Neutrino:

chronicles of an aloof witness

Goran Senjanović ICTP, Trieste Eurojab August 7, 2019

Neutrino: why so special?

elusive particle

mean free path = distance travelled before interacting $\simeq 10^{19} {\rm \ cm}$

million times distance earth-sun ~ 1000 light years

travel to the edge of the universe

have been present from its birth

&

window into new physics

Neutrino: why so special?

elusive particle

mean free path = distance travelled before interacting $\simeq 10^{19} {\rm \ cm}$

million times distance earth-sun ~ 1000 light years

travel to the edge of the universe

have been present from its birth

&

window into new physics

John Updike 1960

John Updike 1960

wrong

nature and origin of neutrino mass - Holy Grail

The neutrino story

story of great scientific breakthroughs

but also

story of human drama, disappearances and escapes

moreover, an account of a lifelong personal struggle for a self-contained, predictive theory of neutrino mass - and a sense of finally having achieved it

The neutrino story

story of great scientific breakthroughs

but also

story of human drama, disappearances and escapes

moreover, an account of a lifelong personal struggle for a self-contained, predictive theory of neutrino mass - and a sense of finally having achieved it

The neutrino story

story of great scientific breakthroughs

but also

story of human drama, disappearances and escapes

moreover, an account of a lifelong personal struggle for a self-contained, predictive theory of neutrino mass - and a sense of finally having achieved it

first things first

Electro-magnetism - photon

messenger = photon

mass=0 spin=1

Electro-magnetism - photon

messenger = photon

mass=0 spin=1

Feynman 1948

Weak interactions

birth of neutrino

Beta decay - missing energy

 $^{60}_{27}Co \rightarrow ^{60}_{28}Ni + e^{-}$

n -> p + e

electron energy continuous

Pauli 1930

suggests neutrino

- to conserve energy

Beta decay - missing energy

 $^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + e^{-}$

n -> p + e

electron energy continuous

Pauli 1930

e

suggests neutrino

- to conserve energy

Wolfgang Pauli

Fundamental theory - messenger W boson

modern view: $d \rightarrow u + e + \bar{\nu}$

n = u d d p = u u d

 $\mathcal{H}_{fund} = \frac{g}{\sqrt{2}} J^{\mu}_W W^+_{\mu}$

 $J^W_\mu = \bar{u}\gamma_\mu d + \bar{\nu}\gamma_\mu e$

weak interaction messenger: W

Fundamental theory - messenger W boson

modern view: $d \rightarrow u + e + \bar{\nu}$

n = u d d p = u u d

 $\mathcal{H}_{fund} = \frac{g}{\sqrt{2}} J^{\mu}_W W^+_{\mu}$

 $J^W_\mu = \bar{u}\gamma_\mu d + \bar{\nu}\gamma_\mu e$

weak interaction messenger: W

Discovering W

$$\mathcal{H}_{fund} = \frac{g}{\sqrt{2}} J^{\mu}_W W^+_{\mu}$$

anti-proton

Messenger = W boson

spin=1

heavy $M_W = 80 m_p$

W discovery@CERN 1983 SPS - 7 km circumference

proton

Discovering W

$$\mathcal{H}_{fund} = \frac{g}{\sqrt{2}} J^{\mu}_W W^+_{\mu}$$

anti-proton

Messenger = W boson

spin=1

heavy $M_W = 80 m_p$

W discovery@CERN 1983 SPS - 7 km circumference

proton

Neutrino discovery

Pauli regrets introducing a ghost particle that cannot ever be seen

Pauli

Cowan, Reines 1956

use reactors = huge flux *Pontecorvo '40s* tens of trillions per square cm per second

water $p + \bar{\nu} = n + \bar{e}$

good old days

`Everything comes to him who knows how to wait.'

Neutrino discovery

Pauli regrets introducing a ghost particle that cannot ever be seen

Pauli

Cowan, Reines 1956 (Nobel prize 1995)

use reactors = huge flux Pontecorvo '40s tens of trillions per square cm per second

water $p + \bar{\nu} = n + \bar{e}$

good old days

`Everything comes to him who knows how to wait.'

