFV Naturalness Naturalness +

MFV
NBSM: NBSM: NBSM: NBSM:

Model R RA RB 1 10 1 10 1 10 1 10

SSF

1�1 21/2 10 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
1�2 23/2 11 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
10 2�1/2 1�1 46.2 176 9.41 34.1 15.6 17.5 5.93 8.56
11 2�3/2 1�2 81.8 302 17.1 63.7 19.3 19.3 8.38 12.1

2�1/2 30 2�1/2 21.4 107 4.2 15.5 7.47 8.99 3.23 5.0
2�3/2 31 21/2 83.7 308 16.6 60.7 13.4 13.4 7.06 10.6
21/2 3�1 2�3/2 95.5 356 18.3 67.8 15.6 15.6 7.75 11.3

2�1/2 10 2�1/2 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
2�3/2 11 21/2 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
21/2 1�1 2�3/2 44.8 155 8.8 32.3 10.9 10.9 5.64 8.56

3�1 21/2 30 95.4 359 19.4 73 20.1 30 7.75 11.5
30 2�1/2 3�1 39.4 144 7.82 28.6 10.8 15.1 4.14 6.08

FFS

1�1 21/2 10 37.3 118 8.87 28 12.3 18.7 4.6 7.04
1�2 23/2 11 67.3 213 15.8 50 13.5 18.8 4.86 6.93
10 2�1/2 1�1 59.1 187 13.2 41.8 12.4 17.2 4.02 6.28
11 2�3/2 1�2 73.2 231 17.4 55 13.9 19.7 5.04 7.25

2�1/2 30 2�1/2 40 126 9.38 29.7 8.0 11.5 2.88 4.34
2�3/2 31 21/2 56.3 178 13.6 42.9 11.8 16.2 4.26 6.1
21/2 3�1 2�3/2 82.3 260 19.2 60.6 13.6 19 4.93 7.0

2�1/2 10 2�1/2 37.3 118 8.87 28 12.3 18.7 4.6 7.04
2�3/2 11 21/2 67.3 213 15.8 50 13.5 18.8 4.86 6.93
21/2 1�1 2�3/2 46.2 146 11.2 35.4 9.83 13.8 3.49 5.18

3�1 21/2 30 71 225 17 53.6 13.1 18.1 4.04 6.97
30 2�1/2 3�1 23.4 75 5.29 16.9 7.3 7.69 2.73 4.03

Mmax
BSM,charged (max in each column) 95.5 359 19.4 73 20.1 30 8.41 12.3

Table 4: Summary of all the EW Scenarios we analyze as part of our study. In SSF models,
F ⇠ R, �A,B ⇠ RA,B . In FFS models, S ⇠ R, FA,B ⇠ RA,B , and the choices of representations
are shown in columns 2–4, which covers all unique possibilities satisfying |Q|  2 involving SU(2)L
representations up to and including triplets. Columns 5–6, 7–8, 9–10 and 11–12 show the highest
possible mass in TeV of the lightest BSM state in the spectrum, with the BSM couplings constrained
only by unitarity, unitarity + MFV, unitarity + naturalness and unitarity + naturalness + MFV
respectively. For illustration of the NBSM dependence, we show results for a single copy of the
BSM states NBSM = 1, or for NBSM = 10. The highest possible BSM mass scale for unitarity
and unitarity + MFV constrained couplings scales as ⇠ N

1/2
BSM. Adding the naturalness constraint

of less than 1% tuning of both the Higgs and muon mass softens this dependence to ⇠ N
1/6
BSM

(both with and without the MFV constraint). Note that in some scenarios, the lightest charged
state does not directly contribute to (g � 2)µ, but its existence is nonetheless a requirement of
EW gauge invariance. The largest possible mass of the lightest new charged state across all the
scenarios we examine is shown in the last row, which corresponds to the theory-space maximization
in Eqn. (2.7) and hence Eqn. (2.2). We do not expect the inclusion of higher SU(2)L representations
to meaningfully increase this upper bound.
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What’s the result?



Imposing Unitarity Only
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Figure 9: Contours show mass in TeV of lightest charged state in two representative SSF models
with NBSM = 1 as a function of scalar masses mA, mB . The largest possible fermion mass mF

was determined by �a
BSM = �a

obs
µ , with the couplings y1, y2,  chosen to maximize (g � 2)µ while

obeying the constraint from perturbative unitarity (1st row), unitarity + MFV (2nd row), unitarity
+ naturalness (3rd row) or unitarity + naturalness + MFV (4th row) On the left, (R, R

A
, R

B) =
(1�2, 23/2, 11), and all fields contributing to (g � 2)µ are charged. On the right, (R, R

A
, R

B) =
(1�1, 21/2, 10), and the scalars in the (g�2)µ loop are neutral but since �A is an EW doublet, there
is a charged scalar with mass mA.
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5. Since the region of parameter space that can account for �a
obs
µ is compact, we can

determine the highest possible mass of the lightest charged BSM state that is consistent
with this particular EW Scenario accounting for the (g � 2)µ anomaly.

In effect, this procedure allows us to explore the “maximum-BSM-mass boundary” of each
EW Scenario’s parameter space, subject to the requirement that �aµ = �a

obs
µ and the BSM

couplings obey perturbative unitarity. The resulting highest possible mass of the lightest
BSM state in the spectrum for each EW Scenario we examine is listed in columns 5 and 6
of Table 4 for NBSM = 1 and 10 respectively.

