

A New Frontier in the Search for Dark Matter Gordan Krnjaic

FNAL Colloquium April 29, 2020, 4 PM CDT

Collaborators

Natalia Toro, SLAC

Eder Izaguirre, BNL

Philip Schuster, SLAC

Nhan Tran, FNAL

Asher Berlin, NYU

Nikita Blinov, FNAL

Yoni Kahn, UIUC

Andrew Whitbeck Texas Tech U.

Matt Moschella Princeton

Open Questions in Fundamental Physics & Cosmology

Also Quantum Gravity

Remarkable Evidence for Dark Matter

Multiple independent, consistent observations over **nearly** all of spacetime: kpc-Gpc, 13.7 Gyr ago-today **Holy Grail: extend our knowledge to terrestrial scales << kpc** What Clues Do We Have?

Huge space of allowed microscopic theories Evidence only extends down to ~kpc (dwarf galaxy) scales

Theoretical guidance is essential Need organizing principle for systematic progress

Overview

1) What's great about thermal DM?

2) What's **different** about light thermal DM?

3) How can we **test all** predictive models?

Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM?

3) How can we **test all** predictive models?

•

Rarely predictive

Q: What's so great about equilibrium? A: Generic and easy to achieve

Compare interaction rate to Hubble expansion

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{\Lambda^2} (\bar{\chi}\gamma^{\mu}\chi)(\bar{f}\gamma_{\mu}f)$$

$$H \sim n\sigma v \implies \frac{T^2}{m_{Pl}} \sim \frac{g^2 T^5}{\Lambda^4} \Big|_{T=m_{\chi}}$$

Equilibrium is reached even for *tiny* couplings

$$g \gtrsim 10^{-8} \left(\frac{\Lambda}{10\,{\rm GeV}}\right)^2 \left(\frac{{\rm GeV}}{m_\chi}\right)^{3/2}$$

Nearly all testable models feature equilibrium at early times

Q: What's so great about equilibrium? A: Minimum annihilation rate

Symmetric DM

Q: What's so great about equilibrium? A: Minimum annihilation rate

Q: What's so great about equilibrium? A: Minimum annihilation rate

Unstable "friend" χ_2 more Boltzmann suppressed

$$\frac{n_2}{n_1} \sim e^{-\Delta/T}$$

Increase rate to compensate $\sigma v \gg 2 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$

Key Point: minimum rate in all equilibrium scenarios

Q: What's so great about equilibrium? A: Insensitive to unknown high energy physics

Initial condition known

Calculable and independent of inflation, reheating, baryogengesis etc.

Mass & couplings set abundance

A discovery would directly probe early universe cosmology

Only other UV insensitive mechanism is "freeze-in"

- Ad hoc initial condition $n_{\chi}(0) = 0$
- DM produced through tiny couplings, very hard to test

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

Overview

1) What's great about thermal DM?

2) What's **different** about light thermal DM?

3) How can we **test all** predictive models?

Light DM vs. WIMPs

Light DM must be SM neutral

Else would have been discovered (LEP, Tevatron...)

Light DM vs. WIMPs

Light DM must be SM neutral

Else would have been discovered (LEP, Tevatron...)

Light DM requires light new force carriers

Weak interactions are too weak $need \sim 10^{-26} cm^3/s$

Light DM vs. WIMPs

Light DM must be SM neutral

Else would have been discovered (LEP, Tevatron...)

Light DM requires light new force carriers

Weak interactions are too weak $need \sim 10^{-26} cm^3/s$

Annihilation through renormalizable interactions

Higher dimension operators have same problem as electroweak forces

Light mediators are not optional!

Who's Heavier: DM or Mediator?

Hidden Annihilation

No clear experimental target Abundance set by g_{χ}

Mediator decays **visibly**

Direct Annihilation

 $m_{\chi} < m_{\rm med}$

Predictive thermal targets Abundance depends on *g*_{SM}

Mediator decays **invisibly***

What Kind of Mediator?

Neutrality and renormalizability restrict possible interactions

Scalar ϕ mixes with Higgs Boson Couples to SM masses $\epsilon \phi \frac{m_f}{v} \bar{f} f$

Dark photon A' mixes with visible photon Couples to EM current $\epsilon A'_{\mu} J^{\mu}_{\rm EM}$

New force V directly couples to DM & SM Couples to different (non EM) current $J^{\mu}_{\rm SM}$

$$B-L$$
, L_i-L_j , $B-3L_i$

Scalar Force: Direct-Annihilation Ruled Out!

Conclusion independent of DM particle

GK arXiv:1512.04119 Phys.Rev.D (2016)

What Kind of Mediator?

Neutrality and renormalizability require "portal" interactions

New force models all similar to A' & also couple to neutrinos

What kind of DM? Use CMB to classify viable options

DM SM DM SM

Rare out-of-equilibrium annihilation ionizes H (z=1100) CMB photons pass through more plasma (modifies peaks)

Rules out s-wave relic cross section for DM < 10 GeV

Classify DM by Annihilation During CMB Era

Safe models require either:

P-wave annihilation

Scalar or Majorana

Different DM population @ CMB Asymmetric or Pseudo-Dirac

NB: both categories suppress (or kill) indirect detection signals

Representative Scenario: Dark Photon Mediator A'

$$\mathcal{L} = -\frac{1}{4} F'_{\mu\nu} F'_{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + A'_{\mu} J^{\mu}_{\chi} + \epsilon A'_{\mu} J^{\mu}_{\rm EM}$$

Not the only option, but "morally" similar to all viable variations Main difference for other scenarios: $J_{\rm EM}^{\mu} \rightarrow J_{B-L}^{\mu}$, $J_{L_i-L_i}^{\mu}$... Overview

1) What's **great** about thermal DM?