Digression - fermion families

Neutrino mass

Pontecorvo 1956-'60s

Neutrinos have mass: he`feels' it

neutrino oscillations

Bruno Pontecorvo

metamorphosis: electron neutrino from the sun changes into muon neutrino (not observable)

Neutrino mass

Pontecorvo 1956-'60s

Neutrinos have mass: he`feels' it

neutrino oscillations

Bruno Pontecorvo

metamorphosis: electron neutrino from the sun changes into muon neutrino (not observable)

imagine a **bird** detector - cannot see **fish**

deficit of neutrinos from the sun

also, expect similar deficit in atmospheric neutrinos

Pontecorvo's work ignored by and large

In 1950 he escapes with a family - wife and three kids - in a dramatic fashion to Soviet Union. Cold war years

Neutrino oscillations discovery

 $m_{\nu} \simeq 10^{-7} m_e$

*Super-Kamiokande '1998

atmospheric neutrinos

solar neutrinos

** Sudbury Neutrino Observatory '2001

Pontecorvo died five years before experimental proof

Neutrino oscillations discovery

 $m_{\nu} \simeq 10^{-7} m_e$

*Super-Kamiokande '1998

atmospheric neutrinos

solar neutrinos

** Sudbury Neutrino Observatory '2001

Pontecorvo died five years before experimental proof

Particles and anti-particles or

chirality and helicity

 \bar{p}

bombshell: anti-particles

Dirac 1928 $(i\gamma^{\mu}D_{\mu}-m)\psi=0$ spin

Chao 1929*

d

 \bar{e} positron (anti electron)

anti proton

e

Anderson 1932*

Segre', Chamberlain 1955

different anti-particle for every particle

Ettore Majorana

Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

32 years old

Ettore Majorana

Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

disappears

32 years old

Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

disappears

32 years old
Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

disappears

Suicide?

Monastery in Toscana?

Lived happily in Valencia, Venezuela?*

32 years old

* Procura di Roma in 2015: yes

Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

disappears

Suicide?

Monastery in Toscana?

Lived happily in Valencia, Venezuela?*

32 years old

* Procura di Roma in 2015: yes

left a legacy:

in 1937 given a job in Napoli by special merit, on a condition to write a paper

Enter Majorana

March 25, 1938: boat ride from Palermo to Napoli

disappears

Suicide?

Monastery in Toscana?

Lived happily in Valencia, Venezuela?*

32 years old

* Procura di Roma in 2015: yes

left a legacy:

in 1937 given a job in Napoli by special merit, on a condition to write a paper

possible only if massive

How to test it?

 $\psi_M = \psi_\nu + \psi_\nu^*$ $\nu_M = \nu_L + \nu_L^*$

half anti-particle

creation of electrons from `nothing'

nuclear beta decay

Furry 1938

Large Hadron Collider

Keung, Senjanovic 1983

possible only if massive

How to test it?

 $\psi_M = \psi_\nu + \psi_\nu^*$ $\nu_M = \nu_L + \nu_L^*$

half anti-particle

creation of electrons from `nothing'

nuclear beta decay

Furry 1938

Large Hadron Collider

Keung, Senjanovic 1983

Left and right particles

chirality (handedness):

intrinsic particle property just like mass, spin....

Left-handed (L) and right-handed (R) electrons, quarks

electron and positron: mirror images

Left and right particles

chirality (handedness):

intrinsic particle property just like mass, spin....

