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Largest, highest-energy particle collider

o Circumference = 27 km (17 mi)

0 Center-of-mass energy = 13 TeV
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 Largest, highest-energy particle collider
o Circumference = 27 km (17 mi)
o Center-of-mass energy = 13 TeV

o0 Many items also applicable to ATLAS,
neutrino physics, cosmology, etc.
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Key:

Muon
Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Tracker

\ Electromagnetic
}! Il Calarimeter

Hadron Superconducting
Calorimeter Solencid

Iron return yoke interspersed
with Muon chambers

Transverse slice
through CWMS

“Hit”: energy deposit in single channel

Tracks: built from consistent hits in tracker, muon chambers
Clusters: built from nearby hits in calorimeters

Particles: built from linked tracks and clusters

Jets: collimated sprays of particles
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Upgrades

HL-LHC project schedule

HL-LHC

“ 13 TeV SAEE — 13-14 TeV = 14 TeV
e - e e
Dicdes Cunsulidatiun energy
7 TeV w EI:B mn?l I'll'ldtt ﬁm% Ry ieits 5Iﬂ- 7.5 X nominal Lumi
R2E project Iagions ;l Tltén P:': : “5 Installation
---m--ﬁ---m
ATLAS - CMS
axperiment upgrads phase 1 ATLAS - CMS
peam pipes nominal Lumi _2unominad Lumi, ) JCE - LHCD i 2 x nominal Lumi HL upgrada
7555 nominal Lumi | }-'/’.‘/—_- upgrads
-1 EdE=d 3000 th-1
30 ib m m lumninosity 4000 (ultimate)

* Increase in luminosity — more data!
o Also more radiation...
» Corresponding CMS detector upgrades, including:

o Pixel (innermost tracker):
66M — 1947M channels

o Outer tracker:
9.6M — 215M channels

o High Granularity Calorimeter (endcaps):
85K — 6M channels
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https://project-hl-lhc-industry.web.cern.ch/content/project-schedule

Neutrino Physics
IFONGIBASENNEINEULNOIRACHitY,

Sanford
Underground
Research =
Facility =

Fermilab
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» Neutrinos interact very rarely and weakly

» Detectors need large volume of material and long exposure
o Try to reduce backgrounds (unwanted hits) from cosmic rays, etc.

» Neutrinos have mass and therefore oscillate between different flavors
o Near and far detectors compare proportions

* Upcoming LBNF: most intense neutrino beam, 120 GeV

FNAL Colloguium Kevin Pedro



What is Artificial Intelligence?

“Al Is whatever hasn’t been done yet.”
— Douglas Hofstadter

* In this colloguium: machine learning (ML)
» ML is function approximation:

» map inputs to outputs, X » y

0 Y = F(X) unknown, probably not analytic

— try to find approximation y = F'(X; W) by optimizing weights W

* Deep learning:

o Use thousands, even millions of weights

o Use many layers with intermediate features derived from inputs

= More “neurons” — more multiplications

Deep Feed Forward (DFF)

Perceptron (P)

. St

The Neural Network Zoo
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https://www.asimovinstitute.org/neural-network-zoo/

Training an Al

o [teratively modify weights so F’ gets “closer” to ¥ (training data)

o “Closer” defined by a loss function - hackernoon.com

0 Use gradient descent to follow change in loss .|

J(64,0,) o

» Keep separate datasets for testing & validation

o Otherwise, Al could be overtrained

o ~fWeste+ by « Training is very intensive: large datasets,
billions (1) of multiplications

* Inference: applying trained Al to (new)
Input data to get output

o Output: classification, regression, etc.

n hidden layers, m, units in layer ¢

Comput. Meth. Appl. M. 353 (2019) 201
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https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://dx.doi.org/10.1016/j.cma.2019.05.019

Al at FNAL: A Long History

output units

[FermiNews

November 18, 1988 Vol. XI, No. 21 aF Fermi National Aceelerator Laboratory

Neural Network Startup

In the past few years, there has been a tremendous
resurgence in research on neural networks, the name
given to arrays of single-bit, quasi-digital processors
whose high level of interconnectivity resembles that
of nerve cells in the brain. Neural nets seem to be
good at problems that humans solve easily, but that
conventional computers are notoriously bad at, such
as pattern recognition and decision making based on
incomplete or faulty data.