Obviously, the result for a given model in Table 4 is not particularly illuminating, since
it is by definition model-dependent. However, obtaining this maximum allowed mass of the
lightest new charged state for different possible choices of EW gauge representations in both
SSF and FFS models allows us to perform the theory space maximization in Eqn. (2.7), and
hence obtain M

max
BSM,charged for all possible perturbative solutions of the (g � 2)µ anomaly:

M
max,unitarity
BSM,charged ⌘ max

�aµ=�aobsµ , perturbative unitarity

⇢
min

i 2 BSM spectrum

⇣
m

(i)
charged

⌘ �
(4.19)

where we have added the ‘unitarity’ superscript to distinguish this bound from subsequent
results with additional assumptions. We can perform this maximization by taking the
largest values from columns 5 and 6 in Table 4, which are shown in the last row. We
therefore present the final result of our perturbative unitarity analysis of EW Scenarios:

M
max,unitarity
BSM,charged ⇡

(
100 TeV for NBSM = 1

360 TeV for NBSM = 10

)
⇡ (100 TeV) · N

1/2
BSM . (4.20)

The NBSM scaling arises due to the linear dependence of �aµ on NBSM. For FFS models,
this is clearly seen from Eqn. (4.9), while for SSF models this relationship is obscured by
the detailed form of the unitarity bound on , but we verified the approximate

p
NBSM

scaling empirically. New charged states therefore have to appear at or below the 100 TeV
scale unless NBSM is truly enormous, a scenario which is disfavoured not just by theoretical
parsimony but also by avoiding Landau Poles close to the BSM mass scale, see Section 4.7.

It is important to keep in mind that realizing this upper bound from unitarity would also
require extreme alignment of the non-muonic BSM couplings to avoid CLFV decay bounds,
see Section 2.3.2. This can be regarded as a severe form of tuning of the BSM lepton
couplings before mass diagonalization, which disfavours the unitarity-only assumption.

4.4 Constraining the BSM Mass Scale with Unitarity + MFV

As discussed in Section 2.3.2, the MFV assumption is motivated for EW Scenarios by
severe experimental bounds on CLFV decays. Adopting this “Unitarity + MFV” assump-
tion significantly reduces the maximum allowed BSM mass scale. We repeat verbatim the
unitarity-only analysis from Section 4.3, with the additional step of lowering the pertur-
bativity bound on either y1 or y2 by mµ/m⌧ , whichever gives higher BSM masses at that
point in parameter space. (In practice there is almost no difference between these two
possibilities since �aµ / y1y2 up to tiny corrections.) The resulting largest possible mass
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= 86 TeV

5. Since the region of parameter space that can account for �a
obs
µ is compact, we can

determine the highest possible mass of the lightest charged BSM state that is consistent
with this particular EW Scenario accounting for the (g � 2)µ anomaly.

In effect, this procedure allows us to explore the “maximum-BSM-mass boundary” of each
EW Scenario’s parameter space, subject to the requirement that �aµ = �a

obs
µ and the BSM

couplings obey perturbative unitarity. The resulting highest possible mass of the lightest
BSM state in the spectrum for each EW Scenario we examine is listed in columns 5 and 6
of Table 4 for NBSM = 1 and 10 respectively.

Obviously, the result for a given model in Table 4 is not particularly illuminating, since
it is by definition model-dependent. However, obtaining this maximum allowed mass of the
lightest new charged state for different possible choices of EW gauge representations in both
SSF and FFS models allows us to perform the theory space maximization in Eqn. (2.7), and
hence obtain M

max
BSM,charged for all possible perturbative solutions of the (g � 2)µ anomaly:

M
max,unitarity
BSM,charged ⌘ max

�aµ=�aobsµ , perturbative unitarity

⇢
min

i 2 BSM spectrum

⇣
m

(i)
charged

⌘ �
(4.19)

where we have added the ‘unitarity’ superscript to distinguish this bound from subsequent
results with additional assumptions. We can perform this maximization by taking the
largest values from columns 5 and 6 in Table 4, which are shown in the last row. We
therefore present the final result of our perturbative unitarity analysis of EW Scenarios:

M
max,unitarity
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(
100 TeV for NBSM = 1

360 TeV for NBSM = 10

)
⇡ (100 TeV) · N

1/2
BSM . (4.20)

The NBSM scaling arises due to the linear dependence of �aµ on NBSM. For FFS models,
this is clearly seen from Eqn. (4.9), while for SSF models this relationship is obscured by
the detailed form of the unitarity bound on , but we verified the approximate

p
NBSM

scaling empirically. New charged states therefore have to appear at or below the 100 TeV
scale unless NBSM is truly enormous, a scenario which is disfavoured not just by theoretical
parsimony but also by avoiding Landau Poles close to the BSM mass scale, see Section 4.7.

It is important to keep in mind that realizing this upper bound from unitarity would also
require extreme alignment of the non-muonic BSM couplings to avoid CLFV decay bounds,
see Section 2.3.2. This can be regarded as a severe form of tuning of the BSM lepton
couplings before mass diagonalization, which disfavours the unitarity-only assumption.

4.4 Constraining the BSM Mass Scale with Unitarity + MFV

As discussed in Section 2.3.2, the MFV assumption is motivated for EW Scenarios by
severe experimental bounds on CLFV decays. Adopting this “Unitarity + MFV” assump-
tion significantly reduces the maximum allowed BSM mass scale. We repeat verbatim the
unitarity-only analysis from Section 4.3, with the additional step of lowering the pertur-
bativity bound on either y1 or y2 by mµ/m⌧ , whichever gives higher BSM masses at that
point in parameter space. (In practice there is almost no difference between these two
possibilities since �aµ / y1y2 up to tiny corrections.) The resulting largest possible mass
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= 65 TeV

Two representative models: All the models:

Consistent with parametric expectation:
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BSM

, MBSM ' 20 TeV



From unitarity alone,  could be 
explained by ~ 100 TeV charged states 

… 

But let’s put our (model-agnostic) 
theorist hat back on. What would this 

*mean* for nature/physics/the universe?

(g − 2)μ



The Hierarchy Problem Made Real
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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100 TeV BSM state 
with huge coupling 
to the Higgs

If  is explained by such crazy heavy physics, then there 
have to be calculable, finite but large Higgs mass corrections.

(g − 2)μ

H H

Δm2
H ∼

1
4π

g2
SMm2

BSM ≫ (125 GeV)2
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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new fermions couple to 
muon and share its 
chiral symmetry

Calculable, finite but large muon Yukawa correction.


Muon mass no longer technically natural!

μ μ

H

Δyμ ∼
1

4π2
g3

BSM



Discovering these super-high-scale BSM 
solutions to  would *prove* that 
the universe is *calculably* fine-tuned! 

So what would happen if the universe is 
*not* super-fine-tuned? 