Left-handed (L) and right-handed (R) electrons, quarks

electron and positron: mirror images

Massless particles: chirality = just helicity

high energies: particles effectively massless

> helicity: projection of spin on the direction of motion

> > helicity: right

left

Massless particles: chirality = just helicity

high energies: particles effectively massless

helicity: projection of spin on the direction of motion

=

particle moving forwards in time antiparticle moving backwards in time

=

particle moving forwards in time antiparticle moving backwards in time

particle-antiparticle

particle-particle

only neutral particle

particle-antiparticle

particle-particle

only neutral particle

Ready to test Majorana theory

neutrino = **anti-neutrino**

First: low energy nuclear beta decay

Ready to test Majorana theory

neutrino = anti-neutrino

First: low energy nuclear beta decay

Double-beta decay

Maria Goeppert-Mayer 1935

 $^{76}Ge \not\rightarrow ^{76}As + e + \bar{\nu_e}$ daughter nucleus heavier

 $^{76}Ge \rightarrow ^{76}Se + e + e + \bar{\nu}_e + \bar{\nu}_e$

 $\tau_{2\beta} \simeq 10^{21} \, yr$

 $au_{eta} \simeq 5 \, yr$ Co -> Ni

Double-beta decay

Maria Goeppert-Mayer 1935

 $^{76}Ge \not\rightarrow ^{76}As + e + \bar{\nu_e}$ daughter nucleus heavier

 $^{76}Ge \to ^{76}Se + e + e + \bar{\nu}_e + \bar{\nu}_e \qquad \tau_{2\beta} \simeq 10^{21} yr$

,

Neutrino-less Double-beta decay

Maria Goeppert-Mayer 1935

 $^{76}Ge \not\rightarrow ^{76}As + e + \bar{\nu_e}$ daughter nucleus heavier

 $^{76}Ge \to ^{76}Se + e + e + \bar{\nu}_e + \bar{\nu}_e \qquad \tau_{2\beta} \simeq 10^{21} yr$

20 0

 $au_{eta} \simeq 5 \, yr$ Co -> Ni

Neutrino-less Double-beta decay

Maria Goeppert-Mayer 1935 $^{76}Ge \not\rightarrow ^{76}As + e + \bar{\nu_e}$ daughter nucleus heavier $\tau_{2\beta} \simeq 10^{21} \, yr$ $^{76}Ge \rightarrow ^{76}Se + e + e + \bar{\nu}_e + \bar{\nu}_e$ $au_{eta} \simeq 5 \, yr$ Co -> Ni nWMajorana mass $^{76}Ge \rightarrow ^{76}Se + e + e$ $m_{
u}^{M}$ $\tau_{0\nu 2\beta} \gtrsim 10^{25} yr$ $m_{\nu}^{M} \lesssim 1 eV \simeq 10^{-6} m_{e}$ W n

Neutrino-less double beta decay

Neutrino-less double beta decay

Experiments

NEMO

Neutrino Ettore Majorana Observatory

modern times

~ 100 people

exp.	mass	f_A	bkg.	ΔE	eff.	enrich.	FOM	$T_{1/2}^{0 u}$	m_{etaeta}		
	[kg]		$\left[\frac{10^{-3} \text{cnt}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}\right]$	$[\mathrm{keV}]$				10^{25} yr	meV		
past experiments											
Hd-Moscow	11	0.35	120	7	1	0.86	1	1.9	170-530		
Cuoricino	41	1	170	16	0.9	0.28	1	0.4	210-500		
NEMO-3	6.9	2.1	1.2	400	0.06	0.9	0.3	0.1	310-900		
running experiments											
EXO-200	100	0.55	1.5	100	0.55	0.81	6	4.2	75-170		
KamlZen	12800	0.55	0.05	250	0.31	0.023	4	2.6	90-220		
KamlZen2	12800	0.55	0.01	250	0.31	0.06	22	15	40-90		
GERDA-I	15	0.35	20	8	0.8	0.86	2	3.9	120-370		
GERDA-II	35	0.35	1	6	0.85	0.88	20	18	60-170		
experiments under construction											
MajorDem.	30	0.35	1	6	0.9	0.9	20	17	60-170		
CUORE	750	1	10	12	0.9	0.27	19	7.5	50-110		
SNO+	780000	1.5	0.0002	230	0.33	5.6E-5	3	0.8	100-240		
NEXT	100	0.55	0.8	25	0.25	0.9	9	5.2	70-160		
proposed experiments											
S.NEMO	100	1.1	0.1	200	0.2	0.9	14	6.9	55-140		
Lucifer	100	1.1	1	10	0.9	0.5	50	19	33-85		

