

ELUCIDATING THE NATURE OF NEUTRINOS: THE STATE-OF-THE ART IN SEARCHES FOR **NEUTRINOLESS DOUBLE BETA DECAY**

LAURA BAUDIS UNIVERSITÄT ZÜRICH

FERMILAB COLLOQUIUM **SEPTEMBER 16, 2020**

stablished by the European Comm

FIRST, SOME HISTORY

- Zürich, December 4, 1930: Wolfgang Pauli, a 30 years old professor at the ETH (since 1928), writes perhaps one of the most famous letters in modern physics: "Dear radioactive ladies and gentlemen..."
- The letter was addressed mainly to Lise Meitner*, who had been working on radioactivity since 1907 and was attending a meeting in Tübingen (Pauli could not attend, because "a ball which takes place in Zürich the night of the sixth to sevenths of December makes my presence here indispensable")

Absohrist/15.12.

- Pauli was suggesting "a desperate way out" of some paradox that had arisen in the nascent field of nuclear physics
- He was proposing "a terrible thing" a new subatomic particle, the neutrino, a particle "which can not be detected"
- In 1930, only the electron, the proton and the photon were known, and Pauli's idea was quite radical

*Lise Meitner had made Pauli aware of the β-decay problem

Offener Brief an die Gruppe der Radioaktiven bei der Gauvereins-Tagung zu Tübingen.

Abschrift

Physikalisches Institut der Eidg. Technischen Hochschuls Zürich

Zirich, L. Des. 1930 Cloriastrasse

Liebe Radioaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinandersetsen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Korne, soule

hen" Statistik der N- und Li sta-Spektrums auf einen ver selsats" (1) der Statistik Möglichkeit, es könnten einen ver en und das Ausschliessungs nusserdam noch dadurch unte adigkeit laufen. Die Masse cossenordnung wie die Elekt ar als 0,01. Protonenmasse.in verständlich unter der Andere, dass ektron jeweils noch ein Neuron und Elek

THE PARADOX WAS . . . "THE ENERGY CRISIS"

- It had been observed by experimental physicists that some nuclei are not stable, but decay under the emission of "beta rays" (electrons)
- > The energy of the emitted electrons could be measured the spectrum was continuous
- > This seemed to violate a respected laws in physics: the conservation of energy and momentum

ONLY ONE REASONABLE WAY OUT...

A new particle: the neutrino (Pauli: "my foolish child"). It would share the energy with the electron, but would not be observed because of its incredible weak interaction with matter

$^{3}_{1}\mathrm{H} \longrightarrow^{3}_{2}\mathrm{He} + e^{-} + \bar{\nu}_{e}$

- Niels Bohr, 1934: "I must confess that I don't really feel fully convinced of the physical existence of the neutrino"
- Arthur Eddington, 1939: "I am not much impressed by the neutrino theory.... Dare I say that physicists will not have sufficient ingenuity to make neutrinos?"
- Thus, while the idea was considered by many as a very useful hypothesis, few* believed it is a real particle (or that it can ever be detected**), until...

*Enrico Fermi did take the idea seriously and formulated a theoretical basis for the interaction between a neutrino, an electron, a proton and a neutron (1934, Z. Phys. 88)

** Hans Bethe: "there is a considerable evidence for the neutrino hypothesis. Unfortunately, all this evidence is indirect; and more unfortunately, there seems at present to be no way of getting any direct evidence."

NEUTRINO DETECTION

 ... some 30 years later in 1956, when Clyde Cowan and Frederick Reines started the "Project Poltergeist" and finally detected (anti)neutrinos at the Savannah River Reactor in South Carolina

 $p + \bar{\nu}_e \longrightarrow n + e^+$

Detector: 400 | water + CdCl₂ seen by 90 photodetectors

Detection via delayed (a few µs) coincidence reaction:

prompt:
$$e^+ + e^- \rightarrow \gamma + \gamma$$

delayed: $n + Cd
ightarrow \gamma's$

Nobel Prize 1995: (1/2) to Frederick Reines "for the detection of the neutrino"

scintillator

511 keV

A RADIOGRAMME TO PAULI, A SHORT ANSWER...

- June 1956: Pauli was at a CERN Symposium, and announced the most exciting news of the meeting* - he had just received a telegram from Cowan & Reines
 - "We are happy to inform you that we have definitely detected neutrinos..."
- Pauli's reply: "Thanks for message. Everything comes to him who knows how to wait."