Bruce Denby, who has recently joined the Lab as
a Wilson Fellow based in the Computing Department,
is beginning a project to explore the possibility of us-
ing artificial neural networks and other fine-grained
SIMD architecture devices in experimental triggers or
offline pattern recognition engines.

Networks implemented in VLSI have demon-
strated enormous speedups over conventional
microprocessors for certain applications. Also, be-
cause of the high redundancy in the interconnection
network, neural sets are relatively insensitive to local-
ized faults caused by point defects in silicon substrate
or by errors in the data input.

Persons wishing to find out more about neural net-
works should contact Bruce Denby at FNAL::DENBY
or drop a note to him at MS 120. If there is sufficient
interest, regular discussion sessions can be set up.

FNAL Colloquium

input units

Feed forward neural network

inputs

Recurrent Network

B. Denby, “Neural Network Tutorial for High Energy
Physicists”, FERMILAB-Conf-90/94, May 1990
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http://lss.fnal.gov/archive/1990/conf/Conf-90-094.pdf




Top-1 accuracy [%]

Al Today
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80
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ResNet-50 VGG-16 VGGr19
75 ResNet-101
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« Massive industry efforts in R&D for deep neural networks
o Many frameworks: TensorFlow, PyTorch, MXNet, scikit-learn, etc.
 Giant leaps in image recognition, language processing, even game playing

o Similar leaps in computational requirements...
FNAL Colloquium Kevin Pedro 13


https://openai.com/blog/better-language-models/
https://www.technologyreview.com/2017/10/18/148511/alphago-zero-shows-machines-can-become-superhuman-without-any-help/
https://arxiv.org/abs/1605.07678

Convolutional Neural Networks

towardsdatascience.com

Low-Level| |Mid-Level| |High-Level Trainable
. Feature T Feature ¥ Feature i Classifier .
towardsdatascience.com ’ y

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

FEATURE LEARNING

» Image recognition started modern Al revolution
 Innovation: convolutional neural networks (CNNS)
o Combine neighboring pixels according to matrix of weights
= Same convolution applied to whole image — reduce # weights

o Derive features at different scales: edges, corners, etc.

FNAL Colloguium Kevin Pedro 14


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8

CNNs for Neutrinos

» Neutrino detector data naturally image-like

100

I . Top View

80

Appeared ve 70 . v, CC Event
= — Survived v, . 60
o 60 1 |
o — NC background | et
=] 1 : 40
% 107 —— Beam v, background odl
& ! r... - _
: A0 :l:.. . 20
2 | “r
cC 5 =
] | o « k1
T N i
20 o
X
I lI
% 02 08 1 109

0.4 0.6
v. CC Classifier Output

_' Event selected w/ 90% prob.

« NOVA was first particle physics : 2 0 o s
experiment to publish® result from CNN « ResNet50 can distinguish charged
current events from cosmic background

T JINST 11 (2016 ) P09001,
Phys. Rev. Lett. 118 (2017) 231801
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https://dx.doi.org/10.1088/1748-0221/11/09/P09001
https://dx.doi.org/10.1103/PhysRevLett.118.231801

Collider Physics Example: Tagging

Prototypical case: tagging top quarks

e Many models of physics beyond the standard model (SM) include new
particles that can decay to top quarks

O Heavy new particles — boosted top quarks,
decay products merge into a single wide jet

» Clear signature of new physics
o But background events (e.g. SM QCD) have much higher rate

« Traditionally identified using jet substructure: M (13TeV)
0 X = Nsubjettiness, groomed jet mass, etc. ?"0-14;—32,2”0” —0cD et -
(“expert” variables) CIZ ot otz —Topauane

0 Y =top quark or QCD OZ';-_ -

0 F(X) = selection criteria " |

= Example: 15, < 0.6 ool :