Experiments

NEMO

Holy Grail of neutrino physics

Neutrino Ettore Majorana Observatory

modern times

~ 100 people

exp.	mass	f_A	bkg.	ΔE	eff.	enrich.	FOM	$T_{1/2}^{0 u}$	m_{etaeta}		
	[kg]		$\left[\frac{10^{-3} \text{cnt}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}\right]$	$[\mathrm{keV}]$				10^{25} yr	meV		
past experiments											
Hd-Moscow	11	0.35	120	7	1	0.86	1	1.9	170-530		
Cuoricino	41	1	170	16	0.9	0.28	1	0.4	210-500		
NEMO-3	6.9	2.1	1.2	400	0.06	0.9	0.3	0.1	310-900		
running experiments											
EXO-200	100	0.55	1.5	100	0.55	0.81	6	4.2	75-170		
KamlZen	12800	0.55	0.05	250	0.31	0.023	4	2.6	90-220		
KamlZen2	12800	0.55	0.01	250	0.31	0.06	22	15	40-90		
GERDA-I	15	0.35	20	8	0.8	0.86	2	3.9	120-370		
GERDA-II	35	0.35	1	6	0.85	0.88	20	18	60-170		
experiments under construction											
MajorDem.	30	0.35	1	6	0.9	0.9	20	17	60-170		
CUORE	750	1	10	12	0.9	0.27	19	7.5	50-110		
SNO+	780000	1.5	0.0002	230	0.33	5.6E-5	3	0.8	100-240		
NEXT	100	0.55	0.8	25	0.25	0.9	9	5.2	70-160		
proposed experiments											
S.NEMO	100	1.1	0.1	200	0.2	0.9	14	6.9	55-140		
Lucifer	100	1.1	1	10	0.9	0.5	50	19	33-85		

The nature and origin of neutrino mass

The nature and origin of neutrino mass

The question of mass: why so special?

Parity violation

solves a number of puzzles

Chen Ning Yang & Tsung-Dao LeeImage: Strain of the st

L-R symmetry completely broken

Parity violation

What if L-R symmetry were broken?

1956

solves a number of puzzles

L-R symmetry completely broken

 ${}^{60}_{27}Co \rightarrow {}^{60}_{26}Ni + e + \bar{\nu}_e$ spin: 5 \rightarrow 4 + 1/2 + 1/2

 ${}^{60}_{27}Co \rightarrow {}^{60}_{26}Ni + e + \bar{\nu}_e$ spin: 5 \rightarrow 4 + 1/2 + 1/2

R

 ${}^{60}_{27}Co \rightarrow {}^{60}_{26}Ni + e + \bar{\nu}_e$ spin: 5 \rightarrow 4 + 1/2 + 1/2

R

 ${}^{60}_{27}Co \rightarrow {}^{60}_{26}Ni + e + \bar{\nu}_e$ spin: 5 \rightarrow 4 + 1/2 + 1/2

parity broken maximally

talk about waiting

talk about waiting

Origin of mass = Higgs mechanism

decays of Higgs boson predicted

Weinberg 1967

 $\Gamma(h \to p\bar{p}) \propto m_p^2$

any particle p (say quarks and leptons) that gets mass through Higgs mechanism

Question: neutrino mass the same?

Question - equally if not more important: nature of neutrino mass? Majorana?

Origin of mass = Higgs mechanism

decays of Higgs boson predicted

Weinberg 1967

 $\Gamma(h \to p\bar{p}) \propto m_p^2$

any particle p (say quarks and leptons) that gets mass through Higgs mechanism

Question: neutrino mass the same?

Question - equally if not more important: nature of neutrino mass? Majorana?

Origin of mass = Higgs mechanism

decays of Higgs boson predicted

Weinberg 1967

 $\Gamma(h \to p\bar{p}) \propto m_p^2$

any particle p (say quarks and leptons) that gets mass through Higgs mechanism

Question: neutrino mass the same?

Question - equally if not more important: nature of neutrino mass? Majorana?

