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LIGO’s optical
Parametric amplifier

How strongly can we
probe the LIGO mirrors?
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Every New Every New WavelengthWavelength
In 1610, Galileo pointed a telescope 
to the sky, and changed the way we 

learn about our Universe

Since then, every new wavelength 
discovers new objects,
maps new populations,

probes new physics

Credits: CMB: Planck, South Pole Telescope; radio: Haslam et al. 1982; infrared: NASA, DESGW; optical: ESO/S. Brunier; X-ray: 
Max Planck Institute for Extraterrestrial Physics and S. L. Snowden; gamma-ray: NASA/DOE/Fermi LAT Collaboration

microwaveradio

infrared

x-ray

optical

gamma-ray
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Every new Every new MessengerMessenger
● New modalities from 

astro-particle physics and 
gravitational waves

● Each modality observes in a 
new way, is a new messenger

● Complementary observations  
with electromagnetic imaging

● The dawn of 
multi-messenger astrophysics

Mészáros, P., Fox, D. B., Hanna, C. & Murase, K. 
Multi-messenger astrophysics. Nature Reviews Physics 1, 585–599 (2019). 
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Image: Daniel Price (University of Exeter) and 
Stephan Rosswog (International University Bremen), Science 2006

Gravitational Waves from the Cosmic Collider  Gravitational Waves from the Cosmic Collider  

Binary black holes Gravitational transients in 
spacetime

Neutron Star “atom smashing”

https://www.youtube.com/watch?time_continue=20&v=i2u-7LMhwvE&feature=emb_logo
http://www.ex.ac.uk/
http://www.iu-bremen.de/
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Gravitational Wave DetectivesGravitational Wave Detectives

λ=1064nm

Power Meter

Interference 
Readout

Laser

st
ra

in
, h

time, t

Prof. Rainer Weiss
(MIT)

Prof. Kip Thorne 
(Caltech)
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LIGO Hanford 
Observatory

(Washington State)

LIGO Livingston 
Observatory
(Louisiana)

Two LIGO Observatories
 

each one a
laser interferometer with 4 km arms Prof. Barry Barish (Caltech)

Image Credit: Nobel
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Observatory NetworkObservatory Network
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Detections, Physics, AstrophysicsDetections, Physics, Astrophysics

Observing Run 2 Catalog GWTC-1 
Phys. Rev. X 9, 031040

Observing Run 3a Catalog: GWTC-2
arXiv:2010.14527 [gr-qc]

The zoo or orrery exhibits a population.

The population is made of individuals.
each is exciting!

https://arxiv.org/abs/2010.14527
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L

+δL/2

-δL/2

Gravitational Strain TransductionGravitational Strain Transduction
Phys. Rev. Lett. 116, 061102

Power Meter 
 

Laser
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The Michelson InterferometerThe Michelson Interferometer

λ=1064nm

Power Meter

Interference 
Readout

Laser

Each photon gives 
1064nm/2π  measurement

minimum measurable length 
variance from counting photons

~           photons/s in 
    1 Watt of 1064nm light



11Lee McCuller at FNAL Feb. ‘21

advanced LIGO Sensitivityadvanced LIGO Sensitivity

Reference Curves LIGO T1800042-v5

BNS: 170 M
pc   B

BH: 1600 Mpc

BNS: 325 M
pc    B

BH: 2500 M
pc

O2, 2017 O3, no squeezing
2019, O3
O3, fundamental

aLIGO design
A+ design ~2024

Rates: LIGO-VIRGO Collab. G1901322

st
ra

in

time, t

1) Strain Noise Spectrum: Interferometers measure GW timeseries chirping through frequency. 
this is the standard deviation error density, at each frequency

2) Inspiral Range: The distance to which fiducial 1.4/1.4 Msol binary neutron star coalescence is 
detectable, on average. 

  1 Mpc ≈ 3e6 light-years
  The event-rate scales with the volume, we’re talking cubic giga-parsecs

3) RMS Strain or displacement: the measurement error averaged over the most sensitive band
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BNS: 170 M
pc   B

BH: 1600 Mpc

BNS: 325 M
pc    B

BH: 2500 M
pc

O2, 2017 O3, no squeezing
2019, O3
O3, fundamental

aLIGO design
A+ design ~2024

Rates: LIGO-VIRGO Collab. G1901322

st
ra

in

time, t

1.6e-20 m/rtHz

~2e-19m RMS 50-200Hz

1) Strain Noise Spectrum: Interferometers measure GW timeseries chirping through frequency. 
this is the standard deviation error density, at each frequency

2) Inspiral Range: The distance to which fiducial 1.4/1.4 Msol binary neutron star coalescence is 
detectable, on average. 