Frederick REINES and Clyde COWAN Box 1663, LOS ALAHOS, New Merico Thanks for menage. Everything comes to him who knows how to wait.

Paul:

*See: Cecilia Jarlskog, "Birth of the neutrinos, from Pauli to the Reines-Cowan experiment", 2019 -International Conference of the History of the Neutrino

WHAT ARE NEUTRINOS?

- Elementary particles in the Standard Model which only interact via the weak interaction (they participate in charged current interactions other with the corresponding charged lepton)
 - The interactions are of "V-A" type: neutrinos are left-handed, anti-neutrinos are right-handed
- In the SM: flavour lepton number is conserved and neutrinos are exactly massless

Today many known sources of neutrinos

symmetrymagazine.org

However when they propagate over macroscopic distances, they oscillate between flavours

- This is a well-studied effect in quantum mechanics
- It means that flavour is not conserved over macroscopic distances (v states with different flavours ν_{α} mix with v states with different masses ν_i)

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,j=1}^{3} U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \exp\left(-i\frac{m_{\nu_i}^2 - m_{\nu_j}^2}{2E}x\right)$$

-> the effect of the mass is to generate flavour oscillations as a function of distance

Unitary neutrino mixing matrix (PMNS matrix)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

From oscillation experiments: non-zero masses and non-trivial mixing

Nobel Prize 2015: to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

In general: 3 mixing angles, 1 CP violating phase, 2 independent Δm^2

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Data from	Data from	Data from solar	
atmospheric v's	reactors and	and reactor	
and accelerators	accelerators	neutrinos	
θ ₂₃ ≈ 48 deg	$\theta_{13} \approx 8.6 \deg$	$\theta_{12} \approx 34 \text{ deg}$	

NuFIT 4.1 2019

 $egin{aligned} c_{ij} &= cos heta_{ij} \ s_{ij} &= sin heta_{ij} \ 0 &\leq \delta < 2\pi \ \delta &\simeq 3\pi/2 \end{aligned}$ *Very difference $eta_{12} &\approx 13$

*Very different than the CKM mixing angles:

$$\theta_{12} \approx 13^{\circ}, \ \theta_{23} \approx 2.4^{\circ}, \ \theta_{13} \approx 0.2^{\circ}$$

OPEN QUESTIONS IN NEUTRINO PHYSICS

From oscillation experiments: we know the mixing angles (or the $U_{\alpha i}$) and the Δm^2

 $\Delta m_{atm}^2 \approx 2.5 \times 10^{-3} \,\mathrm{eV}^2$ $\Delta m_{sol}^2 \approx 8 \times 10^{-5} \,\mathrm{eV}^2$

However: 2 possible mass orderings and no information on the mass scale

OPEN QUESTIONS IN NEUTRINO PHYSICS

- Many questions remain open:
 - What are the absolute values of neutrino masses, and the mass ordering?
 - What is the nature of neutrinos? Are they Dirac or Majorana particles?
 - What is the origin of small neutrino masses?
 - What are the precise values of the mixing angles, and the origin of the large v mixing?
 - Is the standard three-neutrino picture correct, or do other, sterile neutrinos exist?
 - What is the precise value of the CP violating phase δ ?

• • • •

THE DOUBLE BETA DECAY

- Some of these open questions can be addressed with an extremely rare nuclear decay process
 - What are the absolute values of neutrino masses, and the mass ordering?
 - What is the nature of neutrinos? Are they Dirac or Majorana particles?
 - What is the origin of small neutrino masses?

THE DOUBLE BETA DECAY

- If simple β^- or β^+ -decay is forbidden on energetic grounds
- Predicted by Maria-Goeppert Mayer in 1935
- The probability for a decay is very small, the mean lifetime of a nucleus is much larger than the age of the universe ($\tau_U \sim 1.4 \times 10^{10}$ a)

$$\tau_{2\nu} \approx 10^{20} y$$

- Thus: a very rare process
- However, if a large amount of nuclei is used, the process can be observed experimentally

mass parabola of isobars with even A

Ruben Saakyan, Annu. Rev. Nucl. Part. Sci. 63 (2013)

Nobel Prize in physics, 1963 for her discoveries concerning the nuclear shell structure

- The Standard Model decay, with 2 neutrinos, was observed in 14 nuclei
- T_{1/2} > 10¹⁸ y: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