(g − 2)μ



Impose conservative naturalness constraint

Let’s “allow” both the Higgs and 
muon mass to be 1% tuned.


This stops couplings and masses 
from being super-large and 
lowers the charged mass upper 
bound. 

That’s more like it!



Any notion of (calculable, concrete, 
conservative) naturalness pushes the 

upper bound to the ~10 TeV scale.  

… 

What about Flavour?



Flavour Constraints
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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What if these couplings 
also talk to the other 
leptons?
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Figure 3: Representative 1-loop contributions to (g � 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

⇤cSµLµ
c
HS,

in which case gS / v/(
p

2⇤), or the interaction comes from a singlet-Higgs mixing, in which
case gS ⇠ yµ sin ✓, where ✓ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV � gV V↵(µ†
L
�̄
↵
µL + µ

c †
�̄
↵
µ
c) +

m
2
V

2
V↵V

↵
. (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g � 2)µ are
shown in Figure 3.

As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ�L⌧ ,
which can still resolve (g � 2)µ for mV 2 (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g � 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ⇠ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
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ec

Charged Lepton-Flavour-
violating (CLFV) decay!



Flavour Constraints

2.3.2 Unitarity and Minimal Flavour Violation

Proposing new scalars with Yukawa couplings to the muon prompts us to ask how these new
degrees of freedom couple to the other lepton generations. The physics which solves the (g�

2)µ anomaly would have to be embedded in whichever UV-complete framework explains the
flavour structure of the SM fermions. From a bottom-up perspective, this is most relevant
since flavour-changing neutral currents (FCNCs) in the lepton sector, most importantly
charged-lepton flavour violating (CLFV) decays `i ! `j�, are tightly constrained [54, 55]:

Br(µ ! e�) < 4.2 ⇥ 10�13 (2.13)
Br(⌧ ! µ�) < 4.4 ⇥ 10�8 (2.14)
Br(⌧ ! e�) < 3.3 ⇥ 10�8 (2.15)

It is well known that CLFV constraints impose stringent requirements on BSM solutions
to the (g � 2)µ anomaly (see e.g. [41, 90]). We can demonstrate this by considering a
flavour-anarchic version of the scalar Singlet Scenario:

�L � S(geeS eLe
c + g

µµ

S
µLµ

c + g
⌧⌧

S ⌧L⌧
c + g

eµ

S
µLe

c + g
µe

S
eLµ

c
. . .) . (2.16)

where “. . . ” indicates the additional off-diagonal terms. This would generate flavour-
violating versions of the low-energy operator Eqn. (2.1)

Le↵ = C
(ij)
e↵

v

M2
(`(j)

L
�
⌫⇢

`
(i)c)F⌫⇢ + h.c. , (2.17)

where i, j are lepton generation indices. The assumption that the above scalar Singlet
Scenario resolves the (g � 2)µ anomaly fixes the C

µµ

e↵ Wilson coefficient. Assuming for
simplicity that C

µµ

e↵ is fully determined by g
µµ

S
, this determines all the other operators up

to ratios of g
ij

S
couplings:

C
ij

e↵ ⇡
max(m`i , m`j )

mµ

X

k

g
ik

S

g
µµ

S

g
kj

S

g
µµ

S

, (2.18)

where we have set g
ij

S
= g

ji

S
, again for simplicity. It is straightforward to obtain CLFV

branching ratios from this low-energy description, which can be used to constrain ratios of
the singlet scalar couplings to different fermion generations:

X

`

g
µ`

S

g
µµ

S

g
`e

S

g
µµ

S

. 1 ⇥ 10�5
,

X

`

g
⌧`

S

g
µµ

S

g
`µ

S

g
µµ

S

. 7 ⇥ 10�3
,

X

`

g
⌧`

S

g
µµ

S

g
`e

S

g
µµ

S

. 6 ⇥ 10�3
, (2.19)

from µ ! e� , ⌧ ! µ� and ⌧ ! e� decays respectively. We emphasize that these bounds
assume that g

µµ

S
is fixed to generate �a

obs
µ . Clearly, flavour-universal couplings of the

singlet scalar are excluded, and flavour-anarchic couplings are severely disfavoured by CLFV
bounds.

The situation is similar for EW Scenarios. Consider flavour anarchic versions of the
SSF and FFS models:

�LSSF � y
i

1F
c
Li�

⇤
A + y

i

2F `
c

i�B + H�⇤
A�B (2.20)

�LFFS � y
i

1F
c

ALiS
⇤ + y

i

2FB`
c

iS + y12HFAF
c

B . (2.21)
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Again, in this anarchic ansatz, the same new fermions and scalars that account for the (g �

2)µ anomaly generate the flavour violating operators in Eqn. (2.17), and C
ij

e↵ is determined
by �a

obs
µ up to coupling ratios:

C
ij

e↵ ⇡
g
i

S

g
µ

S

g
j

S

g
µ

S

, (2.22)

where we again assumed for simplicity that y
i

1 = y
i

2 and that C
µµ

eff
is fully determined by

y
µ

1,2. The only difference to scalar Singlet Scenarios is the absence of the lepton mass ratio
in Eqn. (2.18), since for FFS and SSF models, the chirality flip and Higgs coupling insertion
now lie on the propagators of the BSM particles in the loop. Repeating the estimates for
CLFV decay branching ratios, we obtain the following bounds on the lepton coupling ratios:

y
e

1,2

y
µ

1,2

. 10�5
,

y
⌧

1,2

y
µ

1,2

. 10�1
,

y
⌧

1,2

y
µ

1,2

y
e

1,2

y
µ

1,2

. 10�1
, (2.23)

from µ ! e� , ⌧ ! µ� and ⌧ ! e� decays respectively if y
µ

1,2 is fixed by resolving the
(g � 2)µ anomaly.

Clearly CLFV constraints, in particular µ ! e�, exclude flavour-universal BSM solu-
tions to the (g � 2)µ anomaly (that involve new scalars), and severely constrain flavour-
anarchic ones. It is of course possible that a flavour anarchic model evade the above con-
straints by some coincidence (perhaps all the more unlikely given that the above coupling
ratio constraints have to be satisfied in the lepton mass basis after PMNS diagonalization,
not the lepton gauge basis). However, it seems much more reasonable to take the absence of
observed CLFVs as evidence of some protection against FCNCs in whatever UV-complete
theory solves the SM flavour puzzle, and that the physics of (g � 2)µ has to respect that
protection.

