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\ Workshop on
Analysis Description Languages

forthe LHC

6-8 May 2019, Fermilab LPC

https://indico.cern.ch/event/769263/

An analysis description language (ADL) is a human
readable declarative language that unambiguously
describes the contents of an analysis in a standard
way, independent of any computing framework.

Adopting ADLs would bring numerous benefits for
the LHC experimental and phenomenological
communities, ranging from analysis preservation
beyond the lifetimes of experiments or analysis
software to facilitating the abstraction, design,
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But that just ended a few minutes ago.

(This talk is not a summary of the workshop;
come to tomorrow's LPC Physics Forum at 1:30pm.)
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But that just ended a few minutes ago.

(This talk is not a summary of the workshop;
come to tomorrow's LPC Physics Forum at 1:30pm.)

Instead, let's take a step back...
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You cannot step into
the same river twice.

Heraclitus



Because, you know, it's different water.
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So why do we say it's the same river?
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Why do we say it's the same river? &

The river is an abstraction.

We associate an enormous number of microscopic states (“molecules
here, molecules there”) with a single macroscopic state ( “the river”).

6/57



Why do we say it's the same river? &

The river is an abstraction.

We associate an enormous number of microscopic states (“molecules
here, molecules there”) with a single macroscopic state ( “the river”).

It's an abstraction like thermodynamics;
it can be exact with the right definitions.

Low pressure High pressure
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Most of computer science is about abstracting details, too.

double bessel_j0 (double x) {
double out;
if (fabs(x) < 8.0) {
double y = x*Xx;
double ansl = 57568490574.0 + y%(-13362590354.0 + y*(651619640.7
+ y*(=11214424.18 + y*(77392.33017 + yx(-184.9052456)))));
double ans2 = 57568490411.0 + y*(1029532985.0 + y*(9494680.718
+ y*(59272.64853 + y*(267.8532712 + y*1.0))));
out = ansl / ans2;
}
else {
double z = 8.0 / fabs(x);
double y = zxz;
double xx = fabs(x) - 0.785398164;
double ansl = 1.0 + y*(-0.1098628627e-2 + yx(0.2734510407e-4
+ y*x(-0.2073370639%9e-5 + yx0.2093887211e-6)));
double ans2 = -0.1562499995e-1 + y»(0.1430488765e-3
+ y*(-0.6911147651e-5 + y*x(0.7621095161e-6
- y%x0.934935152e-7)));
out = sqrt(0.636619772/fabs (x)) * (cos (xx) *ansl — zxsin(xx)+ans2);
}
return out;
} 7/57



Most of computer science is about abstracting details, too.

double bessel_j0 (double x) { % one Value goes N
double out;
if (fabs(x) < 8.0) {
double y = x*Xx;
double ansl = 57568490574.0 + yx(-13362590354.0 + y*(651619640.7
+ y*x(-11214424.18 + y*(77392.33017 + y*(-184.9052456)))));
double ans2 = 57568490411.0 + y*(1029532985.0 + y*(9494680.718
+ y*(59272.64853 + y*(267.8532712 + y*1.0))));
out = ansl / ans2;
}
else {
double z = 8.0 / fabs(x);
double y = zxz;
double xx = fabs(x) - 0.785398164;
double ansl = 1.0 + y*(-0.1098628627e-2 + yx(0.2734510407e-4
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out = sqrt(0.636619772/fabs (x)) * (cos (xx) *ansl — zxsin(xx)+ans2);
}
return out;
} 7/57
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Most of computer science is about abstracting details, too. ' \J

double bessel_j0 (double x) { <— one Value goeS in

double out;
if (fabs(x) < 8.0) {
double y = x*Xx;
double ansl = 57568490574.0 + yx(-13362590354.0 + y*(651619640.7
+ y*x(-11214424.18 + y*(77392.33017 + y*(-184.9052456)))));
double ans2 = 57568490411.0 + y*(1029532985.0 + y*(9494680.718
+ y*(59272.64853 + y*(267.8532712 + y*1.0))));
out = ansl / ans2;
}
else {
double z = 8.0 / fabs(x);
double y = zxz;
double xx = fabs(x) - 0.785398164;
double ansl = 1.0 + y*(-0.1098628627e-2 + yx(0.2734510407e-4
+ y*x(-0.2073370639%9e-5 + yx0.2093887211e-6)));
double ans2 = -0.1562499995e-1 + y»(0.1430488765e-3
+ y*(-0.6911147651e-5 + y*x(0.7621095161e-6
y*0.934935152e-7)));
out = sqrt(0.636619772/fabs (x)) * (cos (xx) *ansl — zxsin(xx)+ans2);
}
return out; <— onhe value comes out