L o i i PR PR R s
% 0102 0304050607 0809 1
T3o

FNAL Colloquium Kevin Pedro 16



Al for Tagging

» Can machine learning algorithms

do a better job than experts? > 10 pr————————————— ,(13 Tev)
O = - .
_ c [ CMS arXiv:2004.08262
 Usual progression: S - Simulation I
% 15_ Top quark vs. QCD multijet b tt I
0 Combine expert variablesin o [ 1000<e"< 1500 v, <24 eter -
. . - 105<mg;’ <210 GeV 7
boosted decision tree (BDT) 3 451k 110 <210 cev }
E) - 140 < my,oryp < 220 GeV / .
o0 Combine expert variablesin  © i /) —DeepAKs ]

Y] L 7 --- DeepAK8-MD
deep neural network (DNN) @ 107°¢ 7 ImageTop -
- L --lmageTop-MD 1
[ o —m i
0 Use i et b ]
. 107°E _BEST E
(reconstructed tracks, particles, =) dgn E
etc.) in DNN L —N-BDT (CA15) ]

W 1 AT M R R R
1075 0.2 0.4 0.6 0.8 1
0 Use more advanced neural Signal efficiency

network architectures
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http://arxiv.org/abs/2004.08262

features

features

Different Approaches

Top quark jet image

)

- build “image” out of jet constituents CMS simuiation

* Pros: leverage ubiquitous industry tools for
image recognition, convolutional neural
networks (CNNs)

e Cons: some information is lost
(jets aren’t “really” 2D images)

Ok L] 1
0 5 10 15 20 25 30 35

pierX
Particles DeepAKS: learn from particle, vertex
e g g Jogi variables directly
particles, ordered by pr (i) Fully
connected Output . . .
oo Vs o -  Pros: keep more information
i Elecaz —| " .
Ve, ordered by Srom e Cons: 1D convolutions may not

fully capture all relationships
between quantities

FNAL Colloguium Kevin Pedro 18



Al Enables Discovery

Phys. Lett. B 716 (2012) 30

S CMS \e=7TelL=51f"1s=BToV.L=531) Higgs — bb: most common decay,
§ : %m Unmeighios but huge background

1500 g « Dedicated DNN tags boosted

g 1000} Higgs with two secondary vertices
L

1000,  Once thought impossible

0 Now 2.5¢ evidence in 2020

S/(S+B) Weighted
(&) ]
3

— S+B Fit
- - BrComponen CMS-PAS-HIG-19-003 1115
"B 2e ] > 25000~ T ey
ol S CMﬁof’p’e’i”f;’éiréev ::.:;“
110 120 130 140 150 ™~ 20000 Deep dduble-b tagger :_:;;um_et B
my‘\{ (GeV) % E Passing region ﬁ;?é%‘]ficigr.?u”d _
u>J15ooo;.. . R
Higgs — vyy: rare process, but clear i
- 10000
signature and clean background x
« Boosted decision trees critical for o
Higgs discovery in 2012 o
« Event-level classification enhances
resonance . 60 80 700 120 140 160 180 200

mg,, (GeV)
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https://dx.doi.org/10.1016/j.physletb.2012.08.021
http://cds.cern.ch/record/2714916

Open Questions

» How to handle differences between data and simulation?
o Gradient reversal (domain adaptation) very promising
= Can also help avoid other unwanted behavior, e.g. mass dependence
» How to explain what the network learns?
o Should probably be an entire academic field in itself
0 See e.g. The Building Blocks of Interpretability for CNNs
« Far from an exhaustive list (of algorithms or questions)

arXiv:1409.7495 9L,
P <>
[> [> ﬂ |:> Ec]ass label y

—L S(36,)
_8ﬂf g domain (11%1{'191 C(g( 04)

j\). @QJ r
Y €L, “
feature extractor G¢(-;6y) f 5;‘)’5
Py U [> |:> @ domain label d

D a7
L forwardprop  backprop (and produced derivatives) (‘39(1
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https://arxiv.org/abs/1409.7495
https://distill.pub/2018/building-blocks/




P-CNN
ResNet50"
ResNeXt

Cutting Edge Tagging

0.980 0.930 759 348K
0.983 0.935 1000 25M
0.984 0.936 1147 1.46M

ParticleNet 0.986 0.940 1615 366K
t CSBS 3 (2019) 13 * (g5 = 0.3)

o P-CNN = simplified DeepAKS

» Apply massive image recognition networks
(from industry) for significant gains

o But regular grids unnatural for collider data
= gparse occupancy, varying geometry, etc.