2) What's **different** about light thermal DM (< GeV)?

3) How can we test **all** predictive models?

Fixed-Target Accelerator Searches!

Why Accelerators? Accessible Thermal Targets

Neutrino Experiments: "Proton Beam Dump Strategy"

MiniBooNE Collaboration Phys. Rev. Lett. 118 (2017)

Target /ECAL /HCAL

Electron Beam Dump Concept: BDX (Beam Dump eXperiment)

ECAL/HCAL/HCAL

Electron Beam Dump Concept: BDX (Beam Dump eXperiment)

Improves upon proton beam approach, but suffers double taxation! Q: How can we improve reach?

Izaguirre, Kahn, GK, Moschella 1703.06881

Light Dark Matter eXperiment (LDMX)

Torsten Åkesson,¹ Owen Colegrove,² Giulia Collura,² Valentina Dutta,² Bertrand Echenard,³ Joshua Hiltbrand,⁴ David Hitlin,³ Joseph Incandela,² John Jaros,⁵
Robert Johnson,⁶ Gordan Krnjaic,⁷ Jeremiah Mans,⁴ Takashi Maruyama,⁵ Jeremy McCormick,⁵ Omar Moreno,⁵ Timothy Nelson,⁵ Gavin Niendorf,² Reese Petersen,⁴
Ruth Pöttgen,¹ Philip Schuster,^{5,8} Natalia Toro,^{5,8} Nhan Tran,⁷ and Andrew Whitbeck⁷

¹Lund University, Department of Physics, Box 118, 221 00 Lund, Sweden
 ²University of California at Santa Barbara, Santa Barbara, CA 93106, USA
 ³California Institute of Technology, Pasadena, CA 91125, USA
 ⁴University of Minnesota, Minneapolis, MN 55455, USA
 ⁵SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
 ⁶Santa Cruz Institute for Particle Physics,
 University of California at Santa Cruz, Santa Cruz, CA 95064, USA
 ⁷Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
 ⁸Perimeter Institute for Theoretical Physics, Waterloo ON N2L 2Y5, Canada

In this paper, we present the physics motivation and a preliminary conceptual design study for an experiment to search for low-mass dark matter utilizing low-current, high repetition rate electron beams. The experiment uses missing momentum to search for dark matter produced via "dark bremsstrahlung" by scattering electrons in a thin target. To identify rare signal events, the Light Dark Matter eXperiment (LDMX) individually tags

LDMX Collaboration 1808.05219 LDMX Collaboration 1912.05535

News: Phase 1 funding approved 2020!

Electron Beam Missing Momentum Concept

Izaguirre, GK, Schuster, Toro arXiv:1411.1404

Kinematics of Fixed Target Production

Aggressive cuts remove most BG, little signal

Irreducible "Invisible "Backgrounds

Beam particle scatters electron in target & converts to invisible particles

Verdict: Negligible

Real Missing Energy	Magnitude ($10^{16} \text{ EOT}_{eff}$)
Brem+CCQE	$< 1 \ (T \lesssim 0.1)$
$CCQE + \pi^0$	$< 1 \ (T \lesssim 0.1)$
Moller+CCQE	$\ll 1 \ (T \lesssim 0.1)$
$eN \to eN \nu \bar{\nu}$	$\sim 10^{-2}$

Main Challenge: Undetected Visible Particles

LDMX Collaboration 1912.05535

Comprehensive Coverage: Other Viable Forces

Berlin, Blinov GK, Schuster, Toro arXiv: 1807.01730

Where are the blind spots?

So far we have covered nearly all **predictive** direct annihilation models

Scalar force Ruled out

Dark photon

5th Force *B-L, B-3Le* ... etc.

Thermal coverage: missing momentum + beam dumps + electron direct detection

What about mediators w/ mainly 2nd & 3rd generation couplings? Only one theoretically consistent option χ_{\searrow}

$$L_{\mu} - L_{\tau}$$

Muon Missing Momentum: LDMX w/ muon beam

Covers Predictive Muon-Philic Models

Gauged $L_{\mu} - L_{\tau}$ Interaction

Also resolve muon g-2 with light physics Compatible parameter space for freeze-out

NB: annihilation to neutrinos also CMB safe

Summary: Thermal Dark Matter

A Modest Proposal

Interaction rate beats Hubble expansion [easy to realize]

Thermodynamic Initial Condition

Insensitive to unknown high scales [inflation, baryogenesis...]

Predicts Minimum Annihilation Rate

Equilibrium overproduces DM, deplete with non-gravitational force

Viable Window In Our Neighborhood

Coincidentally between electron mass and LHC energies

New Frontier of DM Search Strategies

Amends P5 report: identify new DM opportunities

https://science.energy.gov/~/media/hep/pdf/Reports/201809_HEP-PI-BRN-Dark-Matter_New_Initiatives.pdf

Thanks!