} 7/57



The abstraction is cumulative:

Every function/class/module has an
interior and an interface—minimizing

#external parameters

#internal parameters

reduces the mental burden on
programmers and users.
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Science has layers of abstraction

107cm 4
Macroscopic
Microscopic

Sand castle Sand Stones

Atomic nucleus

These are approximate, taking advantage of a separation of scales.
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(cartoon diagram, not to scale)

A
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computer _
", programming
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% g, abstraction in science
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-----------
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// ... machine
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#internal parameters

10/57



. . . . . BE
Software interfaces can be exact, despite radical internal dlfFerences s

» Super Mario Bros. entirely rewritten in Javascript by Josh Goldberg.
» Shares none of the original code, but behaves identically.

£ Full Screen Mario x4

€« C A Notsecure | www.uta.edu/ /i @@
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SCORE TIME HORLD COINS LIVES
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As a young programmer, | wasn't satisfied
with high-level languages because | wanted
to get down to the “real” computer.

Which meant Pascal.
Pascal was “real,” and BASIC was not.

But ultimately, not even assembly code is
real in the sense that I'm meaning here.

12/57



The objectively real part of a computer is a set
of physical states.

100300
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AL

The objectively real part of a computer is a set
of physical states that we interpret as computations.

102073005900
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. . . . L]
Programming languages are how we describe our interpretations. &
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Programming languages are how we describe our interpretations.

(And some languages are better at it than others.)
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AL

Programming languages differ in their degree of abstraction,
but all programming languages are for humans, not computers.
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o @

Programming languages differ in their degree of abstraction,
but all programming languages are for humans, not computers.

Each one re-expresses the programmer’s intent in terms of another:

CMSSW configuration
Python runtime

C source code
machine instructions
logic gates

implemented in
implemented in
compiled into
built into
interpreted as

Python runtime

C source code
machine instructions
logic gates
computation.
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Programming languages differ in their degree of abstraction,
but all programming languages are for humans, not computers.

Each one re-expresses the programmer’s intent in terms of another:

CMSSW configuration
Python runtime

C source code
machine instructions
logic gates

implemented in
implemented in
compiled into
built into
interpreted as

Python runtime

C source code
machine instructions
logic gates
computation.

Only the last level actually pushes the abacus beads.
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Originally, programming languages didn’t push the abacus beads.

Ada of Lovelace’s algorithm for computing
Bernoulli numbers was written for a
computer that never ended up being
invented, but it was a program.
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Originally, programming languages didn’t push the abacus beads.

Ada of Lovelace’s algorithm for computing
Bernoulli numbers was written for a
computer that never ended up being
invented, but it was a program.

John McCarthy, creator of Lisp: “This EVAL was written and published in the paper and
Steve Russel said, ‘Look, why don't | program this EVAL?' and | said to him, ‘Ho, ho,
you're confusing theory with practice—this EVAL is intended for reading, not for
computing!" But he went ahead and did it.”
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Ada of Lovelace’s algorithm for computing
Bernoulli numbers was written for a
computer that never ended up being
invented, but it was a program.

John McCarthy, creator of Lisp: “This EVAL was written and published in the paper and
Steve Russel said, ‘Look, why don't | program this EVAL?' and | said to him, ‘Ho, ho,
you're confusing theory with practice—this EVAL is intended for reading, not for
computing!" But he went ahead and did it.”

APL (ancestor of MATLAB, R, and Numpy) was also a notation for describing programs
years before it was executable. The book was named A Programming Language.
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Programmers had to manually translate
these notations into instruction codes.

That's why it was called “coding.”
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Programmers had to manually translate
these notations into instruction codes.

That's why it was called “coding.”

Von Neumann called assembly language “a waste of a valuable
scientific computing instrument—using it for clerical work!”
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The Software Crisis &

Now that our programming languages do push abacus beads, software engineering
has become an odd discipline: saying something is the same as making it.
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The Software Crisis &

Now that our programming languages do push abacus beads, software engineering
has become an odd discipline: saying something is the same as making it.