10°
ResNeXt-50 (AUC = 0.9837)
P-CNN (AUC = 0.9803)

—— ParticleNet-Lite (AUC = 0.9844)

= ParticleNet (AUC = 0.9858)

H H
o o
L i

False positive rate (&)

,_.
o
&

107+

T T T
0.0 0.2 0.4 0.6
True positive rate (&)

Phys. Rev. D 101 (2020) 056019

T
0.8

1.0

see also SciPost Phys. 7 (2019) 014

 ParticleNet does even better with far fewer parameters...

o0 But more operations: 3—4x ResNeXt

FNAL Colloquium
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https://dx.doi.org/10.1103/PhysRevD.101.056019
https://dx.doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1007/s41781-019-0027-2

All Roads Lead to Graphs

* Generalize convolutions — message passing w/ graphs (nodes & edges)
O Derive new features for node x; using neighbors x;

o Can even assign features to edges
¢ 000000

gl £ . = = .
- G T e | ) FdgeC
Gpare) eV N

a2 /\ .//-'\.

X, X, S arXiv:1801.07829 <.

» Aside: recurrent networks (RNNs) for language processing now supplanted
by “Transformers” that use “attention”

0 These are just graphs!

-0 O

Sentiment?

Next word?

Part-of-speech tags?

towardsdatascience.com

FNAL Colloquium Kevin Pedro
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https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa
https://arxiv.org/abs/1801.07829

Graph Networks (GNNSs) for Physics

 ParticleNet (leading top tagger) uses “point cloud” (also a GNN)
o Also called “interaction networks”, “graph CNNs”, etc.

o0 Same techniques applicable to many other tasks...

m—p InputNet |— EdgeNet —| NodeNet |—»| EdgeNet =Nodlﬂlt---El§llllt—h[ l l

Input graph Output graph

» Most fundamental problems in event reconstruction:
tracking, vertexing, clustering

» How to associate detector hits with other detector hits

o Detector geometry very important!

FNAL Colloquium Kevin Pedro 24
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GNNs for Tracking
vl .

GNN 600 -

1000 4

800 4

600 -

£
> <
400 4 400 A
200 A 200 4
0+ 041, . . ) ; : .
—E\TOO —4IOO —ZIOO 6 2[1]0 460 660 CTD2018 —-600 -400 -200 0 200 400 600
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1.0

First application to reconstruction: tracking

<
@

Start w/ possible connections between hits

o
o

Edge classification:
GNN decides which edges are correct

Q@
S

/ —— total
{ reconstructable
== barrel
—— no-missing-hits
—e— Edge selection

N particles after selection / N total particles

o
N

Work in progress: 97% efficient

0.0

CTD2019 ~ Zi

0.5 1.0 1.5 2.0 2.5
pT [GeV]

3.5
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https://indico.cern.ch/event/742793/contributions/3274328/
https://indico.cern.ch/event/658267/contributions/2881175/

GNNs for Clustering

* CMS upgrades (~2026) include integrated
endcap High Granularity Calorimeter

o0 Hexagonal wafers increase silicon yield

» Especially non-grid-like geometry

50+ 50 Correct noise (E = 12.33)
—— False signal (E = 0.78)
. " Comecttgnal € = 8371 e Edge classification works

) = well for clustering
Q. £
s & « Charged pion: >90%
D = efficiency to find correct
h 1 B edges (99% for photons

S SN and muons)

—— False signal (E = 0.78) TR
' Ezllrsri:tosl,?;n{aEl(=Ell=-6§3J?.91) | | TR | 0 98-99% correct energy
S 10 ST ytem 7T assignment

NeurlPS (ML4PS) 2019
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https://ml4physicalsciences.github.io/%23papers

Edge Determination

» Default edge assignment: use k-nearest neighbors S2A o
or similar algorithm (based on detector geometry) \ /0 .
» GravNet: edges determined dynamically /@ \
® \ /©"--o
0 k-nearest neighbors using derived features ® /
» GNN optimizes latent space to associate detector hits i N

* Open question: how to handle unknown number of clusters?