A robust model-independent framework that encompasses many possible flavour em-
beddings and provides strong protection against FCNCs is the Minimal Flavour Violation
(MFV) ansatz (see e.g. [52, 53]). In MFV, the SM Higgs Yukawa matrices couplings are
assumed to be the only spurions of global U(3)L ⇥U(3)`c ! U(1)lepton flavour breaking, so
that all BSM flavour violation is aligned with the SM Yuwakas. Such a structure naturally
emerges if the SM Yukawa matrices arise as the VEVs of heavy UV fields responsible for
breaking a larger flavour group.

The MFV ansatz does not specify the representations of BSM fields under the flavour
group, but it does require all Lagrangian terms to be flavour-singlets (with the Yukawa
matrices as spurions). This would, for example, forbid off-diagonal terms in Eqn. (2.16),
avoiding large CLVFs while still providing a viable explanation for (g�2)µ over a wide range
of scalar masses [101]. For EW Scenarios, the muon-scalar-fermion index has to involve a
Yukawa coupling factor and the scalar and fermion together have to contract into triplets
of U(3)L or U(3)`c . This automatically forbids interactions of the form Eqn. (2.20) since
there would have to be at least one separate BSM fermion (or scalar) for each lepton flavour
and the CLFV diagrams are not generated.8

8This statement is strictly true only for massless neutrinos, in which case the lepton Yukawa matrices are
spurions of U(3)L ⇥ U(3)`c ! U(1)e ⇥ U(1)µ ⇥ U(1)⌧ flavor breaking and lepton flavors are are separately
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Flavour-anarchic models highly disfavoured! 


There needs to be some kind of flavour structure.

Simplest ansatz for avoiding CLFVs: Minimal Flavour Violation (MFV)!


All flavour violation ~ SM Yukawas.



Impose Minimal Flavour Violation

Some Muon-type and Tau-type 
BSM couplings are then related by 

.


The larger Tau-type coupling has to 
obey the unitarity bound.

mτ /mμ ≈ 17

Flavour points us below 20 TeV as well!



Flavour or Naturalness separately 
impose ~ 20 TeV charged mass upper 

bounds. 

They’re both pretty important. What if we 
impose them together?



Impose MFV + Naturalness

10 TeV scale, with little 
dependence on BSM multiplicity!



Charged BSM Particle Mass Upper Bounds

Any “reasonable” theory wants to live below 10 TeV. 


Not discovering charged states below 10 TeV would then be 
proof of a tuned universe with flavour weirdness



Experimental Target 
for discovering BSM

2006.16277, 2101.10334 

Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic
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Indirect signatures at  
30 TeV Muon Collider*

2012.02769 Buttazzo, Paradisi
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strange and is 
provably tuned



Low Energy Experiments



Intensity Frontier Experiments
A lot of Singlet Scenario parameter space is already excluded below a few GeV.

BaBar Collaboration 1606.03501

See also e.g.:
Mohlabeng 1809.07768
Dark Sector Community Report 1707.04591
SHiP physics case 1504.04855
Krnjaic 1512.04119
Batell, Freitas, Ismail, McKeen 1712.10022
Chen, Pospelov, Zhong, 1701.07437
Bauer, Foldenauer, Jaeckel, 1803.05466



Muon Fixed Target Experiment
Could do fully inclusive search for  few GeV singlet coupling to muon.≲

V
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Figure 1. Dark bremsstrahlung signal process for simplified models with invisibly decaying scalar (left) and

vector (right) forces that couple predominantly to muons. In both cases, a relativistic muon beam is incident

on a fixed target and scatters coherently o↵ a nucleus to produce the new particle as initial- or final-state

radiation.

for a larger signal production rate while exploiting the fact that the muons will lose much less energy
than electrons in a similarly-sized target. In analogy with similar processes involving electron beams,
one can take advantage of the distinctive kinematics of the radiated massive scalar or vector particle
S, V to distinguish signal from background (see Fig. 1). The Fermilab muon beam option provides
several advantages over existing proposals for new physics searches with either electron beams or
high-energy muon beams:

• Bremsstrahlung backgrounds suppressed. The principal reducible backgrounds for LDMX
are dominated by hadronic processes initiated by a real bremsstrahlung photon. Relative to elec-
tron beams, the M3 bremsstrahlung rate is suppressed by (me/mµ)2 ⇡ 2 ⇥ 10�5, so background
rejection becomes much simpler for muon beams for an equivalent target thickness.

• Compact experimental design. For mS,V ⌧ Ebeam, the signal production cross section is
largely independent of beam energy. However, compared to the CERN/SPS option [9], with
⇠ 100�200 GeV beam muons, a lower-energy, e.g. 15 GeV, muon beam allows for greater muon
track curvature and, therefore, a more compact experimental design. In particular, percent-
level momentum resolution is possible in M3 with the target placed in the magnetic field region,
reducing acceptance losses from having the magnet downstream of the target.

We propose a two-phase experiment, each covering a well-motivated region of parameter space:

• Phase 1: (g � 2)µ search. With 1010 muons on target (MOT) and existing detector technology,
we will show that our setup can probe the entire (g � 2)µ region not currently excluded by
experiments, for vectors with mV . 500 MeV and scalars with mS . 100 MeV which couple
exclusively to muons and decay invisibly.2 Here we are agnostic as to the UV completion of such
a model, and we are simply aiming for an apples-to-apples comparison between a virtual S or V
contributing to (g � 2)µ and a real S or V emitted from an initial- or final-state muon.

• Phase 2: Thermal muon-philic DM search. With a larger flux of 1013 MOT and upgraded
detector performance to reject backgrounds at the level of 10�13, our setup can probe a significant
portion of parameter space for which DM is thermally produced through U(1)Lµ�L⌧ gauge

2
Models with a more complicated dark sector can fail our search criteria, for example an inelastic DMmodel V ! �1�2

where the decay �2 ! �1e+e� is prompt and proceeds through a di↵erent mediator which couples to electrons [16–18].
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Figure 9. Parameter space for a muon-philic scalar S (left) or vector V (right) particle as described in Sec 2.1.