And yet, we still get it wrong.

| AM THE GENIE OF THE
LAMP! BE CAREFLL WHAT IN THAT CASE, LET ME oANG
YOU WISH FOR, AS 1 AM BE PERFECTLY CLEAR. "
KNOWN TO TAKE THINGS \
VERY LITERALLY. \

/

Cyanide and Happiness © Explosm.net
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AL

We favor high-level languages because they have fewer concepts,
hopefully just the ones that are essential for a problem.
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But what about speed? Don't we choose languages for speed?
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AL

We favor high-level languages because they have fewer concepts,
hopefully just the ones that are essential for a problem.

But what about speed? Don't we choose languages for speed?

“There's no such thing as a ‘fast’ or ‘slow’ language.”

— so sayeth the StackOverflow
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Except Python. Python is slow, right?
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https://benchmarksgame-team.pages.debian.net/benchmarksgame
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B Java
[0 Python
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https://benchmarksgame-team.pages.debian.net/benchmarksgame

But it really isn't the language; it's the implementation.

import numpy

def run(height, width, maxiterations=20):
y, X = numpy.ogrid[-1:0:heightx17j, -1.5:0:width«x17]

c = x + y*x1]

fractal = numpy.full (c.shape, maxiterations,
dtype=numpy.int32)

for h in range (height):
for w in range (width) :

z clh, w]
for i in range (maxiterations):
z = z+x%x2 + cl[h, w]
if abs(z) > 2:
fractall[h, w] = 1
break

return fractal

#

#
#
#
#
#

for each pixel (h, w)...

iterate at most 20 times

applying z — z22 + ¢

if it diverges (|z]| > 2)

color the plane with the iteration number
we 're done, no need to keep iterating
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But it really isn't the language; it's the implementation.

import numpy, numba
@numba. jit
def run(height, width, maxiterations=20):
y, X = numpy.ogrid[-1:0:heightx17j, -1.5:0:width«x17]
c =x + y*x1j
fractal = numpy.full (c.shape, maxiterations,
dtype=numpy.int32)

for h in range (height):
for w in range (width) : # for each pixel (h, w)...
z clh, w]
for i in range (maxiterations): # iterate at most 20 times
z = zxx2 + clh, w] # applying z — z22 + ¢
if abs(z) > 2: # 1if it diverges ([lz]| > 2)
#
#

fractall[h, w] = 1 color the plane with the iteration number
break we're done, no need to keep iterating

return fractal

Now 50 faster, about equal to C code (-03).
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Here's the catch \J

The @numba . jit decorator translates a subset of Python bytecode to machine
instructions. You only get a speedup for statically typable, numeric code.
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Here's the catch &

The @numba . jit decorator translates a subset of Python bytecode to machine
instructions. You only get a speedup for statically typable, numeric code.

Same language (subset), completely different implementation.
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Here's the catch

The @numba . jit decorator translates a subset of Python bytecode to machine
instructions. You only get a speedup for statically typable, numeric code.

Same language (subset), completely different implementation.

Pure Python is slower than Numba or C because it has more hurdles in the way:

dynamic typing, pointer-chasing, garbage collection, hashtables, string equality. . .
22/57



Greg Owen'’s talk on Spark 2.0 &

Performance Improvements in

Spark 2.0

kel databricks




Greg Owen'’s talk on Spark 2.0

Volcano Iterator Model

class Filter {

def next(): Boolean = {
Standard for 30 years: almost all var found = false
. while (!found && child.next()) {
databases do it found = predicate(child.fetch())
}
return found
}

Each operatoris an “iterator”

that consumes records from def fetch(): InternalRow = {
child.fetch()

its input operator }

23
@databricks
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Greg Owen'’s talk on Spark 2.0

}
@databricks

What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss_item sk = 1000

var count = 0
for (ss_item sk in store_sales)

{
if (ss_item_sk == 1000) {
count += 1

}

25
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Greg Owen'’s talk on Spark 2.0

Volcano

college
freshman

@databricks

13.95 million
rows/sec

125 million
rows/sec

-
High throughput

27

Note: End-to-end, single thread, single column, and data eriginated in Parquet on disk
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Greg Owen'’s talk on Spark 2.0

How does a student beat 30 years of research?