(b) Reconstructed

(a) Truth

Eur. Phys. J. C 79 (2019) 608

FNAL Colloquium Kevin Pedro 27



https://dx.doi.org/10.1140/epjc/s10052-019-7113-9

Graphs for Calibration

 Calibration: another fundamental problem in physics

o0 Raw measurements usually have some bias
* Dynamic reduction network: arXiv:2003.08013

-
o
ot SRR U I N YR
(X SII8(|8||E[|&| 8| E|¢® 2
AvaY, o
: -
— (7]
\h__hh\\/,__,/ x_____\/,____/ | . —
# nodes reduction
Resolution: stochastic=1.244, constant=0.053
- . . — ik
* Preliminary results (hadron resolution) 05 |
. : Preliminar
> competitive w/ expert algorithms " y
) hadrons
- - - E | .
o Approach still being refined 70 (train: 10K)
o Also studying industry benchmarks
such as MNIST 7 R —
S P T

FNAL Colloquium Kevin Pedro
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https://arxiv.org/abs/2003.08013




Computing for Al

Al has significant impacts on physics:
0 Helps us do things we couldn’t do before
= e.g. tag top and bottom quarks with unprecedented accuracy
0 Helps us do better at fundamental problems
= Tracking, clustering, calibration, etc. 3 3
« But can we afford to keep doing all of this? o e

o0 HL-LHC is just around the corner...

136 S|mulltlgn_eous g(r)oltgg' : HGCal simulation, 200
proton collisions ( CLEY) simultaneous pp collisions
FNAL Colloquium Kevin Pedro 30




More Data,

| LHC Science
data

SKA Phase 1 -
2023
~300 PB/year
science data

)
ro/

@PB

HL-LHC - 2026
~600 PB Raw data

50 PB raw data

Google
Internet archive
~15 EB

Yearly data volumes

\
\
HL-LHC - 2026
~1 EB Physics data

SKA Phase 2 — mid-2020's
~1 EB science data

More Problems

e HL-LHC vital statistics:
0 10x data vs. Run 2/3

0 200 simultaneous collisions
vS. ~30 in Run 2

0 Detector upgrades:
15-65x increase in channels

» More data and more complexity

ClMS Ptébh'c
40000 CPgo?seSer?nares N . .
. pl e S o0 DUNE, LSST, SKA will provide
g orer | similarly huge datasets
*8 20000~ -
T CMSOfflineComputingResults ¢+ Data volumes will approach scale
10000 |5 . === of Google and Facebook
0 YT L il | | .
2017 2019 8 2025 2027 o But computing resources won't...
Kevin Pedro 31
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

CPU

WLCG provides:
e 42 countries

170 computing centers
> 2 million tasks/day
1 million CPU cores

1 exabyte of storage

42 Years of Microprocessor Trend Data

Stagnation

Worldwide LHC Computing Grid

107 = 1uwe. ® Moore’s Law continues
108 | ‘*“_‘: . | (thousands)
A1, . .
ol . 244 | Single-Thread o But without Dennard scaling
A By TN (SpeciNT % 109
4 | Ak J a pec X - ’
103 ) ::3‘.:.« e 5 | Feaens i > SlNgle-thread performance can’t
10° | R, & . 1 . . .
. ,gw"h i 2y | Topical Power keep up with accelerator intensity
102 | Ry '-‘!-?,;;,v;;gx v }:.’ { (Watts)
s - - " ,,'v: ¥y vy .:.' | Number of .
el IR - cad Logialcores - Projected shortfalls 2-10x,
1 oL v ; - * eee ﬂmm::w - - -
LR . . . depending on assumptions
1970 1980 1990 2000 2010 2020
Year
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Heterogeneous Revolution

crus 9 - 8
ASICs
IRRIRERRE guannnnnnl

* New coprocessors provide efficiency at expense of flexibility
0 GPU: execute serial instructions on massive data
0 FPGA: spatial computing (execute many instructions simultaneously)

» Luckily, optimized for machine learning!
Nvidia GPU

Microsoft FPGA

FNAL Colloquium Kevin Pedro 33



Al & Coprocessors: Two Great Tastes...

