FULL-STACK QUANTUM COMPUTING WITH SUPERCONDUCTING QUBITS

🛟 Fermilab

Special colloquium on quantum technologies September 16th, 2019

Fermilab

Batavia, IL

Chad Rigetti Founder and CEO chad@rigetti.com y @chadrigetti

Outline:

- Intro to Rigetti and QC
- QPU technologies
- Algos + Applications
- Opportunities for HEP

rigetti

Full-stack

- Chip
- Cryo-RF
- Control Systems
- OPU
- Cloud integration
- Algos + Apps

Better Accuracy

Reduce approximations needed to make problems computable.

Higher Speed

Captive Foundry

• Superconducting quantum circuits

• Josephson junctions, TSVs, Caps

• 3D integration and packaging

Encode & manipulate data in an exponentially large state space.

Hybrid Quantum-Classical Architecture in the Cloud

Quantum Instruction Language (Quil) • \bullet

Lower Cost

Quantum computing largely decouples

compute power from energy consumption.

- Quil-based compiler (quilc)
- Quantum virtual machine (QVM)
- Forest SDK

Algorithms & Applications

- Develop & tailor algorithms for hybrid architecture
- Distribute Rigetti and partner libraries and applications

Market Outlook **\$13Bn** by 2022 **\$25-50Bn** by 2030s

SUPERCONDUCTING QUANTUM INTEGRATED CIRCUITS

High-fidelity two-qubit gates

Circuit-QED: qubits coupled to high-Q resonators for readout

rigetti

Rigetti Fab-1

VA INTERNATIONAL

OXYGEN

Fremont, CA

Rigetti Computing Proprietary and Confidential

Quantum Computing Facility, Berkeley CA

100-

QUANTUM CLOUD SERVICES TODAY

Enterprise and Government Users

(not exhaustive)

10 Global Fortune 500 companies in:

- Pharma
- Finance
- Chemicals
- Defense ٠

- Consulting
 - Manufacturing
 - Insurance

A National Labs

International research entities

BF

TORONTO

🚯 Stanford

University

1 1 1 1

-. 9.9.9

SS USCUniversity of Southern California

Currently Available 16Q QPUs

4,000 users have run 120M jobs on our platform

100+ active customers

QPU ROADMAP AND CHALLENGES

Rigetti Acorn

TECHNOLOGY PROGRESS SNAPSHOT: COHERENCE

Coherence Times

Device Interfaces

MS: Metal-Substrate | SA: Substrate-Air | MA: Metal-Air | MM: Metal-Metal

Isolate single interfaces, test iterative fabrication parameters

Fabrication Flow

Qubit Coherence Test

Metrology

TECHNOLOGY PROGRESS SNAPSHOT: CROSS-TALK

Combination of superconducting through-silicon vias and caps reduces cross-talk

Abrams et al, arXiv:1908.11856

TECHNOLOGY PROGRESS SNAPSHOT: 2Q GATES

Parametrically Activated 2Q Gates Protected from Flux Noise Achieve 99% Fidelity

Hong et al, arXiv: 1901.08035

TWO MAJOR HYBRID ALGORITHMS: VQE* & QAOA**

* Peruzzo et al., arXiv:1304.3061 ** Farhi, Goldstone, Gutmann, arXiv:1411.4028

EXAMPLE APPLICATIONS OF VQE

Ground-state and potential energy curve calculations

Simulation of H2 and LiH ground state with chemical accuracy on Rigetti QCS, using qubit coupled-cluster (QCC) ansatz, leveraging a variation of UCC implemented directly in qubit space.

Ryabinkin et al, arXiv:1809.03827 [quant-ph]

Has now also been applied to water, results to be published soon.

Proper description of NaH dissociation on Rigetti QCS, using 2-body reduced density matrix to calculate energy and subsequent "purification" to remove the mixing of pure states due to noise.

McCaskey et al, arXiv:1905.01534

EXTENDING VQE TO COMPUTE EXCITED STATES

High-accuracy calculation of energy spectra with stronger potential to outperform classical algos

Simulation of H2 first and second excited states on Rigetti QCS, capturing features which are classically intractable for larger molecules; the method uses a constrained version of VQE.

Ryabinkin et al. arXiv:1806.00461 [physics.chem-ph]

Simulation of up to 3rd excited states for H2, using variational quantum deflation, a VQE-based approach without additional qubit overhead and at most 2x deeper circuit.

Higgot et al. arXiv:1805.08138 [quant-ph]

CAN QUANTUM COMPUTING BOOST MACHINE LEARNING?