The green bands represent the parameter space for which such particles can reconcile the (g� 2)µ anomaly to

within 2� of the measured value. Also shown are the M3 projections for Phases 1 and 2 involving the Fermilab

test beam facility and the Neutrino (NM4) beamline respectively (see Sec. 5.2 for more details). For the vector

plot, the gray dashed curve is the NA64µ projection for an invisibly decaying vector particle, which uses the

projections in [9], but rescales the region mV > 2mµ to ensure BR(V ! invisible) = 1; a comparable analysis

for scalars at NA64µ would also cover new parameter space. Note also that for mV,S < 1 MeV, the new

invisibly decaying particles will be in thermal equilibrium with the Standard Model during BBN and increase

Ne↵ , so we do not consider this regime.

6 Projected Sensitivities

In this section, we discuss the sensitivity of the experimental proposal in the zero background regime.
For our signal projection, we assume a 50 X0 tungsten target and generate a sample of µN ! µN(S, V )
simulated events for various choices of V, S masses using a modified version of MadGraph which includes
nuclear target form factors (see Sec 3). We also impose energy and angular cuts to keep only those
events in which the outgoing muon passes through the forward tracking layers (pz > 0 to avoid
backwards scattering) and satisfies E < Ecut = 9 GeV. For most values of mS,V that we consider,
these cuts yield an order-one signal acceptance as shown in Fig. 5.

6.1 Phase 1: (g � 2)µ sensitivity

Fig. 9 shows the target parameter space for light new physics contributions to (g�2)µ. The grey region
is excluded because the contribution to (g � 2)µ is greater than 5� from the measured value, while
green region would resolve the (g � 2)µ anomaly to within ±2�. We see that Phase 1 can completely
exclude all new-physics explanations for (g � 2)µ at mass scales below 100 MeV, and higher for vector
mediators and/or looser cuts which could still allow for a background-free search. For comparison, we
also show the reach for Phase 2, which can extend the exclusion region to 1 GeV for both scalars and
vectors.
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Kahn, Krnjaic, Tran, Whitbeck, 1804.03144

M3 proposal at Fermilab / NA64  at CERN: Complete coverage for 15 / 150 GeV 
muon beam on target.

μ

S.N. Gninenko, N.V. Krasnikov, M.M. Kirsanov, D.V. Kirpichnikov 1604.08432

TAGGING TRACKER

MAGNET
ECAL

HCAL
μ-

RECOIL  
TRACKER E/

20 CM

TARGET

Figure 2. Experimental schematic. The incoming muon beam passes through a tagging tracker in the

magnetic field region before entering the tungsten target. Outgoing muons are detected with a recoil tracker,

with the magnet fringe field providing a momentum measurement. Electromagnetic and hadronic calorimeters

veto on photons and hadrons produced in hard interactions in the target which could lead to significant muon

energy loss.

interactions, and V is identified as the gauge boson of this new U(1). Such models are inaccessible
with both traditional WIMP searches [19–25] and to most of the emerging sub-GeV dark matter
search program, which consists of of new direct detection [26–39] and fixed target experiments
with electron [12, 13, 40–43] and proton beams [16, 44–51]; for a review and summary, see [3].

We emphasize that M3 Phase 1 can be completed with minimal modifications to the Fermilab
muon source and with only a few months of data-taking. A null result would decisively exclude any
new-physics explanation of the (g � 2)µ anomaly from invisibly-decaying muon-philic particles below
100 MeV. Phase 2 is comparable to the CERN SPS proposal, and in this paper we focus specifically on
the advantages of pairing such an experiment with the lower-energy Fermilab muon beam, highlighting
the relevance of this search to the thermal DM parameter space. Furthermore, both phases could be
implemented as muon-beam reconfigurations of the proposed LDMX experiment with few additional
modifications.

This paper is organized as follows. In section 2 we review the physics motivation for our benchmark
models; in section 3 we discuss the characteristics of signal production; in section 4 we describe the
basic experimental setup and relevant background processes; in section 5 we describe the necessary
detector and beam properties; in section 6 we describe the projected sensitivities of our Phase 1 and
Phase 2 proposals; finally, in section 7 we o↵er some concluding remarks.

2 Physics Motivation

In this section we present the physics motivation for invisibly decaying muon-specific scalars S or
vectors V . We begin by reviewing the contributions of vector and scalar particles to (g � 2)µ, and
then present a concrete benchmark model with a muon-philic gauge interaction which can be coupled

– 4 –

M3



A muon fixed-target experiment would allow 
*fully inclusive* coverage for  

solutions of the  anomaly. 

Very important near-term experimental 
opportunity!

≲ GeV
(g − 2)μ



Muon Colliders



Muon Colliders: not a crazy idea
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AccelerationLow EMmittance Muon 
Accelerator (LEMMA): 
1011 µ pairs/sec from 

e+e− interactions.  The small 
production emittance allows lower 
overall charge in the collider rings 
– hence, lower backgrounds in a 

collider detector and a higher 
potential CoM energy due to 

neutrino radiation.

Fig. 2: Schematic layouts of Muon Collider complexes based on the proton driver scheme and on the low emittance
positron driver scheme emphasizing synergies.

R&D to address their feasibility is summarized in Ref. [1]. Their basic layouts are shown in Figure 2,
emphasizing synergies. The idea of muon colliders was first introduced in the early 1980’s [14, 15]
and further developed by a series of world-wide collaborations [16, 17] culminating in creation of the
US Muon Accelerator Program (MAP) [18] in 2011. MAP developed the concepts of a proton driver
scheme and addressed the feasibility of the novel technologies required for Muon Colliders and Neu-
trino Factories [19]. In the scheme (see section 3.2), the muons are generated as tertiary particles in the
decays of the pions created by an intense proton beam interacting a heavy material target. In order to
achieve high luminosity in the collider, the resulting initial low energy muon beam with short lifetime,
with large transverse and longitudinal emittances, has to be cooled by five orders of magnitude in the
six-dimensional phase-space and rapidly accelerated to minimize the decrease of the intensity due to
muon decays.