 Just adding new tagging algorithms doesn’t speed up reconstruction
0 ResNet50 inference on CPU: ~1 sec/image
» Focus on replacing classical algorithms with Al

o Fundamental problems (clustering, etc.) involve comparing all detector
hits to all other detector hits

0 O(N?) operation, can be reduced to O(NlogN) w/ clever techniques
0 Al inference is O(N) — much better scaling w/ detector occupancy

» Use coprocessors to accelerate Al inference

o0 GPUs also useful for training,
but training only uses subset of data

o Inference must be performed for every event
(billions, at least)

FNAL Colloquium Kevin Pedro 34



Al for Triggers

o CMS L1 trigger uses FPGAs to satisfy extreme latency requirements (~1 pus)

* hls4dml: open-source package
0 Optimize ML algorithms to run efficiently on FPGAs
o Handles BDTs, various DNN architectures

» Planned for use during LHC Run 3

Model Training Resource Tuning

b [d Keras «l M
PYTbRCH\ &H

Model De5|gn Model Pruning

| X |
RTL
@ @D -> h IS. m I -  digital circu: abstraction
L

HLS Conversion

ASICs

his4ml

FNAL Colloquium Kevin Pedro
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https://github.com/hls-fpga-machine-learning/hls4ml

Inference As A Service

CPU P

Coprocessor Server

CPU

"‘

Offline computing: looser latency requirements

Multiple CPUs send inference requests to coprocessor server
Ensures optimal utilization of GPUs/FPGAs, along with flexibility
One coprocessor could serve ~100 CPUs

o0 Depending on conditions and requirements:
latency, bandwidth, memory, inference time, etc.

o0 Much more cost effective than buying 1 GPU for every CPU in the grid...

FNAL Colloquium Kevin Pedro 36



LHC Computing Model

 Inference as a service naturally fits into existing computing model

» Reconstruction process involves 100s of algorithms

o Only a few worth accelerating

Time

-

Current « Most efficient method:

Thread

Event

Thread

Event

GPU as-a-Service

Thread

Event

Reduced

_ hatencx

GPU

Other machines

FNAL Colloquium

Kevin Pedro

asynchronous, non-
blocking calls

o Enabled by task-based
multithreading

CPU can do other work
while inference request
IS ongoing

o Significantly reduces
impact of network
latency

37



SONIC Approach

» SONIC (Services for Optimized Network Inference on Coprocessors):
Inference as a service in experiment software frameworks

v" Use industry tools:
0 gRPC communication

o TensorFlow or Nvidia Triton inference servers

0 Kubernetes for dynamic scaling of resources
= Interact with cloud services: Azure, AWS, GCP

v" Avoid rewriting millions of lines of C++ algorithm code in specialized
coprocessor languages

0 User code just converts input and output data into desired formats

FNAL Colloquium Kevin Pedro 38



Cloud vs. Edge

CPU farm
Heterogeneous Cloud Resource
Experiment SRpc
Software —

7
| Network input |

| Prediction |

T~

Heterogeneous Edge Resource

» Cloud service has higher latency

 Local installation of coprocessors:

Experiment “on-prem” or “edge”

Software

* Provides test of ultimate performance

CPU « Use gRPC protocol either way

FNAL Colloquium Kevin Pedro 39



Events

Latency

FPGA Results

103 i

101 i

100 - i !

— remote

100 101

Time [ms]

102

Throughput

800

- onprem 700°

L’1600-

"5 500-
o

CPU &

> L 300+
=

200

|-|_ 1007 CSBS 3 (2019) 13
103 10° 10! 102 10°

Simultaneous processes

* Microsoft Brainwave FPGA, ResNet50 top tagger inference
» Latency: time for single request to complete
0 <CPU> =500-1000 ms, <remote> = 60 ms, <on-prem> = 10 ms
» Throughput: requests per second
0 FPGA processes one image at a time, very quickly (1.8 ms)
0 GPU (GTX 1080) needs batch of ~50 images to attain similar throughput