¹⁰⁰Mo: $T_{1/2}$ =7.15×10¹⁸ a

THE DOUBLE BETA DECAY

The decay rate Γ²^ν depends on the matrix element M²^ν and on the phase space factor G²^ν (which determines the energy spectrum):

$$\Gamma^{2\nu} = \frac{\ln 2}{T_{1/2}^{2\nu}} = G^{2\nu}(Q, Z) |M^{2\nu}|^2$$

The phase space factor (Z= charge of daughter nucleus) from the leptonic degrees of freedom:

$$G^{2\nu} \propto (G_F \cos \theta_C)^4 Q^7 \cdot \left(\frac{Q^4}{1980} + \frac{Q^3}{90} + \frac{Q^2}{9} + \frac{Q}{2} + 1\right) \propto (G_F \cos \theta_C)^4 \cdot Q^{11}$$

• The decay rate scales with $Q^{11} \times (G_F)^4 =>$ we expect indeed very long $T_{1/2}$ of ~10²⁰ y

THE NEUTRINOLESS DOUBLE BETA DECAY

• More interesting: the decay *without* emission of neutrinos $=> \Delta L = 2$

 $T_{1/2}^{0\nu\beta\beta} > 10^{24} \,\mathrm{y}$

Expected signature: *sharp peak at the Q-value of the decay*

$$Q = E_{e1} + E_{e2} - 2m_e$$

The double beta decay without neutrinos: first discussed by Wendell H. Fury in 1939

Ettore Majorana had proposed in 1937 that neutrinos could be their own antiparticles

Sum energy of the two electrons

THE NEUTRINOLESS DOUBLE BETA DECAY

In this decay, a light virtual neutrino could be exchanged

Charge conjugate spinor

$$\psi^c = C\bar{\psi}^T$$

A Majorana field

$$\psi = \psi^c$$

 $\psi = \psi_L + \psi_L^c$

- > The neutron decays under emission of a right handed 'anti-neutrino' ν_L^c
 - \bullet the ν_L^c has to be absorbed at the second vertex as left handed 'neutrino' u_L
 - for the decay to happen: neutrinos and anti-neutrinos must be identical, thus Majorana particles
 - & the helicity must change

MAJORANA AND DIRAC NEUTRINOS

Most general Lagrangian: both type of neutrinos masses

$$\mathcal{L}_{\mathcal{M}_{\nu}} = -\frac{1}{2} \left[m_D(\bar{\psi}_R^c \psi_L^c + \bar{\psi}_R \psi_L) + M \bar{\psi}_L^c \psi_L \right] + h.c.$$

- Dirac term: generated after SSB from Yukawa interactions; Majorana term: singlet of the SM gauge group and can appear as bare mass term
- Masses of physical neutrinos: from the eigenvalues of the mass matrix. In the "see saw" mechanism: $M >> m_D => a$ very light neutrinos state v and a heavy state N with masses:

$$m_{\nu} \approx \frac{m_D^2}{M} \quad m_N \approx M$$

If Dirac mass term m_D: of similar size as of other fermions & M at the GUT scale (~10¹⁴ GeV)
 => explanation of the smallness of neutrino masses

THE NEUTRINOLESS DOUBLE BETA DECAY

> The expected rate can be calculated as:

$$\Gamma^{0\nu} = \frac{\ln 2}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z)|M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2} \qquad \text{from the leptonic part}$$
 of the matrix element

the matrix element of the nuclear transition

with the phase space integral (now spanned only by 2 electrons):

$$G^{0\nu} \propto (G_F \cos \theta_C)^4 \cdot \left(\frac{Q^5}{30} - \frac{2Q^2}{3} + Q - \frac{2}{5}\right) \propto (G_F \cos \theta_C)^4 \cdot Q^5$$

THE EFFECTIVE MAJORANA NEUTRINO MASS

The effective Majorana neutrino mass parameter: embeds all the dependance on neutrino quantities

$$|m_{\beta\beta}| = |m_1 U_{e1}^2 + m_2 U_{e2}^2 e^{2\phi_1} + m_3 U_{e3}^2 e^{2i(\phi_2 - \delta)}|$$

A mixture of m_1 , m_2 , $m_3 \sim$ to the U_{ei}^2 (the complex entries in the PMNS matrix)

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \times \begin{pmatrix} e^{i\phi_{1}} & 0 & 0 \\ 0 & e^{i\phi_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- ϕ_{1}, ϕ_{2} = Majorana phases and $|U_{e1}|^{2}$ is for instance the probability that v_{e} has the mass m_{1}
- fewer phases can be removed by redefining the fields

