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Outline
Particle Physics & AI:
• Particle detectors
• Artificial intelligence
Better:
• Recent improvements in AI
• Physics use case: tagging
• Open questions
Smarter:
• Cutting-edge R&D
• Graph-based algorithms
• Preliminary results
Faster:
• High Luminosity Upgrade
• Accelerating inference
• Coprocessors as a service
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Collider Physics

• Largest, highest-energy particle collider
o Circumference = 27 km (17 mi)
o Center-of-mass energy = 13 TeV

• High data rate requires multiple levels of triggers
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Large Hadron Collider



Collider Physics
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Large Hadron Collider

CMS
• Largest, highest-energy particle collider
o Circumference = 27 km (17 mi)
o Center-of-mass energy = 13 TeV

 Focus on AI results from CMS experiment
o Many items also applicable to ATLAS,

neutrino physics, cosmology, etc.



CMS Detector

• “Hit”: energy deposit in single channel
• Tracks: built from consistent hits in tracker, muon chambers
• Clusters: built from nearby hits in calorimeters
• Particles: built from linked tracks and clusters
• Jets: collimated sprays of particles
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HL-LHC project schedule
Upgrades

• Increase in luminosity → more data!
o Also more radiation…

• Corresponding CMS detector upgrades, including:
o Pixel (innermost tracker):

66M → 1947M channels
o Outer tracker:

9.6M → 215M channels
o High Granularity Calorimeter (endcaps):

85K → 6M channels
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CE-HCE-E

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule


Neutrino Physics

• Neutrinos interact very rarely and weakly

 Detectors need large volume of material and long exposure

o Try to reduce backgrounds (unwanted hits) from cosmic rays, etc.

• Neutrinos have mass and therefore oscillate between different flavors

o Near and far detectors compare proportions

• Upcoming LBNF: most intense neutrino beam, 120 GeV
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Long Baseline Neutrino Facility



What is Artificial Intelligence?

• In this colloquium: machine learning (ML)
• ML is function approximation:
 map inputs to outputs, →x ↦ → y
o → y = F(→ x) unknown, probably not analytic

→ try to find approximation → y ≈ F′(→ x; → w) by optimizing weights → w
• Deep learning:
o Use thousands, even millions of weights
o Use many layers with intermediate features derived from inputs
 More “neurons” → more multiplications
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“AI is whatever hasn’t been done yet.”
– Douglas Hofstadter

The Neural Network Zoo

https://www.asimovinstitute.org/neural-network-zoo/


hackernoon.com

Training an AI
• Iteratively modify weights so F′ gets “closer” to → y (training data)

o “Closer” defined by a loss function

o Use gradient descent to follow change in loss

• Keep separate datasets for testing & validation

o Otherwise, AI could be overtrained

• Training is very intensive: large datasets, 
billions (!) of multiplications

o GPUs are optimized for these operations

• Inference: applying trained AI to (new) 
input data to get output

o Output: classification, regression, etc.
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Comput. Meth. Appl. M. 353 (2019) 201

Features

Output

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://dx.doi.org/10.1016/j.cma.2019.05.019


AI at FNAL: A Long History

11

B. Denby, “Neural Network Tutorial for High Energy 
Physicists”, FERMILAB-Conf-90/94, May 1990
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http://lss.fnal.gov/archive/1990/conf/Conf-90-094.pdf
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GPT-2

AI Today

• Massive industry efforts in R&D for deep neural networks
o Many frameworks: TensorFlow, PyTorch, MXNet, scikit-learn, etc.

• Giant leaps in image recognition, language processing, even game playing
o Similar leaps in computational requirements…
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AlphaGo Zero

arXiv:1605.07678

https://openai.com/blog/better-language-models/
https://www.technologyreview.com/2017/10/18/148511/alphago-zero-shows-machines-can-become-superhuman-without-any-help/
https://arxiv.org/abs/1605.07678


Convolutional Neural Networks

 Image recognition started modern AI revolution

• Innovation: convolutional neural networks (CNNs)

o Combine neighboring pixels according to matrix of weights

 Same convolution applied to whole image → reduce # weights

o Derive features at different scales: edges, corners, etc.
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towardsdatascience.com

towardsdatascience.com

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8


CNNs for Neutrinos
 Neutrino detector data naturally image-like
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Event selected w/ 90% prob.
• NOvA was first particle physics 

experiment to publish† result from CNN

† JINST 11 (2016 ) P09001,
Phys. Rev. Lett. 118 (2017) 231801

• ResNet50 can distinguish charged 
current events from cosmic background

https://dx.doi.org/10.1088/1748-0221/11/09/P09001
https://dx.doi.org/10.1103/PhysRevLett.118.231801


Collider Physics Example: Tagging
Prototypical case: tagging top quarks
• Many models of physics beyond the standard model (SM) include new 

particles that can decay to top quarks
o Heavy new particles → boosted top quarks,

decay products merge into a single wide jet
• Clear signature of new physics
o But background events (e.g. SM QCD) have much higher rate

• Traditionally identified using jet substructure:
o →x = Nsubjettiness, groomed jet mass, etc.