Early Exploratory Work

Quanvolutional neural networks

(QNN) leverage nonlinear transformations natural to quantum computers to extract features from images. QNNs increased accuracy over CNNs without the quantum layer.

Henderson et al, arXiv:1904.04767

An unsupervised machine

learning problem using clustering. This is the largest demonstration ever of a hybrid algorithm on a gate-model processor Developed Backwards Quantum Propagation of Phase Errors, enabling multiple **universal optimization method for training deep neural networks** on a quantum computer

Otterbach et al, arXiv:1712.05771

Verdon et al, arXiv:1806.09729

SOLVING LINEAR SYSTEMS WITH VARIATIONAL ALGOS

Solving NxN linear systems, A |x> = |b>

Sub-exponential scaling with condition number κ , ratio of largest to the smallest singular values in A

Logarithmic scaling with inverse precision 1/ ϵ

Variational Quantum Linear Solver (VQLS):

Variationally minimize the overlap between |b> and A|x>

- Implemented on Rigetti QCS for N=32 (5 qubits)
- Efficient runtime and quantum circuit to estimate overlap
- Runs w fixed depth circuit and shows some resilience to noise

Bravo-Prieto et al, arXiv: 1909.05820 (Sandia) An et al, arXiv:1909.05500 (Berkeley)

CAN MACHINE LEARNING HELP DESIGN BETTER HYBRID ALGORITHMS?

Can we use a **machine learning agent** (instead of human-designed templates) to *generate* the ansatz?

AUTOMATED QUANTUM PROGRAMMING VIA REINFORCEMENT LEARNING FOR COMBINATORIAL OPTIMIZATION

Keri A. McKiernan Stanford University Stanford, CA 94306 kmckiern@stanford.edu Erik Davis Rigetti Computing Berkeley, CA 94710 erik@rigetti.com M. Sohaib Alam Rigetti Computing Berkeley, CA 94710 sohaib@rigetti.com chad@rigetti.com

August 7, 2019

ABSTRACT

McKiernan et al, arXiv:1908.08054

https://github.com/rigetti/gym-forest

CAN MACHINE LEARNING HELP DESIGN BETTER HYBRID ALGORITHMS?

Using reinforcement learning agent to generate quantum circuits can reduce gate depths and sensitivity to noise

© 2019 Rigetti Computing. Proprietary

McKiernan et al, arXiv:1908.08054

https://github.com/rigetti/gym-forest

QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Phase transitions in quantum field

theories*: Demo of variational hybrid algorithms to calculate a quantum phase transition in the Schwinger model.

C. Kokail et al, arXiv:1810.03421 (Innsbruck)

Thermal quantum simulation:

Variational preparation of thermal Gibbs states (classically hard). Pathway towards studying quantum field theories at finite temperature.

Jingxiang Wu, Timothy H. Hseih, arXiv:1811.11756 (Waterloo)

Simulating non-Unitary dynamics with imaginary time evolution: Variational simulation of <u>Wick-rotated systems</u>.

S. McArdle et al, arXiv:1804.03023 (Oxford)

SCALING UP: CRYOGENIC PLATFORM

Flex reduces footprint 10x (from coax)

MX Plate Wiring and 32 I/O Quantum Processor Packaging

Cryogenic dilution refrigerator

SCALING UP: ELECTRONICS

2013-2015

General Test Equipment

AWG + Mixers Precision current sources VNA

2016-2017

Off-the-shelf customizable instrumentation

Software defined radio (USRP) Precision current source

2018-2019

Fully custom solution

Custom waveform generation; DC current source; processor

SCALING UP: ELECTRONICS

Custom Hardware:

Direct digital microwave transmit and receive with FPGA logic:

Built for high performance quantum algorithm implementation

Key challenges in building custom electronics solutions

- Low-latency architectures for hybrid q-c computing, FTQC etc
- Achieving high temperature stability and better calibration
- Designing stable architecture to maintain phase coherence across all channels
- Bandwidth, dynamic range, noise etc

DISTRIBUTIONS AND INTEGRATIONS

Accelerating Quantum Sciences with Quantum Computing

Integrate quantum processors into the HEP cloud in order to expand the understanding of our universe.

Discover hybrid quantum-classical methods for HEP, ML, and data processing that can be made available to a broad community of researchers through HEP cloud

Special thanks to:

Eric Holland Nigel Lockyer Joe Lykken Panagiotis Spentzouris Anna Grassellino Sergey Belomestnykh Alex Romanenko