THE EFFECTIVE MAJORANA NEUTRINO MASS

- The values depend critically on the neutrino mass spectrum and on the values of the two Majorana phases in the PMNS matrix
- One can express $m_{\beta\beta}$ as a function of the lightest ($m_{lightest}$) mass state for the two mass orderings and obtain the allowed ranges

PDG Review: PTEP 8, August 2020

EMPLOYED NUCLEI

- Even-even nuclei
- Natural abundance is low (except ¹³⁰Te)
- Must use enriched material

Candidate*	Q [MeV]	Abund [%]
⁴⁸ Ca -> ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge -> ⁷⁶ Se	2.039	7.8
⁸² Se -> ⁸² Kr	2.995	9.2
⁹⁶ Zr -> ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo -> ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd -> ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd -> ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn -> ¹²⁴ Te	2.228	5.64
¹³⁰ Te -> ¹³⁰ Xe	2.530	34.5
¹³⁶ Xe -> ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd -> ¹⁵⁰ Sm	3.367	5.6

24

* Q-value > 2 MeV

PHASE SPACE AND MATRIX ELEMENTS

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{1/2}^{0\nu} \left|M_{1/2}^{0\nu}\right|^{2} \left(\frac{\langle m_{\nu} \rangle}{\langle m_{\ell} \rangle}\right)^{2}$$
Matrix elements: value by a factor of 2-3 for a given A

$$\Gamma^{0\nu} = \frac{\ln 2}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2}$$

Jonathan Engel and Javier Menéndez 2017 *Rep. Prog. Phys.* **80** 046301 *See also Vergados, Ejiri, Simkovoc, Int. Journal of Modern Physics E, Vol 25 (2016)

EXPRIMENTAL REQUIREMENTS

Experiments measure the half-life, with a sensitivity (for non-zero background)

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

Minimal requirements:

high isotopic abundance (a) high efficiency (e) large detector masses (M) ultra-low background noise (B) good energy resolution (ΔE)

$$\langle m_{\beta\beta} \rangle \propto \frac{1}{\sqrt{T_{1/2}^{0\nu}}}$$

Additional tools to distinguish signal from background:

event topology pulse shape discrimination particle identification

DOUBLE BETA DECAY: EXPERIMENTAL TECHNIQUES*

MAIN CHALLENGES

- Energy resolution (ultimate background from 2vββ-decay)
- Backgrounds
 - cosmic rays & cosmogenic activation (including in situ, e.g., ⁷⁷Ge, ¹³⁷Xe)
 - radioactivity of detector materials (²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co, etc: α, β, γ-radiation)
 - anthropogenic (e.g., ¹³⁷Cs, ^{110m}Ag)
 - neutrinos (e.g., ⁸B from the Sun): $u + e^- \rightarrow \nu + e^-$

BACKGROUND REDUCTION

• Select low-radioactivity materials

• Use active shields

VERY BRIEF CURRENT STATUS OF THE FIELD

- No observation of this extremely rare nuclear decay (so far)
- ▶ Best lower limits on T_{1/2}: 1.07x10²⁶ y (¹³⁶Xe), 1.8x10²⁶ y (⁷⁶Ge), 1.5x10²⁵ y (¹³⁰Te)

 $m_{\beta\beta} < (0.08 - 0.18) \,\mathrm{eV} \,(90\% \,\mathrm{C.L.})$

- Running and upcoming experiments (a selection)
 - ¹³⁰Te: CUORE, SNO+
 - ¹³⁶Xe: KAMLAND-Zen, KAMLAND2-Zen, EXO-200, nEXO, NEXT, DARWIN, PandaX-III
 - ⁷⁶Ge: GERDA Phase-II, Majorana, LEGEND (GERDA & Majorana + new groups)
 - ⁸²Se: CUPID (= CUORE with light read-out)
 - ⁸²Se (¹⁵⁰Nd, ⁴⁸Ca): SuperNEMO
 - ¹⁰⁰**Mo:** NEMO-3, AMoRE

CUORE AND CUPID

- CUORE: 988 crystals (206 kg ¹³⁰Te assembled in towers) at LNGS
- Background level: 14 events/(keV t y); energy resolution: 0.3% FWHM (7.7 keV in ROI)
 - Results: T_{1/2} > 1.5 x 10²⁵ y for ¹³⁰Te
- CUPID: R&D for ton-scale detector using Li₂¹⁰⁰MoO₄ and Zn⁸²Se crystals as scintillating b Detector installation, Augu 2016
- CUPID-0: pilot project at LNGS, 24 Zn⁸²Se crystals, best limit on T_{1/2} of ⁸²Se