  1 Mpc ≈ 3e6 light-years
  The event-rate scales with the volume, we’re talking cubic giga-parsecs

3) RMS Strain or displacement: the measurement error averaged over the most sensitive band

advanced LIGO Sensitivityadvanced LIGO Sensitivity
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advanced LIGO’s noise sourcesadvanced LIGO’s noise sources

Fused Silica Suspension
Q~1 billion, 2 week ringdown

Active inertial isolation

Passive quadruple
Suspension

Coating materials minimize
Structural loss contributions 
To thermal noises

2nm smooth core optics,
~40ppm loss on 6cm beam
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LIGO’s Optical LayoutLIGO’s Optical Layout
● Michelson Interferometer with 

cavity enhancements
– Power recycling mirror for higher 

power
– Arm cavities enhance power and 

signal
– Signal extraction to enhance 

bandwidth
● 200W Laser → 4kW → 800kW
●  λ = 1064nm from Nd:YAG NPRO 

seed laser (highly stabilized) 
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Advanced Range

BBH 1GPc

Hubble 
Distance/

Cosmic 
horizon

LIGO 
BNS 140MPc

Human LIGO Earth 1 a.u Milky
Way

Alpha
Centauri

Electroweak
& Higgs

aLIGO
Precision

LIGO
Wavelength

Hydrogen
Atom

Planck Length,
GUT Scale,
Compton wavelength
of 20 ug

“eyeball
it” humanProton Electron

ScalesScales

Image:
Caltech
LIGO Lab
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Continuous MeasurementsContinuous Measurements

Measurement 1
Measurement 2
Measurement 2b

This argument
by Braginsky

Add system and probe uncertainty, convert to frequency domain
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SQL

The Standard Quantum LimitThe Standard Quantum Limit
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What What isis measurement here? measurement here?

Interferometers measure     using optical light. 

Light here must be responsible for the noisy 
consequences of uncertainty + “collapse”

It is the quantization of the optical light that 
enforces uncertainty for continuous measurement: 
the Standard Quantum Limit
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Cartoon: Particle PictureCartoon: Particle Picture

Amplitude→Force→Displacement→Phase:

(1) (2) (3)

LIGO Mirrors are suspended 40kg glass 
cylinders

photon shot noise causes momentum 
transfer → femto-N punches
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Quantum Noise ContributorsQuantum Noise Contributors
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Power DependencePower Dependence

Radiation
Pressure
Noise

Amplitude
Quadrature

Noise

Phase
Quadrature

Noise

Measurement
Imprecision

The cartoon photon picture shows a necessary power dependence
The SQL derivation indicates a probe-strength dependence
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Measurement and Squeezing in LIGOMeasurement and Squeezing in LIGO

Nature Physics 7, 62–965 (2011),  
Nature Photonics 7, 613–619 (2013)

Squeezing’s first at-scale demonstrations Squeezing in the era of GW discovery
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Amplitude

P
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The Measurement ProcessThe Measurement Process
● Caves’ “Quantum-mechanical Noise in an interferometer,” PRD 1981 makes the 
leap that the quantum state responsible for noise is from the unused port

● A more modern interpretation is that the interferometer simply applies a 
displacement operation to its signal state

● The “default” signal state is vacuum

● What is “a state” here – need sampling definition (will elide, but important)
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The Measurement ProcessThe Measurement Process
● Caves’ “Quantum-mechanical Noise in an interferometer,” PRD 1981 makes the 
leap that the quantum state responsible for noise is from the unused port

● A more modern interpretation is that the interferometer simply applies a 
displacement operation to its signal state

● The “default” signal state is vacuum

● What is “a state” here – need sampling definition (will elide, but important)
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Quantum Process of SqueezingQuantum Process of Squeezing

DownconversionEmission

Nonlinear       crystal activates a Three-Photon interaction (vertex)

Upconversion Used for second 
harmonic generation

Amplitude

P
ha

se

(stacked to represent
Phase space at every 
measurement frequency)

Convert from sideband/ladder operators
To quadrature/Hermitian operators
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Crystal Optical Parametric AmplifierCrystal Optical Parametric Amplifier
nonlinear crystal driven by second 
harmonic (532nm) + oven + phase control

bowtie cavity 
strengthens interaction
isolates backscatter

Wade, A. R. et al. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. 
Review of Scientific Instruments 87, 063104 (2016). 

Oelker, E. et al. Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, OPTICA 3, 682–685 (2016). 