FNAL Colloquium
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https://doi.org/10.1007/s41781-019-0027-2

250

200 +

Throughput [events/s]

U
(=]
1

Scaling Up GPUs

150 A

=

o

o
1

Nvidia T4 GPU
ResNet50 inference
1 event = 10 images

1 GPU
4 GPU
8 GPU

10 20 50 100
Simultaneous processes

200

12000

10000 -

8000 A

6000 -

4000 -

Throughput [events/s]

2000 A

AA A A
0

A No Optimization
B Dynamic Batching

DeepCalo' inference

1.8M parameters, batch 5 |

dynamic batch 250-500
T Spaatind2020, GitLab

50100 200

560
Simultaneous processes

» Use Kubernetes + Triton to deploy multi-GPU server

0 More GPUs support more CPUs, higher throughput

 Triton supports dynamic batching: combine requests from multiple CPUs

0 Huge increase in throughput for large networks with small batch size
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https://indico.nbi.ku.dk/event/1259/contributions/9795/
https://gitlab.com/ffaye/deepcalo

Neutrino Challenges

Sigral FT chimneys with

Field cage suspersion

DUNE: Deep Underground Neutrino Experiment

 Largest liquid argon detector ever designed

* ~1M channels, 1 ms integration time w/ MHz sampling — 30+ petabytes/year
o Rate ultimately limited by available computing

* ProtoDUNE operating at CERN (5% size of DUNE)

FNAL Colloguium Kevin Pedro 42



Mv—SON |C

SpacePtslvr RootlO

RootlO Rest

GausHit

Pandara
SpacePtslvr

GausHit

Pandora

EmTrkMichelid

EmTrkMichelld

all CPU w/ GPU
 ProtoDUNE reconstruction Time [s] | Time [s]
dominated by single ML algorithm (all CPU) | (w/ GPU)
o Offload to GPU as a service: Eull event 297 99
>2% [ '
2 .overa.ll |mprovem.ent. ML algorithm 142 10
o Simple implementation (EmTrackMichelld)

w/ blocking, synchronous call
o Latency preferable to CPU inference
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Conclusions

Major strides in deep learning have been incorporated in particle physics
Significant improvements in top quark tagging (and other tasks)

Al enables new avenues for discovery, such as boosted H — bb

Many open questions remain

Moving beyond fully-connected and convolutional neural networks
— generalize by embedding data in graphs

Cutting-edge techniques can handle fundamental tasks:
tracking, clustering, calibration

Need to accomplish fundamentals and encourage new capabilities,
while coping with unprecedented floods of data

Solution: accelerate Al inference with coprocessors as a service
Promising and achievable path for colliders, neutrinos, & beyond!
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Jet Substructure
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Al for b- tagglng

« Similar progression to top tagging:

O

o0 Expert variables combined in BDT
o0 Expert variables combined in DNN
o Low-level variables improve
Double-b-tagging benefits similarly

0 “Expert” corresponds to b-tagging subjets

JINST 13 (2018) P05011
CMS DP 2019 003

] 13 TeV, 2016
E ; CMb - Udsg ! I 597
g Stmulatton i
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t 300 < jetpr < 2000 GeV
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https://cds.cern.ch/record/2630438
http://dx.doi.org/10.1088/1748-0221/13/05/P05011
http://cds.cern.ch/record/2666647

Tagging New Particles

* Many new Al approaches being developed all the time
0 Access to tools, frameworks, computing constantly increasing
» Can even tag new particles (beyond the SM)
0 e.g. displaced jets from long-lived particles
» Gradient reversal employed to avoid data/simulation discrepancies

CMS Simulation 13 TeV
II| T T TTTTIT T TTTT T TTIT

I III| T T IIIIII| T T IIIIIII T T IIIIIII T TT |
B Sp”T SUSY —®— mg=2000 GeV, Myo = 0 GeV ]
—&— mg = 1600 GeV, myo = 1400 GeV |

Efficiency (LLP)
o
T

arXiv:1912.12238

1 1 IIIIIII| 1 1 IIIIIII 1 IIIIIII| 1 IIIIIII| 1 IIIIIII|
10° 10* 10° 102 107 1 10
Ty (M)
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