A novel approach of the Low Emittance Muon Accelerator (LEMMA) based on muon pair pro-
duction with a positron beam impinging on electrons at rest in a target [20] was recently proposed and is
now under conceptual study [21]. The corresponding positron driver scheme is described in section 3.3.
The muons produced in the e+e� interactions close to threshold are constrained into a small phase-space
region, effectively producing a muon beam with very small transverse emittances [22], comparable to
those typically obtained in electron beams without necessitating any cooling. These muon pairs are pro-
duced with an average energy of 22 GeV corresponding to an average laboratory lifetime of ⇠ 500µs,
which mitigates the intensity losses by muon decay and eases the acceleration scheme. Potentially high
luminosity could be reached with relatively small muon fluxes, reducing background and activation prob-
lems due to high energy muon decays, and thus mitigating the on-site neutrino radiation issue. Conse-
quently, the LEMMA scheme, although not appropriate for a Higgs Factory due to a too large beam
energy spread, is very attractive for a collider in the multi-TeV range, extending the energy reach of
muon colliders which can be limited by neutrino radiation.

3.2 Proton driver scheme

3.2.1 Design status
In the proton driver scheme [17,18] muons are produced as tertiary particles from decay of pions created
by a high-power proton beam impinging a high Z material target. The majority of the produced pions
have momenta of a few hundred MeV/c, with a large momentum spread and large transverse momentum
components. Hence, the daughter muons are produced at low energy within a large longitudinal and
transverse phase-space. This initial muon population must be confined transversely, captured longitudi-
nally, and have its phase-space manipulated to fit within the acceptance of an accelerator. These beam
manipulations must be done quickly, before the muons decay.

5

Significant progress on muon cooling problem:
Hot muons from pions

or cold muons from positrons

2103.14043

Input to the European Particle Physics Strategy Update

Muon Colliders

The Muon Collider Working Group

Jean Pierre Delahaye1, Marcella Diemoz2, Ken Long3, Bruno Mansoulié4, Nadia Pastrone5 (chair),
Lenny Rivkin6, Daniel Schulte1, Alexander Skrinsky7, Andrea Wulzer1,8

1 CERN, Geneva, Switzerland
2 INFN Sezione di Roma, Roma, Italy

3 Imperial College, London, United Kingdom
4 CEA, IRFU, France

5 INFN Sezione di Torino, Torino, Italy
6 EPFL and PSI, Switzerland

7 BINP, Russia
8 LPTP, EPFL, Switzerland and University of Padova, Italy

Muon colliders have a great potential for high-energy physics. They can offer collisions of point-like par-
ticles at very high energies, since muons can be accelerated in a ring without limitation from synchrotron
radiation. However, the need for high luminosity faces technical challenges which arise from the short
muon lifetime at rest and the difficulty of producing large numbers of muons in bunches with small
emittance. Addressing these challenges requires the development of innovative concepts and demanding
technologies.
The document summarizes the work done, the progress achieved and new recent ideas on muon colliders.
A set of further studies and actions is also identified to advance in the field. Finally, a set of recommen-
dations is listed in order to make the muon technology mature enough to be favourably considered as a
candidate for high-energy facilities in the future.

Contact: Nadia Pastrone, nadia.pastrone@cern.ch
Webpage: https://muoncollider.web.cern.ch
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4 dedicated sessions at 
APS this year! Interest is 
there, g-2 is more “value 
added” for  physics 
motivation

A lepton collider to reach the highest energies? 

see Snowmass Muon Collider Forum for current status updates: 
https://indico.fnal.gov/event/48416/

https://indico.fnal.gov/event/48416/


Muon Colliders: energy and precision

Muon Smasher’s Guide 2103.140432005.10289 Constantini, De Lillo, Maltoni, Mantani, Mattelaer, Ruiz, Zhao
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Fig. 1: Left panel: the energy at which the proton collider cross-section equals that of a muon collider. The dashed
line assumes comparable Feynman amplitudes for the muon and the proton production processes. A factor of ten
enhancement of the proton production amplitude squared, possibly due to QCD production, is considered in the
continuous line. Right panel: Higgs and top-quark production cross-sections at high energy lepton colliders.

for
p
sµ ⌧

p
sp, as shown on the left panel of Figure 1.

Naively, one would expect the lower background level could be another advantage of the muon
collider relative to hadronic machines. However it is unclear to what extent this is the case because of
the large beam background from the decay of the muons, discussed in section 4.

Figure 1 suggests that a 14 TeV muon collider with sufficient luminosity might be very effective
as a direct exploration machine, with a physics motivation and potential similar to that of a 100 TeV
proton-proton collider [4]. Although detailed analyses are not yet available, it is expected that a future
energy frontier muon collider could make decisive progress on several beyond-the-SM questions, and
to be conclusive on some of these questions. By exploiting the very large vector-boson fusion (VBF)
cross-section, a muon collider could search extensively for new particles coupled with the Higgs boson,
possibly related to electroweak baryogenesis [5]. It might also discover Higgsinos or other heavy WIMP
dark matter scenarios [6]. In this context, it is important to remark that motivated “minimal” WIMP dark
matter candidates might have a mass of up to 16 TeV. Generic electroweak-charged particle with easily
identifiable decay products up to a mass of several TeV can be searched for. Relevant benchmarks are
the (coloured) top partners related with naturalness, which should be present at this high mass even in
elusive “neutral naturalness” scenarios.

The ability to perform measurements, which probe New Physics indirectly
2, is another important

goal of future collider projects. The high energy of a muon collider could also be beneficial from this
viewpoint, in two ways. First, indirect New Physics effects are enhanced at high energy, so that they
can show up even in relatively inaccurate measurements. This is the mechanism by which the 3 TeV
CLIC might be able to probe the Higgs compositeness scale above 10 TeV (or a weakly-coupled Z

0 up
to 30 TeV) with di-fermion and di-boson measurements at the 1% level [7], while an exquisite precision
of 10�4

/10
�5 would be needed to achieve the same goal with low-energy (e.g., Z-pole) observables. At

a 30 TeV muon collider, with suitably scaled luminosity, the reach would increase by a factor of 10. The
second important aspect is that some of the key processes for Higgs physics, namely those initiated by
the vector boson fusion (see the right panel of Figure 1), have very large cross-sections. For instance with
an integrated luminosity of 10 ab

�1, a 10 TeV muon collider would produce 8 million Higgs bosons,
with 30’000 of them by the pair production mechanism that is sensitive to the trilinear Higgs coupling.
While further study is required, especially in view of the significant level of machine background that
is expected at a muon collider, these numbers might allow a satisfactory program of Higgs couplings
determination.