Stefszky, M. et al. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing. J. Phys. B: At. Mol. Opt. Phys. 44, 015502 (2010). 
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The Livingston in-vacuum PlatformThe Livingston in-vacuum Platform
Even with a femto-watt of light leaking to 
the squeezer, you need sub-angstrom noise 

The platform is installed on an active inertial
In-vacuum optics table, near the readout 

above, Maggie Tse operates on the platform
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Degradations in SqueezingDegradations in Squeezing

Amplitude
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Amplitude

P
ha
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Amplitude

P
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Generated or Injected squeezing

– can be determined from calibration 
measurements

– Perfect relation between squeezing and 
antisqueezing (saturates Heisenberg)

Measured squeezing

Measured Antisqueezing

– Degraded by loss and dephasing

– Different effects in each 
characterizes degradation

Be aware of this distinction:
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Phase Noise in SqueezingPhase Noise in Squeezing
● Squeezing Follows independent path
● Fluctuations rotate noise matrix
● Quadratic Effect, but significant at 

large squeezing

Amplitude

P
ha

se
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Technical Limits of SqueezingTechnical Limits of Squeezing

● Phase noise implies point of optimal generated squeezing
● also point of maximum observable squeezing
● In the limit

– Low phase noise
– low loss

  Best Shot noise reduction is: [db]
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Squeezing in Observing Run 3Squeezing in Observing Run 3

Reference Curves LIGO T1800042-v5

BNS: 170 M
pc   B

BH: 1600 M
pc

BNS: 325 M
pc    B

BH: 2500 M
pc

O2, 2017 O3, no squeezing
2019, O3
O3, fundamental

aLIGO design
A+ design ~2024

1.6e-20 m/rtHz

~2e-19m RMS 50-200Hz

Rates: LIGO-VIRGO Collab. G1901322

Buikema, A. et al. 
Sensitivity and performance of the Advanced LIGO
detectors in the third observing run. 
Phys. Rev. D 102, 062003 (2020). 

●  O3 saw many improvements:
Power level, scatter, duty cycle, grounding, laser noises, angular and 
auxiliary control,  glitch and data analysis

● The detectors have become impressively quantum limited: 
120Mpc

● Enter Squeezing, 3db @ ~30% losses 120→ 140MPc

→ 50% rate increase on top of everything else
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Cartoon: “Wave” PictureCartoon: “Wave” Picture

Mechanics cause a shear action on the optical phase-space

Due to radiation pressure & mechanical susceptibility

Shear = rotation * squeezing * rotation

Amplitude→Force→Displacement→Phase:

(1) (2) (3)
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  Standard Quantum Limit, optics pictureStandard Quantum Limit, optics picture
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Amplitude → Force → Displacement → Phase:
Phase-space Shear

~60Hz is approximate crossover 
only in aLIGO full power design
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Amplitude → Force → Displacement → Phase:
Phase-space Shear

Squeezing Probes HarderSqueezing Probes Harder
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~60Hz is approximate crossover 
only in aLIGO full power design
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Testing the SQLTesting the SQL

Amplitude

P
ha

se

No injected
squeezing

Haocun Yu. McCuller, L. et al. Quantum correlations between light 
and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020). 

Left: measurements 
performed by Haocun Yu
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Determine Instrument NoiseDetermine Instrument Noise
Haocun Yu. McCuller, L. et al. Quantum correlations between light 
and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020). 

Left: measurements 
performed by Haocun Yu
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Inject Squeezing at an AngleInject Squeezing at an Angle
Haocun Yu. McCuller, L. et al. Quantum correlations between light 
and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020). 

Squeezing 
at 33deg injected
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Sub-SQL Quantum Noise in 40kgSub-SQL Quantum Noise in 40kg
Nature 583, 43–47 (2020). 

 Shows that the vacuum indeed 
pushes the mirrors:
quantum radiation pressure 
noise

 Shows that the SQL is not a 
limit → mirror motion creates 
and maintains quantum 
correlations

  ~billion-times heavier than 
recent sub-SQL measurements, 

human scale! Room temp.!
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But I want more Squeezing But I want more Squeezing andand more Astrophysics more Astrophysics
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Frequency Dependent Squeezingmerely
unsqueezes
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Quantum Filter CavityQuantum Filter Cavity

Filter 
Cavity

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced 
LIGO. Phys. Rev. Lett. 124, 171102 (2020). 

Zhao, Y. et al. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise 
Reduction in Advanced Gravitational-Wave Detectors. Phys. Rev. Lett. 124, 171101 (2020). 

Unique control and
Isolation requirements

Optical cavity needs to store 
squeeze-state photons for ~3ms for LIGO
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MIT 16m Filter CavityMIT 16m Filter Cavity
Finesse 80,000 → ~100Hz linewidth → photons travel ~1000km

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. 
Phys. Rev. Lett. 124, 171102 (2020). 

Chris Whittle, 
Dhruva Ganapathy 
and 
Kentaro Komori
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The A+ UpgradeThe A+ Upgrade
● 6db of frequency-dependent squeezing

– Early install, aiming at 4.5db in Run 4
– Sub-SQL during observations!