CUORE: PRL 120, 2018

Q value of ⁸²Se (2997.9 ±0.3 keV)

CUPID-0: PRL 123, 2019

SNO+ AND KAMLAND-ZEN

- SNO+: 0.5% natTe ~1330 kg ¹³⁰Te in liquid scintillator at SNOLAB
 - Scintillator fill in 2020, preparing for Te loading and $\beta\beta$ -decay phase to start
- KamLAND-Zen: 745 kg ¹³⁶Xe in liquid scintillator at Kamioka, ongoing since Jan 2019
 - Previous results (phase I + II): $T_{1/2} > 1.07 \times 10^{26} \text{ y}$ (5.6 x 10²⁵ y sensitivity)
- ► KamLAND2-Zen: ~1t ¹³⁶Xe, higher LCE: $\sigma/E(2.6 \,\mathrm{MeV}) = 4\% \longrightarrow < 2.5\%$ Winstone Cone High Q.E. PMT

SNO+ J.Phys.Conf.Ser. 1137 (2019) $T_{1/2} > 1.9 \times 10^{26} \text{ y}, 5 \text{ y of data}$

EXO-200, NEXO, NEXT, PANDAX-III

- EXO-200: TPC with 75 kg ¹³⁶Xe in fiducial region, $\sigma/E = 1.1\%$; $T_{1/2} > 3.5 \times 10^{25} \text{ y}$
- ▶ nEXO: TPC with 5 t of LXe enriched in ¹³⁶Xe, goal T_{1/2} ~ 9.2 x 10²⁷ y after 10 y
- ▶ NEXT: high-pressure (15 bar) ¹³⁶Xe gas TPC: e⁻ track reconstruction
 - Demonstrated: $\sigma/E = 0.43\%$; NEXT-100: operation in 2021, $T_{1/2} \sim 6x10^{25}$ y after 3 y
 - R&D on Ba ion tagging ongoing (e.g., NEXT-BOLD, for ton-scale detector)
- ▶ PandaX-III: high-pressure (10 bar) ¹³⁶Xe gas TPC, multiple modules with 200 kg each

EXO-200: PRL 123, 2019 NEXT arXiv:1910.07314

PandaX-III NIM-A 958, 2020

nEXO arXiv:1805.11142

DARWIN

- ▶ TPC with 40 t ^{nat}Xe (50 t in total) for DM searches; 8.9% ¹³⁶Xe ≈ 3.6 t of ¹³⁶Xe
- Goal: $T_{1/2} \sim \text{few x } 10^{27} \text{ y, with background rate } < 0.2 \text{ events/(t y) in ROI}$
- Energy resolution: $\sigma/E = 0.8\%$ (achieved in XENON1T)
- Detailed ββ-sensitivity study: arXiv:2003.13407 (EPJ-C 80, 2020, 9, DARWIN collaboration)

XENON1T: σ /E=0.8% at 2.5 MeV

DARWIN Collaboration, JCAP 1611 (2016) 017

XENON Collaboration, arXiv:2003.03825, EPJ-C 80., 2020, 8

3000

DARWIN BACKGROUNDS

- ▶ ROI: [2435-2481] keV = FHWM around $Q_{\beta\beta}$
- ¹³⁷Xe: β -decay with Q=4173 keV, T_{1/2}=3.82 min (via n-capture on ¹³⁶Xe)

Rate versus fiducial mass

Rate in 5 tonnes fiducial region (0.45 t ¹³⁶Xe)

HPGE DETECTORS

GERMANIUM IONISATION DETECTORS

- ▶ HPGe detectors enriched in ⁷⁶Ge
 - Source = detector: high detection efficiency
 - High-purity material: no intrinsic backgrounds
 - Semiconductor: $\sigma/E < 0.1\%$ at $Q_{\beta\beta} = 2039.061$ keV
 - High stopping power: β absorbed within O(1) mm

Neutrino 2020

HPGE DETECTORS

RECENT GERMANIUM EXPERIMENTS

MAJORANA at SURF

GERDA at LNGS

- 35.6 kg of 86% enriched ⁷⁶Ge crystals in LAr
- 3.0 keV FWHM at 2039 keV
- 58.9 kg y exposure; Science 365 (2019), 127.2 kg y exposure: Neutrino 2020 & sub to PRL
- T_{1/2} > 1.8 x 10²⁶ y (90% CL)