A detailed assessment of the muon collider luminosity requirements will result from a compre-
hensive investigation of the physics potential, which is not yet available. However a simple and robust

2Precision would also allow the characterization of newly discovered particles.

3

Colliding elementary 
particles allows full beam 

energy to go into new 
particle production.

Huge enhancement for VBF 
production of EW states with 

 m ≪ s

High energy and high precision = ‘best-
of-both-worlds’ BSM reach 

If cooling problem can be solved, 
O(10 TeV) energies being considered.

Higgs precision!



Muon colliders an incredibly attractive path to 
explore high energy physics. 

Bonus:  
They are also “guaranteed” to discover the 

new physics of (g − 2)μ



 ~ 200 GeV - 3 TeV: Discovering Singlet Scenarioss

µ
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?
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Figure 5: Single production of the singlet in association with a photon at a muon collider. The
singlets can be stable and constitute missing energy, or decay to any SM final states. The search
is defined by the search for the recoiling photon, as well as any possible SM final states (including
missing energy) inside the singlet decay cone.

how they decay to optimally search for them at the collider. We want to avoid such a model
dependence by implementing an inclusive analysis for singlet + photon production with the
following signal topology for a given singlet mass mS , illustrated in Figure 5:

1. A nearly monochromatic photon with E� ⇠
p

s/2 (with some mild dependence on
the singlet mass) in one half of the detector.

2. No other activity anywhere else in the detector, except inside of a “singlet decay cone”
of angular size �max around the assumed singlet momentum vector ~pS = �~p� .

3. For each singlet mass, �max is defined as the opening angle within which ⇠ 95% of
singlet decay products must lie, regardless of decay mode. This is determined from
simulation under the assumption that the singlet decays to two massless particles,
which gives the largest possible opening angle of any decay mode.

4. There are no requirements of any kind on what final states are found inside the singlet
decay cone. This gives near-unity signal acceptance for stable singlets (resulting in
missing energy) as well as all possible visible or semi-visible decay modes.

The veto on detector activity anywhere except the monochromatic photon and inside the
singlet decay cone would have to be adjusted for a realistic analysis due to the presence of
BIB and initial- and final-state radiation. However, the former is likely to be subtractable
and the latter are small corrections at a lepton collider, not greatly reducing signal accep-
tance. We therefore ignore this complication with the understanding that a more complete
treatment would not significantly change our results.

This inclusive analysis allows us to remain as model-independent as possible, something
that is necessary when scanning over a large range of singlet masses with only the coupling to
the muon known, without paying any branching fraction penalty that would arise by perhaps
trying to exploit some minimum decay rate to muons. For instance, for mS & 200 GeV, the
muon coupling is > 1, making it natural for the dominant decay mode to yield two muons,
although other visible or invisible decay modes could be co-dominant. For smaller masses,
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Discovering the singlet production in 
fully inclusive search: 

mono-photon + anything

Indirect observation: 
corrections to  

Bhabha scattering
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Figure 7: Feynman diagrams for Bhabha scattering in the SM (top) and contributions from
singlet scalars or vectors (bottom). (Note that the arrows in this diagram represent charge flow,
not helicity.)

When the energy of the collisions is close to the mass of the singlets, the distinctive signature
of Bhabha scattering is a resonance peak at the mass of the singlet. However, when the
energy of the collisions is lower, one could instead can look for deviations in the total cross
section of the process due to contributions from off-shell singlets. The potential problem
with this approach is that measurements of total rates for Bhabha scattering are sometimes
used to calibrate beams and measure instantaneous luminosity [116]. To avoid possible
complications in that regard, one can measure deviations in ratio variables similar to a
forward-backward asymmetry in parity-violating observables. Ratio variables also have
the advantage of mitigating the effect of systematics. We therefore define the ratio of the
number of forward to backward µ

+
µ
�

! µ
+
µ
� events:

rFB ⌘

Z
c✓0

0

d�

dc✓
dc✓

Z 0

�c✓0

d�

dc✓
dc✓

, (3.8)

where c✓ is the cosine of the muon scattering angle, d�/dc✓ is the differential cross section of
the process µ

�
µ
+

! µ
�
µ
+, and the minimum angle ✓0 is given by the angular acceptance

of the MuC detector. The dependence of this variable on singlet mass is illustrated in
Fig. 8 for a 215 GeV (left) and 3 TeV (right) MuC. For a given mass, the singlet coupling is
determined by the value of (g � 2)µ. Note that this result again does not depend on NBSM

since it depends only on g
2
S,V

NBSM, which is fixed by �aµ = �a
obs
µ .

In Figure 8, blue lines represent the SM result. As expected, the number of forward
events exceeds that of the backward events by orders of magnitude in the SM. This is
typical for Bhabha scattering due to t-channel enhancements. The contribution of singlets
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2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Only *guaranteed* coupling of singlet is to muons: Muon Collider is special!



 ~ 200 GeV - 3 TeV: Discovering Singlet Scenarioss

2006.16277, 2101.10334 Rodolfo Capdevilla, DC, Yonatan Kahn, Gordan Krnjaic

Collider study including conservative detector effects shows lumi needed for discovery



A TeV-scale muon collider program would 
discover all Singlet solutions to the  

anomaly. 
(g − 2)μ



 ~ 10 TeV: Discovering EW Scenarioss

Lepton collider: if you can make the charged state, you should be able to 
discover it regardless of decay mode.  

10 TeV muon collider covers by far the most motivated parameter space…  
30 TeV if you “want to be sure” to catch all remotely natural possibilities.

⇒ s ≳ 2mcharged



A 30 TeV muon collider will discover all 
“reasonable” EW Scenarios that account for 

the  anomaly.  