Volcano Hand-written code
1. Many virtual function calls 1. Novirtual function calls
2. Datain memory (or cache) 2. Datain CPU registers

3. Noloop unrolling, SIMD, pipelining 3. Compiler loop unrolling, SIMD,
pipelining

Take advantage of all the information that is known after query compilation

28
@ databricks
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AL

So although it's the implementation, not the language, that's slow,

that implementation can be hampered by the flexibility
that the language promises.
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Site: Home ~ Aboutme

lukeplant.me.uk

Blog: Posts ~ Categories

Post: Comments ~ Related

We need less powerful languages

by Luke Plant
Posted in: Python, Haskell, Django — November 14, 2015 at 11:46

Translations of this post (I can’t vouch for their accuracy):

- Japanese

Many systems boast of being ‘powerful’, and it sounds difficult to argue that this is a bad thing. Almost

everyone who uses the word assumes that it is always a good thing.
The thesis of this post is that in many cases we need less powerful languages and systems.

Before I get going, there is very little original insight in this post. The train of thought behind it was set off by
reading Hofstadter’s book Godel, Escher, Bach — an Eternal Golden Braid which helped me pull
together various things in my own thinking where I've seen the principle in action. Philip Wadler’s post on
the rule of least power was also formative, and most of all I've also taken a lot from the content of this
video from a Scala conference about everything that is wrong with Scala, which makes the

following fairly central point:

Every increase in expressiveness brings an increased burden on all who care to understand the

message.
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Domain-specific languages:

specialized languages for narrowly defined problems.

» Main purpose: reduces complexity, the mental clutter that
obscures general-purpose languages.

» Secondary purpose: limited flexibility allows for streamlined
implementations.

26 /57



Domain-specific languages that you're probably already using &

Any guesses?
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Domain-specific languages that you're probably already using

Regular expressions
Start of the line

3 to 15 characters long

l

~A[a-z0-9_-]1{3,15}%$
End of the line

letters, numbers, underscores, hyphens

28 /57



Domain-specific languages that you're probably already using &

TTree::Draw (T TreeFormula) :

60—

ttree->Draw ("lepl p4.X () + lepl_pd.Y()"); ol

P NI OE . of o P O L s [, S P
400 300 -200 -100 0 100 200 300
lepl_p4.X() + lepl_p4.Y()
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Domain-specific languages that you're probably already using &

TTree::Draw (T TreeFormula)

80—
60—

ttree->Draw ("lepl p4.X () + lepl_pd.Y()"); ol

| o1t bababasnd Livialenil it o Lok 111

Looping and reducing constructs: *Hi00"550"360 000 oo 705308

lep1_p4.X() + lepl_p4.Y()

for (int i0; 10 < 3; 10++) {
for (int j2; j2 < 5; j2++) {
for (int 3j3; 33 < 2; Jj3++) {
int i1 = fResults[3j2][33];
use the value of fMatrix[i10][1i1]

"fMatrix[] [fResults[][]]1" —

}

Length$ (-) Sum$ (-) MinS$ () Max$ () MinIf$(.,:) MaxIf$(:,:) ALtS ()
29/57



Domain-specific languages that you're probably already using &

Makefiles

5 e > "N =
makefile: ;I
all: hello
clean:

—rm main.o hello.exe hello

hello: wain.o
g++ -g -0 hello main.o

main.o: main.cpp
g++ - -g mwain.cpp

30/57



Domain-specific languages that you're probably already using &

Format strings

printf/scanf: distinct syntax from C/C++, must be quoted

printf ("Error 0x%04x: %s", id, errors[id]);

|/O streams: defined within C/C++ via operator overloading

std::cout << "Error 0Ox" << std::hex << std::setfill('0")
<< std::setw(4) << id << ": " << errors[id] << std::endl;

31/57



Domain-specific languages that you're probably already using &

Format strings

printf/scanf: distinct syntax from C/C++, must be quoted

printf ("Error 0x%04x: %s", id, errors[id]);
|/O streams: defined within C/C++ via operator overloading

std::cout << "Error 0Ox" << std::hex << std::setfill('0")
<< std::setw(4) << id << ": " << errors[id] << std::endl;

printf/scanf is “external” and I/O streams is “internal” (embedded)