THE HEIDELBERG-MOSCOW EXPERIMENT

- > Detectors in conventional shield: five ⁷⁶Ge detectors, mass 10.96 kg
- Concept to operate directly in cryogenic liquid:
 - Genius -> now GERDA->upcoming LEGEND

A first "bare" HPGe detector

GENIUS background and technical studies: L. Baudis et al, NIM A 426 (1999)

Heidelberg-Moscow HPGe detector in conventional shield

Limits on the Majorana neutrino mass in the 0.1 eV range, L. Baudis et al., Phys. Rev. Lett. 83, 1999

 $T_{1/2} > 1.6 \times 10^{25}$ y 90% C.L. Sensitivity

THE GERDA EXPERIMENT

- Liquid Ar (64 m³) as cooling medium and shielding
- Surrounded by 590 m³ of ultra-pure water as muon Cherenkov veto
- U/Th in LAr < $7x10^{-4} \mu Bq/kg$
- A minimal amount of surrounding material
- Two phases
 - Phase I: 2011-2014
 - Phase II: 2015-2019

GERDA collaboration, EPJ-C 78 (2018) 5

BACKGROUND SUPPRESSION

- Several handles:
 - Event topology + anti-coincidence between HPGe detectors + pulse shape discrimination + liquid argon veto

BACKGROUND MODEL IN GERDA

- Intrinsic $2v\beta\beta$ -events, ³⁹Ar (T_{1/2} = 269 y), ⁴²Ar (T_{1/2} = 33 y) and ⁸⁵Kr (T_{1/2} = 11 y) in liquid argon
- ▶ ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U in materials, α-decays (²¹⁰Po) on the thin p⁺ contact

GERDA collaboration, JHEP 03 (2020)

DOUBLE BETA DECAY FINAL RESULTS

- Measured $T_{1/2}$ of the $2v\beta\beta$ -decay: $1.92 \times 10^{21} \text{ y}$
- Liquid argon veto: factor 5 background suppression at 1525 keV (⁴²K line)
- ▶ Background level: 5.2 x 10⁻⁴ events/(keV kg y) in 230 keV window around Q-value

GERDA collaboration, Neutrino2020, submitted to PRL

Constraints on the ⁷⁶Ge $0\nu\beta\beta$ -decay

 $T_{1/2} > 1.8 \times 10^{26} \text{ y} (90\% \text{ CL})$

 $m_{\beta\beta}$ < 80 - 182 meV

THE FUTURE: LEGEND

- Large enriched germanium experiment for 0vββ decay
- Collaboration formed in October 2016
- > 219 members, 48 institutions, 16 countries
 - LEGEND-200: 200 kg in existing (upgraded) infrastructure at LNGS, to start in 2021
 - Background goal: 0.6 events/(FWHM t y)
 - LEGEND-1000: 1000 kg, staged, 4 modules
 - Background goal: 0.1 events/(FWHM t y)

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

EXPECTED SENSITIVITY

- ► LEGEND-200: 10²⁷y
- ▶ LEGEND-1000: 10²⁸ y
- $m_{\beta\beta} = 17 \text{ meV}$ (for worst case NME = 3.5)

Post GERDA tests with 20 Majorana, GERDA and new LEGEND detectors completed

Abgrall et al., AIP Conf. Proc. 1894(1), 020027 (2017)

Background

GERDA:3 events/(ROIty)LEGEND-200:0.6 events/(ROIty)LEGEND-1t:0.1/(ROIty)

LEADING RESULTS: OVERVIEW

Experiment	lsotope	FWHM [keV]	T _{1/2} [10 ²⁶ y]	m _{ββ} [meV]
CUORE	¹³⁰ Te	7.4	0.15	162-757
CUPID-0	⁸² Se	23	0.024	394-810
EXO-200	¹³⁶ Xe	71	0.18	93-287
KamLAND-Zen	¹³⁶ Xe	270	1.1	76-234
GERDA	⁷⁶ Ge	3.3	1.8	80-182
Majorana	⁷⁶ Ge	2.5	0.27	157-346

MASS OBSERVABLES

- \blacktriangleright Constraints in the $m_{\beta\beta}$ parameters space in the 3 light v scenario
- Global sensitivity from 0vββ-experiments & constraints from direct searches & cosmology

