

Quantum Squeezing and Quantum Correlations in advanced LIGO

LIGO's optical Parametric amplifier

Lee McCuller, MIT for the SQZ team (LIGO Laboratory, in collaboration with ANU)

Fermilab Colloquium 17 Feb. 2020

How strongly can we probe the LIGO mirrors?

Every New Wavelength

In 1610, Galileo pointed a telescope to the sky, and changed the way we learn about our Universe

Since then, every new wavelength discovers new objects, maps new populations, probes new physics

Lee McCuller at FNAL Feb. '21

Credits: CMB: Planck, South Pole Telescope; radio: Haslam et al. 1982; infrared: NASA, DESGW; optical: ESO/S. Brunier; X-ray: Max Planck Institute for Extraterrestrial Physics and S. L. Snowden; gamma-ray: NASA/DOE/Fermi LAT Collaboration

Every new Messenger

- New *modalities* from astro-particle physics and gravitational waves
- Each modality observes in a new way, is a new *messenger*
- *Complementary observations* with electromagnetic imaging
- The dawn of multi-messenger astrophysics

Mészáros, P., Fox, D. B., Hanna, C. & Murase, K. Multi-messenger astrophysics. Nature Reviews Physics 1, 585–599 (2019).

Gravitational Waves from the Cosmic Collider

Binary black holes

Image: NASA's Goddard Space Flight Center

Gravitational transients in spacetime

Image: MIT, CC BY-NC-ND 3.0

Neutron Star "atom smashing"

Image: Daniel Price (University of Exeter) and Stephan Rosswog (International University Bremen), Science 2006

Gravitational Wave Detectives

Two LIGO Observatories

each one a laser interferometer with <u>4 km</u> arms

Observatory Network

Gravitational Wave Observatories

Detections, Physics, Astrophysics

The zoo or orrery exhibits a population.

The population is made of individuals. each is exciting!

<section-header>

Observing Run 3a Catalog: GWTC-2 arXiv:2010.14527 [gr-qc]

Observing Run 2 Catalog GWTC-1 Phys. Rev. X 9, 031040

Gravitational Strain Transduction

-δL/2

The Michelson Interferometer

Each photon gives 1064nm/ 2π measurement

minimum measurable length variance from counting photons

$$\Delta x \propto \frac{1}{\sqrt{N_{\rm photons}}}$$

~ 10^{19} photons/s in 1 Watt of 1064nm light

advanced LIGO Sensitivity

- 1) **Strain Noise Spectrum:** Interferometers measure GW timeseries chirping through frequency. this is the **standard deviation error** *density*, at each frequency
- 2) **Inspiral Range:** The distance to which fiducial 1.4/1.4 Msol binary neutron star coalescence is detectable, on average.
- 1 Mpc ≈ 3e6 light-years
- The event-rate scales with the volume, we're talking cubic giga-parsecs
- 3) RMS Strain or displacement: the measurement error averaged over the most sensitive band

11

advanced LIGO Sensitivity

- 1) **Strain Noise Spectrum:** Interferometers measure GW timeseries chirping through frequency. this is the **standard deviation error** *density*, at each frequency
- 2) **Inspiral Range:** The distance to which fiducial 1.4/1.4 Msol binary neutron star coalescence is detectable, on average.
- 1 Mpc \approx 3e6 light-years
- The event-rate scales with the volume, we're talking cubic giga-parsecs
- 3) RMS Strain or displacement: the measurement error averaged over the most sensitive band

Lee McCuller at FNAL Feb. '21

Reference Curves LIGO T1800042-v5

Rates: LIGO-VIRGO Collab. G1901322

advanced LIGO's noise sources

LIGO's Optical Layout

- Michelson Interferometer with cavity enhancements
 - Power recycling mirror for higher power
 - Arm cavities enhance power and signal
 - Signal extraction to enhance bandwidth
- 200W Laser \rightarrow 4kW \rightarrow 800kW
- $\lambda = 1064$ nm from Nd:YAG NPRO seed laser (highly stabilized)

Scales

Lee McCuner at FNAL Feb. '21

Continuous Measurements

Measurement 1 $\hat{x}(t)$ This argument by Braginsky $\hat{x}(t + \Delta t)$ Measurement 2 $\dot{x}(t) \propto \hat{p}$ Measurement 2b $\Delta \hat{x} \Delta \hat{p} \ge \frac{\hbar}{2} \qquad \qquad \Delta x_{\rm sys} = \frac{\pi}{2\Delta x_{\rm probe}} \frac{\Delta v}{M}$ Δp

Add system and probe uncertainty, convert to frequency domain

$$\Delta x_{\rm meas}^2(\Omega) \ge \Delta x_{\rm probe}^2(\Omega) + \Delta x_{\rm sys}^2(\Omega)$$

The Standard Quantum Limit

17

What *is* measurement here?