31/57



External versus internal (embedded) domain-specific languages s

External: SQL has a distinct syntax from Python; must be quoted in PySpark.
import pyspark
pyspark.sgl ("""
SELECT CONCAT (first, " ", last) AS fullname, AVG(age)
FROM my_table WHERE age BETWEEN 18 AND 24
GROUP BY fullname

nn ")

Internal (embedded): SparkSQL is an equivalent language, defined within Python.

import pyspark.sql.functions as F
df = pyspark.read.load("my_table")
(df .withColumn ("fullname",
F.concat (F.col ("first"), F.1lit (" "), F.col("last")))
.select ("fullname", "age")
.where (df.age.between (18, 24))
.groupBy ("fullname")

.agg (F.mean ("age")))
32/57



AL

Objection: a collection of libraries and operator overloads isn't a language!
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AL

Objection: a collection of libraries and operator overloads isn't a language!

My answer: programming languages are human modes of expression,
implemented using other programming languages, all the way down.

What matters is whether it's a coherent set of concepts, not whether
it was implemented by a parser.
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AL

Objection: a collection of libraries and operator overloads isn't a language!

My answer: programming languages are human modes of expression,
implemented using other programming languages, all the way down.

What matters is whether it's a coherent set of concepts, not whether
it was implemented by a parser.

(One might as well argue about the distinction between languages and dialects.)

33/57



AL

Perhaps the most widespread domain-specific language in data analysis:

SQL
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AL

Perhaps the most widespread domain-specific language in data analysis:

SQL

But we rarely use it in particle physics. Why?

34/57



Structure of a collider physics query: C++

“Momentum of the track with |5| < 2.4 that has the most hits.”

Track =best = NULL;

for (int i = 0; 1 < tracks.size(); i++) {
if (fabs(tracks[i]->eta) < 2.4)
if (best == NULL ||
tracks[i]->hits.size() > best->hits.size())
best = tracks[i];
}
if (best != NULL)
return best->pt;
else

return 0.0;

35/57



Structure of a collider physics query: SQL

“Momentum of the track with |n| < 2.4 that has the most hits.”

WITH hit_stats AS (
SELECT hit.track_id, COUNT () AS hit_count FROM hit
GROUP BY hit.track_id),
track_sorted AS (
SELECT track.sx,
ROW_NUMBER () OVER (
PARTITION BY track.event_id
ORDER BY hit_stats.hit_count DESC)
track_ordinal FROM track INNER JOIN hit_stats
ON hit_stats.track_id = track.id
WHERE ABS (track.eta) < 2.4)
SELECT » FROM event INNER JOIN track_sorted
ON track_sorted.event_id = event.id
WHERE
track_sorted.track_ordinal = 1
35/57



The problem is that collisions produce a variable number of particles per event:
the tables are “jagged.”
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The problem is that collisions produce a variable number of particles per event:
the tables are “jagged.”

This can be described using SQL's relational concepts:

» separate tables for events and particles
» linked by a common “event number” index.

But each type of particle has to be a separate table and each operation has to be
INNER JOINed to maintain events as objects.
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The problem is that collisions produce a variable number of particles per event:
the tables are “jagged.”

This can be described using SQL's relational concepts:

» separate tables for events and particles

» linked by a common “event number” index.
But each type of particle has to be a separate table and each operation has to be
INNER JOINed to maintain events as objects.

SQL makes particle physics problems harder, not easier, which defeats the point.

36 /57



It seems like there's an opportunity here

Would a domain specific language for particle physics

>

>
>
>
>

make analysis code easier to read?

make mistakes more evident?

make it easier to synchronize analyses from different groups/experiments?
make it easier to preserve them in executable/recastable form?

highlight physics concepts, like control regions, systematic variations, event
weights, combinatorics with symmetries?

hide irrelevant concepts like managing files, memory, load balancing, and
other performance tweaks?
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It seems like there's an opportunity here ' \J

Would a domain specific language for particle physics

» make analysis code easier to read?

» make mistakes more evident?

» make it easier to synchronize analyses from different groups/experiments?
» make it easier to preserve them in executable/recastable form?
>

highlight physics concepts, like control regions, systematic variations, event
weights, combinatorics with symmetries?

» hide irrelevant concepts like managing files, memory, load balancing, and
other performance tweaks?