(“expert” variables)
o →y = top quark or QCD
o F(→ x) = selection criteria
 Example: τ32 < 0.6
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arXiv:2004.08262

better

AI for Tagging
• Can machine learning algorithms 

do a better job than experts?

• Usual progression:

o Combine expert variables in 
boosted decision tree (BDT)

o Combine expert variables in 
deep neural network (DNN)

o Use lower-level variables
(reconstructed tracks, particles, 
etc.) in DNN

o Use more advanced neural 
network architectures
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http://arxiv.org/abs/2004.08262


Different Approaches
ImageTop: build “image” out of jet constituents

• Pros: leverage ubiquitous industry tools for 
image recognition, convolutional neural 
networks (CNNs)

• Cons: some information is lost
(jets aren’t “really” 2D images)

DeepAK8: learn from particle, vertex 
variables directly

• Pros: keep more information

• Cons: 1D convolutions may not 
fully capture all relationships 
between quantities
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Top quark jet image



AI Enables Discovery

Higgs → γγ: rare process, but clear 
signature and clean background
• Boosted decision trees critical for 

Higgs discovery in 2012
• Event-level classification enhances 

resonance

Higgs → bb̄: most common decay, 
but huge background
• Dedicated DNN tags boosted 

Higgs with two secondary vertices
• Once thought impossible
o Now 2.5σ evidence in 2020
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Phys. Lett. B 716 (2012) 30

2013

CMS-PAS-HIG-19-003

https://dx.doi.org/10.1016/j.physletb.2012.08.021
http://cds.cern.ch/record/2714916


arXiv:1409.7495

Open Questions
• How to handle differences between data and simulation?
o Gradient reversal (domain adaptation) very promising
 Can also help avoid other unwanted behavior, e.g. mass dependence

• How to explain what the network learns?
o Should probably be an entire academic field in itself
o See e.g. The Building Blocks of Interpretability for CNNs

• Far from an exhaustive list (of algorithms or questions)
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https://arxiv.org/abs/1409.7495
https://distill.pub/2018/building-blocks/


Smarter



Cutting Edge Tagging

• P-CNN = simplified DeepAK8
• Apply massive image recognition networks

(from industry) for significant gains
o But regular grids unnatural for collider data
 sparse occupancy, varying geometry, etc.

• ParticleNet does even better with far fewer parameters…
o But more operations: 3–4× ResNeXt
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Tagger AUC Acc 1/εB* # Params
P-CNN 0.980 0.930 759 348K
ResNet50† 0.983 0.935 1000 25M
ResNeXt 0.984 0.936 1147 1.46M
ParticleNet 0.986 0.940 1615 366K

Phys. Rev. D 101 (2020) 056019
see also SciPost Phys. 7 (2019) 014

* (εS = 0.3)† CSBS 3 (2019) 13

https://dx.doi.org/10.1103/PhysRevD.101.056019
https://dx.doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1007/s41781-019-0027-2


All Roads Lead to Graphs
• Generalize convolutions → message passing w/ graphs (nodes & edges)
o Derive new features for node xi using neighbors xj

o Can even assign features to edges

• Aside: recurrent networks (RNNs) for language processing now supplanted 
by “Transformers” that use “attention”
o These are just graphs!
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towardsdatascience.com

arXiv:1801.07829

https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa
https://arxiv.org/abs/1801.07829


Graph Networks (GNNs) for Physics
• ParticleNet (leading top tagger) uses “point cloud” (also a GNN)

o Also called “interaction networks”, “graph CNNs”, etc.

o Same techniques applicable to many other tasks…

• Most fundamental problems in event reconstruction:
tracking, vertexing, clustering

 How to associate detector hits with other detector hits

o Detector geometry very important!