Interferometers measure \hat{x} using optical light.

Light here must be responsible for the noisy consequences of uncertainty + "collapse"

It is the quantization of the optical light that enforces uncertainty for continuous measurement: the <u>Standard Quantum Limit</u>

Cartoon: Particle Picture

$\textbf{Amplitude} \rightarrow \textbf{Force} \rightarrow \textbf{Displacement} \rightarrow \textbf{Phase:}$

(1) $\Delta \hat{F}$ (2) $\Delta \hat{x}$ (3) $\Delta \hat{a}'_2$

LIGO Mirrors are suspended 40kg glass cylinders

photon shot noise causes *momentum transfer* → femto-N punches

Quantum Noise Contributors

Power Dependence

The cartoon photon picture shows a necessary power dependence The SQL derivation indicates a *probe-strength* dependence

Measurement and Squeezing in LIGO

Squeezing's first at-scale demonstrations

Squeezing in the era of GW discovery

The Measurement Process

- Caves' "Quantum-mechanical Noise in an interferometer," PRD 1981 makes the leap that **the quantum state responsible for noise is from the unused port**
- A more modern interpretation is that the interferometer simply applies a displacement operation to its signal state
 - The "default" signal state is vacuum
- What is "a state" here need sampling definition (will elide, but important)

The Measurement Process

- Caves' "Quantum-mechanical Noise in an interferometer," PRD 1981 makes the leap that **the quantum state responsible for noise is from the unused port**
- A more modern interpretation is that the interferometer simply applies a displacement operation to its signal state
 - The "default" signal state is vacuum
- What is "a state" here need sampling definition (will elide, but important)

Quantum Process of Squeezing

Nonlinear $\chi^{(2)}$ crystal activates a Three-Photon interaction (vertex) $\mathcal{H}_{\mathrm{int}} = \kappa b^{\dagger} a a + \mathrm{c.c.}$

(stacked to represent Phase space at every measurement frequency)

Convert from sideband/ladder operators To quadrature/Hermitian operators

Crystal Optical Parametric Amplifier

nonlinear crystal driven by second harmonic (532nm) + oven + phase control

bowtie cavity strengthens interaction isolates backscatter

Wade, A. R. et al. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. *Review of Scientific Instruments* 87, 063104 (2016).

Oelker, E. et al. Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, OPTICA 3, 682-685 (2016).

Stefszky, M. et al. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing. J. Phys. B: At. Mol. Opt. Phys. 44, 015502 (2010). 26

The Livingston in-vacuum Platform

Even with a femto-watt of light leaking to the squeezer, you need sub-angstrom noise

The platform is installed on an active inertial In-vacuum optics table, near the readout

above, Maggie Tse operates on the platform

Degradations in Squeezing

Be aware of this distinction:

Generated or Injected squeezing

- can be determined from calibration measurements
- Perfect relation between squeezing and antisqueezing (saturates Heisenberg)

Measured squeezing

Measured Antisqueezing

- Degraded by loss and dephasing
- Different effects in each characterizes degradation

Phase Noise in Squeezing

- Squeezing Follows independent path
- Fluctuations rotate noise matrix
- Quadratic Effect, but significant at large squeezing

Amplitude hase

2

Technical Limits of Squeezing

- Phase noise implies point of optimal generated squeezing
- also point of maximum observable squeezing
- In the limit
 - Low phase noise

$$\theta_{\rm rms} = \sqrt{\Xi} \ll 0.5$$

- low loss
$$L \ll 1$$

Best Shot noise reduction is: [db]

$$10 \log_{10}(2\theta_{\rm rms} + L)$$

Squeezing in Observing Run 3

• O3 saw many improvements:

Power level, scatter, duty cycle, *grounding*, laser noises, angular and auxiliary control, glitch and data analysis

- The detectors have become *impressively* quantum limited: 120Mpc
- Enter Squeezing, 3db @ \sim 30% losses 120 \rightarrow 140MPc

 \rightarrow 50% rate increase on top of everything else

Lee McCuller at FNAL Feb. '21

Reference Curves LIGO T1800042-v5 Rates: LIGO-VIRGO Collab. G1901322

Cartoon: "Wave" Picture

Mechanics cause a shear action on the optical phase-space

Due to radiation pressure & mechanical susceptibility

$$\begin{bmatrix} \Delta \hat{a}_1' \\ \Delta \hat{a}_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\mathcal{K}(F) & 1 \end{bmatrix} \begin{bmatrix} \Delta \hat{a}_1 \\ \Delta \hat{a}_2 \end{bmatrix}$$

Shear = rotation * squeezing * rotation

Standard Quantum Limit, optics picture

Amplitude \rightarrow Force \rightarrow Displacement \rightarrow Phase: **Phase-space Shear**

Lee McCuller at FNAL Feb. '21

~60Hz is approximate crossover only in aLIGO full power design

Squeezing Probes Harder

Testing the SQL

Haocun Yu. McCuller, L. et al. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020).