That was the subject of the Analysis Description Language Workshop.
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In fact, about that SQL. ..

H‘lclch,
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In fact, about that SQL. . . ~y (8




Why hasn't this been done before?

(Why hasn't it succeeded before?)

39/57



AL

| think the answer is cultural, so I'll take a historical perspective. ..
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AL

| think the answer is cultural, so I'll take a historical perspective. ..

Starting in 1880.
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The U.S. Census's problem

The U.S. does a census every 10 years. The 1880 census took 8 years to process.
— Big data problem!
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The U.S. Census's problem ~y (8

The U.S. does a census every 10 years. The 1880 census took 8 years to process.
— Big data problem!

Held a competition for a new method; winner was 10x faster than the rest:

AL w] ~dN
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NOSE . e

s X~
oS
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Census records on punch cards, which filtered electrical contacts s

o Muchine 42 /57




Wired to a machine that opens a door for each matching pattern s

Fiy. 3.—Sorting Machinc.

Hollerith's Electric Sorting and Tabulating Machine.
43 /57



SELECT: pre-programmed WHERE: pins pass through
(wired up) counters punch card and template

| GROUP BY: door opens
' to the appropriate bin
for aggregation

sSSsed

O Q

S XX~ XA
SSq
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SELECT name WHERE literate GROUP BY marital_status
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Herman Hollerith (inventor) incorporated the Tabulating Machine Company, which
after a series of mergers became International Business Machines (IBM) in 1924.
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Herman Hollerith (inventor) incorporated the Tabulating Machine Company, which
after a series of mergers became International Business Machines (IBM) in 1924.

The computation represented by this machine is not universal (Turing complete),
but has many applications.

Most recently as “map-reduce.”
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In the early 2000’s, Google was struggling to keep up with the growing web
(index 5 months out of date, routine hardware failures, scale sensitive to bit flips).
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In the early 2000’s, Google was struggling to keep up with the growing web
(index 5 months out of date, routine hardware failures, scale sensitive to bit flips).

At that time, each programmer had to divide tasks, distribute, and combine
results manually and account for failures manually.

2003: MapReduce created to abstract task management from analysis logic.

MapReduce is distributed SELECT-WHERE - GROUP BY.

umapn ureducen

2004: published as a paper by Jeffrey Dean and Sanjay Ghemawat.

2006: reimplemented as open-source software: Apache Hadoop.
46 /57



Problems like “index all webpages™ plug into this framework. s

SELECT-WHERE: filter and transform GROUP BY: collect and transform all
each input to a (key, value) pair. values with a given key.
def map (webpage) : def reduce (word, webpages):
for word in webpage.split () : index [word] = set ()
if not stopword(word) : for webpage in webpages:
yield (word, webpage) index[word] .add (webpage)

-
=
(=

Split Sort  Merge
k1, v1] by k1 [k1, [v1,v2, v3..]]

Input data
Output data
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That's how statisticians encountered computing.

Physics encountered computing differently.
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Physicists got into computers when they became general-purpose &

1944: John Mauchly (physicist) and J. Presper Eckert
(electrical engineer) designed ENIAC to replace mechanical
computers for ballistics.
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Physicists got into computers when they became general-purpose &

1944: John Mauchly (physicist) and J. Presper Eckert
(electrical engineer) designed ENIAC to replace mechanical
computers for ballistics.

ENIAC was one of the first computers driven by machine
code instructions, stored as a program in memory.

1945: John von Neumann learned of their work and
suggested using it for nuclear simulations (H-bomb).

His internal memo describing ENIAC's stored programs
was leaked; now known as “Von Neumann architecture.”

Los Alamos group led by Nicholas Metropolis, developed
Monte Carlo techniques for physics problems.
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The actual programming was performed by these six women

Elizabeth Marlyn

Kathleen Frances Bilas Betty Jean
McNulty Jennings Lichterman Snyder Wescoff
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Mauchly and Eckert “went into industry” selling computers;
the first one (UNIVAC) to the U.S. Census.
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Mauchly and Eckert “went into industry” selling computers;
the first one (UNIVAC) to the U.S. Census.

1950: Short Code, the first executable high-level language:
a transliterated interpreter of mathematical formulas.

math: X3 = ( X1 + Y1) / X1 %= Y1
code: X3 03 09 X1 07 Y1 02 04 X1 Y1

50 slower than machine code because it was interpreted.