FNAL Colloquium Kevin Pedro 24

Input graph Output graph



CTD2019

GNN

CTD2018

GNNs for Tracking

• First application to reconstruction: tracking

• Start w/ possible connections between hits

• Edge classification:
GNN decides which edges are correct

• Work in progress: 97% efficient
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https://indico.cern.ch/event/742793/contributions/3274328/
https://indico.cern.ch/event/658267/contributions/2881175/


GNNs for Clustering
• CMS upgrades (~2026) include integrated

endcap High Granularity Calorimeter

o Hexagonal wafers increase silicon yield

 Especially non-grid-like geometry

• Edge classification works 
well for clustering

• Charged pion: >90% 
efficiency to find correct 
edges (99% for photons 
and muons)

o 98–99% correct energy 
assignment
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NeurIPS (ML4PS) 2019

https://ml4physicalsciences.github.io/%23papers


Edge Determination
• Default edge assignment: use k-nearest neighbors

or similar algorithm (based on detector geometry)

• GravNet: edges determined dynamically

o k-nearest neighbors using derived features

GNN optimizes latent space to associate detector hits

• Open question: how to handle unknown number of clusters?
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Eur. Phys. J. C 79 (2019) 608

https://dx.doi.org/10.1140/epjc/s10052-019-7113-9


Preliminary
hadrons
(train: 10K)

Graphs for Calibration
• Calibration: another fundamental problem in physics
o Raw measurements usually have some bias

• Dynamic reduction network: arXiv:2003.08013

• Preliminary results (hadron resolution)
 competitive w/ expert algorithms
o Approach still being refined
o Also studying industry benchmarks

such as MNIST
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https://arxiv.org/abs/2003.08013


Faster



Computing for AI
• AI has significant impacts on physics:
o Helps us do things we couldn’t do before
 e.g. tag top and bottom quarks with unprecedented accuracy

o Helps us do better at fundamental problems
 Tracking, clustering, calibration, etc.

• But can we afford to keep doing all of this?
o HL-LHC is just around the corner…
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136 simultaneous proton-
proton collisions (2018 data)

HGCal simulation, 200 
simultaneous pp collisions



More Data, More Problems
• HL-LHC vital statistics:

o 10× data vs. Run 2/3

o 200 simultaneous collisions
vs. ~30 in Run 2

o Detector upgrades:
15–65× increase in channels

 More data and more complexity

o DUNE, LSST, SKA will provide 
similarly huge datasets

 Data volumes will approach scale 
of Google and Facebook

o But computing resources won’t…
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DUNE
2026

~30 PB

CMSOfflineComputingResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


CPU Stagnation
WLCG provides:
• 42 countries
• 170 computing centers
• > 2 million tasks/day
• 1 million CPU cores
• 1 exabyte of storage

• Moore’s Law continues

o But without Dennard scaling

 Single-thread performance can’t 
keep up with accelerator intensity

• Projected shortfalls 2–10×, 
depending on assumptions
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Worldwide LHC Computing Grid



Heterogeneous Revolution

• New coprocessors provide efficiency at expense of flexibility

o GPU: execute serial instructions on massive data

o FPGA: spatial computing (execute many instructions simultaneously)

 Luckily, optimized for machine learning!
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Nvidia GPU
Microsoft FPGA



AI & Coprocessors: Two Great Tastes…
• Just adding new tagging algorithms doesn’t speed up reconstruction

o ResNet50 inference on CPU: ~1 sec/image

• Focus on replacing classical algorithms with AI

o Fundamental problems (clustering, etc.) involve comparing all detector 
hits to all other detector hits

o O(N²) operation, can be reduced to O(NlogN) w/ clever techniques

o AI inference is O(N) → much better scaling w/ detector occupancy

• Use coprocessors to accelerate AI inference

o GPUs also useful for training,
but training only uses subset of data

o Inference must be performed for every event
(billions, at least)
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AI for Triggers
• CMS L1 trigger uses FPGAs to satisfy extreme latency requirements (~1 μs)

• hls4ml: open-source package

o Optimize ML algorithms to run efficiently on FPGAs

o Handles BDTs, various DNN architectures

 Planned for use during LHC Run 3
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hls4ml

https://github.com/hls-fpga-machine-learning/hls4ml


Inference As A Service

• Offline computing: looser latency requirements
• Multiple CPUs send inference requests to coprocessor server
• Ensures optimal utilization of GPUs/FPGAs, along with flexibility
• One coprocessor could serve ~100 CPUs
o Depending on conditions and requirements:

latency, bandwidth, memory, inference time, etc.
o Much more cost effective than buying 1 GPU for every CPU in the grid…
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Coprocessor Server

CPU

CPU…
 

CPU



LHC Computing Model
• Inference as a service naturally fits into existing computing model