FUTURE PROJECTS: A SELECTION

Experiment	lsotope	lso mass [kg]	FWHM [keV]	T _{1/2} [10 ²⁷ y]	$m_{\beta\beta}$ [meV]
CUPID	¹³⁰ Te	543	5	2.1	13-31
CUPID	⁸² Se	336	5	2.6	8-38
nEXO	¹³⁶ Xe	4500	59	9	7-21
KamLAND2-Zen	¹³⁶ Xe	1000	141	0.6	25-70
DARWIN	¹³⁶ Xe	1068	20	2.4	11-46
PandaX-III	¹³⁶ Xe	901	24	1.0	20-55
LEGEND-200	⁷⁶ Ge	175	3	1	34-74
LEGEND-1t	⁷⁶ Ge	873	3	6	11-28
SuperNEMO	⁸² Se	100	120	0.1	58-144

 $|m_{\beta\beta}| \propto \left(\frac{B \cdot \Delta E}{M \cdot t}\right)^{\frac{1}{4}}$

- Reminder
 - Large exposures: 10 tonne x year, low background rates < 1 event/(FWHM tonne x year)
 - Good energy resolution, large Q-value, high efficiency, demonstrated technology, etc
- Important to have multiple isotopes to make a convincing case for LNV

SUMMARY AND OUTLOOK

- > Ninety years after Pauli postulated his "silly child": many open questions in neutrino physics
- Neutrinoless double beta decay: excellent tool to test LNV and the nature of neutrinos (Dirac vs Majorana)
- > Existing experiments probe $T_{1/2}$ up to ~ 10^{26} years, with $T_{1/2}$ ~ $(0.1 \text{ eV/m}_v)^2 \times 10^{26} \text{ y}$
- > Ton-scale experiments are required to cover the *inverted mass ordering scenario*
 - Several technologies move into this direction
- > Much larger experiments required to probe the normal mass ordering

THANK YOU

OTHER MECHANISMS FOR DOUBLE BETA DECAY

- LNV processes in extensions of the Standard Model generically contribute to 0vββ-decay (light or heavy sterile neutrinos, LR symmetric models, R-parity violating SUSY, leptoquarks, etc)
- Often classified as short- and long range processes, depending on the mass of the particles mediating the process (whether lighter or heavier than the momentum exchange scale ~ O(100 MeV))
- In the effective Lagrangian picture, the effects at low energies can be summarised in terms of higher order operators, added to the SM Lagrangian

Examples from F. Deppisch, A modern introduction to neutrino physics: the lowest-order contributions beyond the standard mechanism

ISOTOPES AND SENSITIVITY TO THE DECAY

Isotopes have comparable sensitivities in terms of rates per unit mass

SIGNAL EVENTS IN LIQUID XENON

- Electrons thermalise within O(mm) => single-site topology
- Bremsstrahlung photons: may travel > 15 mm (E>300 keV) => multi-site event
- Energy depositions: spatially grouped using density-based spatial clustering algorithm
 - New cluster, if distance to any previous $E_{dep} > \varepsilon$ (separation threshold)

2 e⁻ back-to-back 2 10³ Single-site area y-position [mm] 1 [keV / bin 0 10^{2} 3.5 mm -2⊢ -2 10¹ -1 1 2 0 x-position [mm] 10³ E [keV / bin area] 10² 23 mm 10¹ 40

DARWIN SENSITIVITY STUDY

MAIN BACKGROUND COMPONENTS

Intrinsic:

- ⁸B v's, ¹³⁷Xe, 2vββ, ²²²Rn
- Materials:
 - ▶ ²³⁸U, ²³²Th, ⁶⁰Co, ⁴⁴Ti
- FV cut: super-ellipsoidal

100 y of DARWIN run time, event with energy deposits in the ROI [$Q_{\beta\beta} \pm$ FWHM/2]

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	60 Co	44 Ti	^{44T} i: T _{1/2} = 59 y, cosmogenic
Titanium	mBq/kg	< 1.6	< 0.09	0.28	0.25	< 0.02	<1.16	
\mathbf{PTFE}	mBq/kg	< 1.2	0.07	$<\!0.07$	0.06	0.027	-	Tirl 7 Actrop Phys. 06 (2017)
Copper	mBq/kg	< 1.0	$<\!0.035$	< 0.033	< 0.026	< 0.019	-	11. LZ, AStrop. Phys., 70 (2017)
\mathbf{PMT}	mBq/unit	8.0	0.6	0.7	0.6	0.84	-	Other: XENON, EPJ-C 77 (2017
Electronics	mBq/unit	1.10	0.34	0.16	0.16	< 0.008	-	

ROOM FOR IMPROVEMENT

- Reduce external backgrounds
 - SiPMs, cleaner materials & electronics
- Reduce internal background
 - Time veto for ¹³⁷Xe, deeper lab, BiPo tagging
- Improve signal/background discrimination; resolution...