1952-1959: At Remington Rand, Grace Hopper developed a
series of compiled languages, ultimately COBOL.

Meanwhile, IBM developed FORTRAN: 1954-1957.




Physicists drove programming language development in the 1940's and 1950's but
stuck with FORTRAN until the 21%* century.

52 /57



Physicists drove programming language development in the 1940's and 1950's but
stuck with FORTRAN until the 21%* century.

In fact, FORTRAN (pre-Fortran 90) wasn't even a good fit to data analysis problems.
It didn't handle jagged data well, much like SQL.

52 /57



Physicists drove programming language development in the 1940's and 1950's but
stuck with FORTRAN until the 21%* century.

In fact, FORTRAN (pre-Fortran 90) wasn't even a good fit to data analysis problems.
It didn't handle jagged data well, much like SQL.

This gap was filled with a library: ZEBRA provided a graph of structures and dynamic
memory management, even though these were features of Ada, C, Pascal, and PL/I.

52/ 57



Physicists drove programming language development in the 1940's and 1950's but
stuck with FORTRAN until the 21%* century.

In fact, FORTRAN (pre-Fortran 90) wasn't even a good fit to data analysis problems.
It didn't handle jagged data well, much like SQL.

This gap was filled with a library: ZEBRA provided a graph of structures and dynamic
memory management, even though these were features of Ada, C, Pascal, and PL/I.

“The whole concept of ZEBRA is a manifestation of one of FORTRAN 77's needs.”
— Bebo White in 1989
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Ironically, a very similar talk was given almost 20 years ago today \J

W

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN-DD /89/ 18
May 16, 1989
The Comparison and Selection of Programming Languages
for High Energy Physics Applications

Bebo White
Data Handling Division, CERN

and
SLAC Computing Services
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Zanella [32] has said ” If HEP wishes to keep to its level of achievement, credi-
bility and excellence, then it needs an injection of bright young computer-wise scien-
tists and engineers.” This means that HEP cannot become “an island.” HEP applica-
tions must be able to utilize “state of the art” facilities in all areas of applicability
including data processing. HEP must be able to take advantage of the technological
advancements in other arenas of science and engineering. Many of these advance-
ments are occurring in fields which are presently not software compatible with
HEP. Much of the work being done in embedded systems with Ada or telecommuni-
cations with C could be of great interest and applicability in HEP computing envi-
ronments. The wnified physics computing environment anticipated for the 1990s
should be able to take full advantage of these facilitics and the physicists and engi-
neers of the 1990s should be able to take full advantage of their wnified physics com-
puting environment.
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Are we halfway through the second major language shift?

o @

Languages of non-fork repos for GitHub users who also fork cms—-sw/cmssw

~
their own work

physicists, specifically CMS

mm C/C++

B Python

B Jupyter Notebook
. TeX

s Java
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- VHDL
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Languages of non-fork repos for GitHub users who also fork cms—-sw/cmssw
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year

The shift from Fortran to C4++ was a decision made by collaboration leaders.

What we see here are individuals choosing a language for their own work.
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\ Workshop on
Analysis Description Languages

forthe LHC

6-8 May 2019, Fermilab LPC

https://indico.cern.ch/event/769263/

An analysis description language (ADL) is a human
readable declarative language that unambiguously
describes the contents of an analysis in a standard
way, independent of any computing framework.

Adopting ADLs would bring numerous benefits for
the LHC experimental and phenomenological
communities, ranging from analysis preservation
beyond the lifetimes of experiments or analysis
software to facilitating the abstraction, design,

X
L duuuians EVENT SELECTION
“lalgo __preselection__
cmd  "ALL "
cnd " nPHOtight >= @
cmd  "{ PHOtight_0 }Pt > 150 " i
cnd  "{ PHOtight_0 |, METLV 0 }dphi > 0.4 *

cmd " MET / HT A 0.5 o . o . . . . .
A= 1M'mv o 3 > 0.4+ visualization, validation, combination, reproduction,
cmd " nMUOclean == @ " . . . . N
Ao netecieon — 0 - interpretation and overall communication of the




Informal summary of the workshop at tomorrow's

LPC Physics Forum at 1:30pm.
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