Determine Instrument Noise

Inject Squeezing at an Angle

Sub-SQL Quantum Noise in 40kg

38

Nature 583, 43-47 (2020).

- Shows that the vacuum indeed pushes the mirrors: quantum radiation pressure
- Shows that the SQL is not a limit \rightarrow mirror motion creates and maintains quantum
- ~billion-times heavier than recent sub-SQL measurements,

human scale! Room temp.!

But I want more Squeezing and more Astrophysics

Quantum Filter Cavity

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

Zhao, Y. et al. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Phys. Rev. Lett. 124, 171101 (2020).

MIT 16m Filter Cavity

Finesse 80,000 \rightarrow ~100Hz linewidth \rightarrow photons travel ~1000km

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

Chris Whittle, Dhruva Ganapathy and Kentaro Komori

Frequency [Hz]

The A+ Upgrade

- 6db of frequency-dependent squeezing
 - Early install, aiming at 4.5db in Run 4
 - Sub-SQL during observations!
- 2x improved coating thermal noise
 - Still researching, but good leads
- Active wavefront control
 - Lowers squeezing loss
- Balanced homodyne readout
 - Multiple benefits
- Bigger Beamsplitter

Lee McCuller at FNAL Feb. '21

 10^{-22}

 10^{-23}

 10^{-24}

Reference Curves LIGO T1800042-v5

Strain ASD [1//Hz]

42

Quantum Physics for Fundamental Physics

- Now solidly in the NISQ-era of quantum metrology
 - Squeezed states are Gaussian states
 - Limited by loss: $10 \text{Log}_{10}(2\theta_{\text{rms}} + L)$
- Can we do better?

the Third Generation of Detectors

- Cosmic Explorer (US) and Einstein Telescope (EU)
 - 10-40km observatories (conceptual designs)
 - 10x more optical power
 - 10db squeezing
 - Larger suspensions
 - Lower frequencies
- Probe cosmological history of gravitational-wave astronomy
 - High event rates far detections
 - Extreme signal-to-noise near detections
- What will the landscape be for multi-messenger observatories and complementarities?

Join the consortium

https://cosmicexplorer.org/

See nearly all binary neutron star events (left) and see black hole events to before BH's exist

Thank You

45

- LIGO, VIRGO, and GEO600 are now all *quantum-enhanced* in the *GW detection era*
- 40kg testmasses are quantum objects at 300K
 - The vacuum pushes mirrors $\ \ \rightarrow \ radiation$ pressure noise
 - this causes the Standard Quantum Limit
 - Not a limit when squeezing due to quantum correlations
- The A+ upgrades will improve the LIGO detectors ~8x in rate
 - Sub-SQL observations using frequency-dependent squeezing
 - separately demonstrated both of the necessary experimental components
 - Actively installing now for O4

Lee McCuller at FNAL Feb. '21

LIGO

solving SQZ laser amplitude and phase noise excess at 600kHz. 400ns of cable <u>RF skills I developed at</u> <u>FNALE990</u>

Haocun Yu. McCuller, L. et al. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature 583, 43–47 (2020).

Lee McCi

McCuller, L. et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

LIGO Scientific Collaboration

LÍGO

LIGO

v22

LSC

RF single sideband created with acousto-optic modulator, added to squeezed light Sees the nonlinear gain, co-propagates with the squeezing. Also called the coherent control field.

The CLF PD measures the beatnote of these two beams, senses the difference between the pump phase and the CLF optical phase

Squeeze Control Logic

- If the pump phase is "locked" to the CLF phase
- And the LO phase is "locked" to the CLF phase
- Then the pump phase follows the LO phase
- Implied: the squeezing phase follows the LO phase
- There is freedom to choose which phases actually move to implement "locking" control loops

Control Flow

>100kHz PSL Freq. Servo to SQZ Freq. (has residual noise) ~2-10kHz IFO (CLF 1F beatnote) to SQZ Phase (SQZANGLE) ~2-5kHz CLFPD 2F beatnote to RF Voltage controlled oscillator ~1kHz OPO PDH to OPO PZT (SHG is similar)