Baseline: $m_{\beta\beta} = (18 - 46) \text{ meV}$ Neutrino dominated: $m_{\beta\beta} = (11 - 28) \text{ meV}$

NEUTRINO MASSES

- > Three main methods: direct mass measurements, 0vββ-decay, cosmology
 - > the observation of flavour oscillations imply a lower bound on the mass of the heavier neutrino
 - depending on the mass ordering, this lower bound is $\approx 0.05 \text{ eV}$
 - ${\scriptstyle \odot}$ The most direct probe: precision measurements of β -decays

$$^{3}_{1}\mathrm{H} \longrightarrow^{3}_{2}\mathrm{He} + e^{-} + \bar{\nu}_{e}$$

- The effect of a non-zero neutrino masses is observed kinematically: when a v is produced, some of the energy exchanged in the process is spent by the non-zero neutrino mass
- The effects are however very small & difficult to observe
- ${\scriptstyle \odot}$ KATRIN will probe the eff. $v_{\rm e}$ mass down to 0.2 eV

 Eur. Phys. J. C
 (2020) 80:264

 https://doi.org/10.1140/epjc/s10052-020-7718-z

 Regular Article - Experimental Physics

First operation of the KATRIN experiment with tritium

$$m_{\nu_e}^2 = \sum_i |U_{ei}|^2 m_i^2$$

NEUTRINO MASSES

- > Three main methods: direct mass measurements, 0vββ-decay, cosmology
 - > the observation of flavour oscillations imply a lower bound on the mass of the heavier neutrino
 - depending on the mass ordering, this lower bound is $\approx 0.05 \text{ eV}$
 - Cosmology: neutrinos influence the LSS and the CMB (with the v density ratio):

$$\frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{7}{8} N_{eff} \left(\frac{4}{11}\right)^{4/3} \qquad \text{N}_{eff} = 3 \sim \text{number of active neutrinos}$$

• The constraints are on the sum of neutrino masses

$$\sum_{i} m_{i}$$

- Dependent on the parameters of the cosmological model (ACDM)
- In general, depending on which data is included (see e.g., review in PDG2020)

$$\sum_{i} m_i < (0.11 - 0.54) \,\mathrm{eV}$$

THE EFFECTIVE MAJORANA NEUTRINO MASS

- $\blacktriangleright \quad \mbox{Probability distribution of } m_{\beta\beta} \mbox{ via random sampling from the distributions of mixing angles and } \Delta m^2$
- Flat priors for the Majorana phases

Agostini, Benato, Detwiler, PRD 96, 2017

PULSE SHAPE DISCRIMINATION

- Cut based on 1 parameter: max of current pulse (A) normalised to total energy (E) (BEGe)
- ▶ Tuned on calibration data (90% ²⁰⁸TI DEP acceptance)
- Acceptance at 0vββ: (87.6±2.5)%

PSD parameter: $(A/E - 1)/\sigma_{A/E}$ Mean and resolution corrected for E-dependance A/E normalised to 1 Accept events around $(A/E - 1)/\sigma_{A/E} = 0$

- p+ electrodes:
 - \bullet 0.3 μm boron implantation
- n+ electrodes:
 - 1-2 mm lithium layer
 (biased up to +4.5 kV)
- Low-mass detector holders (Si, Cu, PTFE)

65-80 mm

GERDA PULSE SHAPE DISCRIMINATION

- Signal-like: Single Site Events (SSE)
- Background-like: Multiple Site Events (MSE)
- BEGe detectors: E-field and weighting potential has special shape: pulse-height nearly independent of position

anode

holes

Θ

cathode electrons

interaction point

n+ electrode

⁴²Κβ

ү гау

800

-type germanium

²¹⁰Ρο α

INVERTED COAXIAL DETECTORS

- Large point-contact detectors with ~ 3 kg mass, excellent PSD performance
- First 5 enriched IC detectors installed in spring 2018; baseline for LEGEND