But what if you don’t see anything?

(g − 2)μ



 ~ 10 TeV: Indirect  Signals hγ 2012.02769 Buttazzo, Paradisi

2012.03928 Yin, Yamaguchi

2012.02769
If the new physics is heavier than 15 TeV, 
a 30 TeV muon collider could still see the  

  

signal produced by the same operator 

  

μμ → hγ

1
M2

H†(Lσνρμc)Fνρ



A 30 TeV muon collider will see either new 
charged states, and/or the indirect  

 signal! 
Therefore, if you don’t see new charged 
states, you **know** the states are there 

but at higher masses. 

 Proof of a very weird and tuned universe!

μμ → hγ

→
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No-Lose Theorem for (g − 2)μ

Thank you!

1. Confirm the  anomaly is real.


2. Look for  GeV Singlet Scenarios in  fixed target experiments.


3. Build a TeV-scale muon collider. Discover all Singlet solutions  
(and probe deep into EW Scenario parameter space as well).


4. Build a 10-TeV-scale muon collider. Discover all “reasonable”  
Electroweak solutions, and/or observe  signal.


5. Either find new particles, or prove the universe is explicitly, calculably 
fine-tuned with weird flavour physics.  
 
Either way, a comprehensive muon program revolutionizes our 
understanding of the universe. 

(g − 2)μ

≲ μ

hγ
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– hence, lower backgrounds in a 

collider detector and a higher 
potential CoM energy due to 

neutrino radiation.

Fig. 2: Schematic layouts of Muon Collider complexes based on the proton driver scheme and on the low emittance
positron driver scheme emphasizing synergies.

R&D to address their feasibility is summarized in Ref. [1]. Their basic layouts are shown in Figure 2,
emphasizing synergies. The idea of muon colliders was first introduced in the early 1980’s [14, 15]
and further developed by a series of world-wide collaborations [16, 17] culminating in creation of the
US Muon Accelerator Program (MAP) [18] in 2011. MAP developed the concepts of a proton driver
scheme and addressed the feasibility of the novel technologies required for Muon Colliders and Neu-
trino Factories [19]. In the scheme (see section 3.2), the muons are generated as tertiary particles in the
decays of the pions created by an intense proton beam interacting a heavy material target. In order to
achieve high luminosity in the collider, the resulting initial low energy muon beam with short lifetime,
with large transverse and longitudinal emittances, has to be cooled by five orders of magnitude in the
six-dimensional phase-space and rapidly accelerated to minimize the decrease of the intensity due to
muon decays.

A novel approach of the Low Emittance Muon Accelerator (LEMMA) based on muon pair pro-
duction with a positron beam impinging on electrons at rest in a target [20] was recently proposed and is
now under conceptual study [21]. The corresponding positron driver scheme is described in section 3.3.
The muons produced in the e+e� interactions close to threshold are constrained into a small phase-space
region, effectively producing a muon beam with very small transverse emittances [22], comparable to
those typically obtained in electron beams without necessitating any cooling. These muon pairs are pro-
duced with an average energy of 22 GeV corresponding to an average laboratory lifetime of ⇠ 500µs,
which mitigates the intensity losses by muon decay and eases the acceleration scheme. Potentially high
luminosity could be reached with relatively small muon fluxes, reducing background and activation prob-
lems due to high energy muon decays, and thus mitigating the on-site neutrino radiation issue. Conse-
quently, the LEMMA scheme, although not appropriate for a Higgs Factory due to a too large beam
energy spread, is very attractive for a collider in the multi-TeV range, extending the energy reach of
muon colliders which can be limited by neutrino radiation.

3.2 Proton driver scheme

3.2.1 Design status
In the proton driver scheme [17,18] muons are produced as tertiary particles from decay of pions created
by a high-power proton beam impinging a high Z material target. The majority of the produced pions
have momenta of a few hundred MeV/c, with a large momentum spread and large transverse momentum
components. Hence, the daughter muons are produced at low energy within a large longitudinal and
transverse phase-space. This initial muon population must be confined transversely, captured longitudi-
nally, and have its phase-space manipulated to fit within the acceptance of an accelerator. These beam
manipulations must be done quickly, before the muons decay.
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Figure 2. Experimental schematic. The incoming muon beam passes through a tagging tracker in the

magnetic field region before entering the tungsten target. Outgoing muons are detected with a recoil tracker,

with the magnet fringe field providing a momentum measurement. Electromagnetic and hadronic calorimeters

veto on photons and hadrons produced in hard interactions in the target which could lead to significant muon

energy loss.

interactions, and V is identified as the gauge boson of this new U(1). Such models are inaccessible
with both traditional WIMP searches [19–25] and to most of the emerging sub-GeV dark matter
search program, which consists of of new direct detection [26–39] and fixed target experiments
with electron [12, 13, 40–43] and proton beams [16, 44–51]; for a review and summary, see [3].

We emphasize that M3 Phase 1 can be completed with minimal modifications to the Fermilab
muon source and with only a few months of data-taking. A null result would decisively exclude any
new-physics explanation of the (g � 2)µ anomaly from invisibly-decaying muon-philic particles below
100 MeV. Phase 2 is comparable to the CERN SPS proposal, and in this paper we focus specifically on
the advantages of pairing such an experiment with the lower-energy Fermilab muon beam, highlighting
the relevance of this search to the thermal DM parameter space. Furthermore, both phases could be
implemented as muon-beam reconfigurations of the proposed LDMX experiment with few additional
modifications.

This paper is organized as follows. In section 2 we review the physics motivation for our benchmark
models; in section 3 we discuss the characteristics of signal production; in section 4 we describe the
basic experimental setup and relevant background processes; in section 5 we describe the necessary
detector and beam properties; in section 6 we describe the projected sensitivities of our Phase 1 and
Phase 2 proposals; finally, in section 7 we o↵er some concluding remarks.

2 Physics Motivation

In this section we present the physics motivation for invisibly decaying muon-specific scalars S or
vectors V . We begin by reviewing the contributions of vector and scalar particles to (g � 2)µ, and
then present a concrete benchmark model with a muon-philic gauge interaction which can be coupled
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