● 2x improved coating thermal noise
– Still researching, but good leads

● Active wavefront control
– Lowers squeezing loss

● Balanced homodyne readout
– Multiple benefits

● Bigger Beamsplitter

Reference Curves LIGO T1800042-v5

BNS: 170 M
pc   B

BH: 1600 M
pc

BNS: 325 M
pc    B

BH: 2500 M
pc

O2, 2017 O3, no squeezing

2019, O3
O3, fundamental

aLIGO design

A+ design ~2024

Drawing E. Sanchez, 
LIGO Laboratory
LIGO-G1900621

SQL

300m quantum 
filter cavity
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Quantum Physics for Fundamental PhysicsQuantum Physics for Fundamental Physics
● Now solidly in the NISQ-era of quantum metrology

– Squeezed states are Gaussian states
– Limited by loss:

● Can we do better?
Unstable Cavities
PRL 115, 211104(2015)

GW and axion
PT-symmetric 
unstable cavity 
realizations:
arXiv:2012.00836

Intracavity  Squeezing
(quantum expanders)

Korobko et al.
Light: Science & Applications (2019)

nonGaussian states...?!

https://arxiv.org/abs/2012.00836
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● Cosmic Explorer (US) and Einstein Telescope (EU)
– 10-40km observatories

(conceptual designs)

– 10x more optical power
– 10db squeezing
– Larger suspensions
– Lower frequencies

● Probe cosmological history of 
gravitational-wave astronomy
– High event rates – far detections
– Extreme signal-to-noise – near 

detections

● What will the landscape be for 
multi-messenger observatories and complementarities?

E. Hall/S. Vitale

the Third Generation of Detectors the Third Generation of Detectors 
Join the consortium

https://cosmicexplorer.org/1903.04615

See nearly all binary neutron star events (left)
and see black hole events to before BH’s exist

https://cosmicexplorer.org/
https://arxiv.org/abs/1903.04615v1
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Thank YouThank You

● LIGO, VIRGO, and GEO600 are now all 
quantum-enhanced in the GW detection era

● 40kg testmasses are quantum objects at 300K
– The vacuum pushes mirrors → radiation pressure noise
– this causes the Standard Quantum Limit
– Not a limit when squeezing due to quantum correlations

● The A+ upgrades will improve the LIGO detectors 
~8x in rate
– Sub-SQL observations using frequency-dependent squeezing
– separately demonstrated both of the necessary experimental 

components
– Actively installing now for O4

solving SQZ laser amplitude and 
phase noise excess at 600kHz.
400ns of cable 
RF skills I developed at 
FNALE990
Livingston alog 43822

(a personal proud moment)

https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=43822
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Haocun Yu. McCuller, L. et al. Quantum correlations between light 
and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020). 
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McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. 
Phys. Rev. Lett. 124, 171102 (2020). 
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LIGO Scientific Collaboration

LIGO
G1300394
v22

https://dcc.ligo.org/LIGO-G1300394
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Coherent ControlCoherent Control

OPOSHGSQZ PSL

IFO
VCO

CLF

CLFPD
(2F) Beatnote

(1F) Beatnote

RF single sideband created with acousto-optic modulator, added to squeezed light
Sees the nonlinear gain, co-propagates with the squeezing.
Also called the coherent control field.

Coherent Locking Field (CLF)

Acousto-optic
modulator
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CLF Phase SensitivityCLF Phase Sensitivity
OPOSHGSQZ PSL

IFO
VCO

CLF

CLFPD
(2F) Beatnote

(1F) Beatnote

Phase-sensitive parametric amplification is used for sensing the pump phase

(carrier is virtual)

The CLF PD measures the beatnote of these two beams, senses the difference 
between the pump phase and the CLF optical phase
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CLF Phase SensitivityCLF Phase Sensitivity
OPOSHGSQZ PSL

IFO
VCO

CLF

CLFPD
(2F) Beatnote

(1F) Beatnote

Phase-sensitive parametric amplification is used for sensing the pump phase

The IFO PD or homodyne measures the beatnote of the CLF with carrier Local Oscillator, 
senses the difference between the LO phase and the CLF optical phase

+
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Squeeze Control LogicSqueeze Control Logic

● If the pump phase is “locked” to the CLF phase
● And the LO phase is “locked” to the CLF phase
● Then the pump phase follows the LO phase
● Implied: the squeezing phase follows the LO phase
● There is freedom to choose which phases actually move

to implement “locking” control loops
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Control FlowControl Flow

OPOSHGSQZ PSL

IFO
VCO

CLF

CLFPD
(2F) Beatnote

(1F) Beatnote

~2-10kHz IFO (CLF 1F beatnote) to SQZ Phase (SQZANGLE)
~2-5kHz CLFPD 2F beatnote to RF Voltage controlled oscillator

>100kHz PSL Freq. Servo to SQZ Freq. (has residual noise)

~1kHz OPO PDH to OPO PZT (SHG is similar)
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