A personal touch

The theory

Standard Model = neutrino massless L-R symmetry broken completely no ν_R W d_R Ζ no neutrino mass eR W neutrino mass forbidden by SM structure/symmetry

Left-Right Symmetric Model

Pati, Mohapatra, Salam 1974 Mohapatra, GS 1975

ZL

 W_{I}^{+}

C C

neutrino is massive!

W_R⁺

Neutrino mass long before experiment

L-R symmetry breaking

Spontaneous

Mohapatra, Senjanovic '75

Senjanovic '79

New mediators very heavy

W_R

WR

New "weak" force felt by right-handed particles - at high energy

 $m_{W_R} \gg m_{W_L}$

Neutrino mass predicted long before experiment

L-R symmetry breaking Mohapatra, Senjanovic '75 **Spontaneous** Senjanovic '79 W_R New "weak" force felt by New mediators ZR right-handed particles very heavy - at high energy WR $m_{W_B} \gg m_{W_L}$

Neutrino mass predicted long before experiment

Dirac mass, small: combines L and R Majorana mass, large: R has mass by itself

Seesaw mechanism for neutrino mass

neutrino is light, since N is heavy

Minkowski Mohapatra, Senjanovic Glashow 1977-1979 Gell-Mann, Ramond, Slansky

Seesaw mechanism for neutrino mass

neutrino is light, since N is heavy

seesaw mechanism main scenario for understanding the lightness of neutrino

> Minkowski Mohapatra, Senjanovic Glashow 1977-1979 Gell-Mann, Ramond, Slansky

Seesaw - art at the wall

Seesaw - art at the wall

US - Mexico border

Seesaw - art at the wall

US - Mexico border

1980's: Scale disaster

minimal model

Beall, Bander, Soni '81

$M_{W_R} \gtrsim 3000 GeV$ ($M_W = 80 GeV$)

wait for LHC

Large Hadron Collider

truly modern times

proton on proton

ring 27 km

Compare with Tevatron ring ~ 10 km CMS detector ~ 3500 people ATLAS detector

CMS detector

From Majorana to LHC

Keung, GS 1983

From Majorana to LHC Keung, GS 1983

Neutrino and Higgs

program of verifying Higgs mechanism for neutrino: analog of Higgs-Weinberg for quarks and electron

Nemevsek, Senjanovic, Tello 2012

Senjanovic, Tello 2016, 2018

 $\Gamma(N \to We) \propto m_{\nu} m_N^2 / m_W^2$

and a number of similar decays

testable at LHC

neutrinos (N_R). A search for W_R boson and N_R neutrino production in a final state containing two charged leptons and two jets ($\ell\ell jj$) with $\ell = e, \mu$ is presented here. The exact process of interest is the Keung–Senjanović (KS) process [10], shown in Figure 1. When the W_R boson is heavier than

 $M_{R} > 5000 \text{ GeV}$ $M_{W} =$

 $M_W = 80 \text{ GeV}$

neutrinos (N_R). A search for W_R boson and N_R neutrino production in a final state containing two charged leptons and two jets ($\ell\ell jj$) with $\ell = e, \mu$ is presented here. The exact process of interest is the Keung–Senjanović (KS) process [10], shown in Figure 1. When the W_R boson is heavier than

 $M_{R} > 5000 \text{ GeV}$ $M_{W} = 80 \text{ GeV}$

Need to know how to wait :)

Large Hadron Collider

• could probe the origin of neutrino mass

• could probe the Majorana nature of neutrino

• could resolve the mystery of L-R symmetry in Nature

Large Hadron Collider

• could probe the origin of neutrino mass

• could probe the Majorana nature of neutrino

• could resolve the mystery of L-R symmetry in Nature

New source for double beta

Mohapatra, GS '79

N= RH neutrino

Strong Interaction: QCD (Quantum chromodynamics):

strong force (-> nuclear) =
messengers gluons

"color" charge

Strong Interaction: QCD (Quantum chromodynamics):

strong force (-> nuclear) =
messengers gluons

"color" charge