• Reconstruction process involves 100s of algorithms

o Only a few worth accelerating

• Most efficient method:
asynchronous, non-
blocking calls

o Enabled by task-based 
multithreading

• CPU can do other work 
while inference request 
is ongoing

o Significantly reduces 
impact of network 
latency
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SONIC Approach
 SONIC (Services for Optimized Network Inference on Coprocessors):

inference as a service in experiment software frameworks

 Use industry tools:

o gRPC communication

o TensorFlow or Nvidia Triton inference servers

o Kubernetes for dynamic scaling of resources

 Interact with cloud services: Azure, AWS, GCP

 Avoid rewriting millions of lines of C++ algorithm code in specialized 
coprocessor languages

o User code just converts input and output data into desired formats
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Cloud vs. Edge
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• Cloud service has higher latency

• Local installation of coprocessors:
“on-prem” or “edge”

• Provides test of ultimate performance

• Use gRPC protocol either way

Network input

CPU farm

FPGA/
GPU

Prediction

Experiment 
Software

Heterogeneous Cloud Resource

CPU

FPGA/
GPU

Heterogeneous Edge Resource

CPU

Experiment 
Software



FPGA Results

• Microsoft Brainwave FPGA, ResNet50 top tagger inference
• Latency: time for single request to complete
o ‹CPU› = 500–1000 ms, ‹remote› = 60 ms, ‹on-prem› = 10 ms

• Throughput: requests per second
o FPGA processes one image at a time, very quickly (1.8 ms)
o GPU (GTX 1080) needs batch of ~50 images to attain similar throughput
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Latency

CPU

Throughput

CSBS 3 (2019) 13

https://doi.org/10.1007/s41781-019-0027-2


Scaling Up GPUs

• Use Kubernetes + Triton to deploy multi-GPU server

o More GPUs support more CPUs, higher throughput

• Triton supports dynamic batching: combine requests from multiple CPUs

o Huge increase in throughput for large networks with small batch size
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Nvidia T4 GPU
ResNet50 inference
1 event = 10 images

DeepCalo† inference
1.8M parameters, batch 5
dynamic batch 250–500
† Spaatind2020, GitLab

https://indico.nbi.ku.dk/event/1259/contributions/9795/
https://gitlab.com/ffaye/deepcalo


Neutrino Challenges

DUNE: Deep Underground Neutrino Experiment

• Largest liquid argon detector ever designed

• ~1M channels, 1 ms integration time w/ MHz sampling → 30+ petabytes/year

o Rate ultimately limited by available computing

• ProtoDUNE operating at CERN (5% size of DUNE)

FNAL Colloquium Kevin Pedro 42

DUNE



ν-SONIC

• ProtoDUNE reconstruction
dominated by single ML algorithm

• Offload to GPU as a service:
>2× overall improvement!
o Simple implementation

w/ blocking, synchronous call
o Latency preferable to CPU inference
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all CPU w/ GPU

Process
Time [s]
(all CPU)

Time [s]
(w/ GPU)

Full event 227 99
ML algorithm
(EmTrackMichelId)

142 10



Conclusions
• Major strides in deep learning have been incorporated in particle physics
• Significant improvements in top quark tagging (and other tasks)
• AI enables new avenues for discovery, such as boosted H → bb̄
• Many open questions remain

• Moving beyond fully-connected and convolutional neural networks
→ generalize by embedding data in graphs

• Cutting-edge techniques can handle fundamental tasks:
tracking, clustering, calibration

• Need to accomplish fundamentals and encourage new capabilities,
while coping with unprecedented floods of data

• Solution: accelerate AI inference with coprocessors as a service
• Promising and achievable path for colliders, neutrinos, & beyond!
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Backup



Jet Substructure
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CMS-DP-2018-046

AI for b-tagging
• Similar progression to top tagging:
o Expert variables
o Expert variables combined in BDT
o Expert variables combined in DNN
o Low-level variables improve DNN

• Double-b-tagging benefits similarly
o “Expert” corresponds to b-tagging subjets
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JINST 13 (2018) P05011
CMS-DP-2019-003

DeepJet

https://cds.cern.ch/record/2630438
http://dx.doi.org/10.1088/1748-0221/13/05/P05011
http://cds.cern.ch/record/2666647


Tagging New Particles
• Many new AI approaches being developed all the time
o Access to tools, frameworks, computing constantly increasing
 Can even tag new particles (beyond the SM)
o e.g. displaced jets from long-lived particles

• Gradient reversal employed to avoid data/simulation discrepancies
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arXiv:1912.12238

https://arxiv.org/abs/1912.12238
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