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But that just ended a few minutes ago.

(This talk is not a summary of the workshop;
come to tomorrow’s LPC Physics Forum at 1:30pm.)

Instead, let’s take a step back. . .
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Because, you know, it’s different water.
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So why do we say it’s the same river?
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Why do we say it’s the same river?

The river is an abstraction.

We associate an enormous number of microscopic states (“molecules
here, molecules there”) with a single macroscopic state (“the river”).

It’s an abstraction like thermodynamics;
it can be exact with the right definitions.
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Most of computer science is about abstracting details, too.

double bessel_j0(double x) {
double out;
if (fabs(x) < 8.0) {

double y = x*x;
double ans1 = 57568490574.0 + y*(-13362590354.0 + y*(651619640.7

+ y*(-11214424.18 + y*(77392.33017 + y*(-184.9052456)))));
double ans2 = 57568490411.0 + y*(1029532985.0 + y*(9494680.718

+ y*(59272.64853 + y*(267.8532712 + y*1.0))));
out = ans1 / ans2;

}
else {

double z = 8.0 / fabs(x);
double y = z*z;
double xx = fabs(x) - 0.785398164;
double ans1 = 1.0 + y*(-0.1098628627e-2 + y*(0.2734510407e-4

+ y*(-0.2073370639e-5 + y*0.2093887211e-6)));
double ans2 = -0.1562499995e-1 + y*(0.1430488765e-3

+ y*(-0.6911147651e-5 + y*(0.7621095161e-6
- y*0.934935152e-7)));

out = sqrt(0.636619772/fabs(x))*(cos(xx)*ans1 - z*sin(xx)*ans2);
}
return out;

}

← one value goes in

← one value comes out
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The abstraction is cumulative:

Every function/class/module has an
interior and an interface—minimizing

#external parameters

#internal parameters

reduces the mental burden on
programmers and users.

8 / 57



Science has layers of abstraction

These are approximate, taking advantage of a separation of scales.

9 / 57



(cartoon diagram, not to scale)
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abstraction in science
      (atom → proton → quark)
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Software interfaces can be exact, despite radical internal differences.

I Super Mario Bros. entirely rewritten in Javascript by Josh Goldberg.
I Shares none of the original code, but behaves identically.

Is it the same program?
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As a young programmer, I wasn’t satisfied
with high-level languages because I wanted

to get down to the “real” computer.

Which meant Pascal.
Pascal was “real,” and BASIC was not.

But ultimately, not even assembly code is
real in the sense that I’m meaning here.
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The objectively real part of a computer is a set

of physical states.

that we interpret as computations.
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Programming languages are how we describe our interpretations.

XIX + IV = XXIII

19 + 4 = 23

(And some languages are better at it than others.)
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Programming languages differ in their degree of abstraction,
but all programming languages are for humans, not computers.

Each one re-expresses the programmer’s intent in terms of another:

CMSSW configuration implemented in Python runtime
Python runtime implemented in C source code

C source code compiled into machine instructions
machine instructions built into logic gates

logic gates interpreted as computation.

Only the last level actually pushes the abacus beads.
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Originally, programming languages didn’t push the abacus beads.

Ada of Lovelace’s algorithm for computing
Bernoulli numbers was written for a
computer that never ended up being
invented, but it was a program.

John McCarthy, creator of Lisp: “This EVAL was written and published in the paper and
Steve Russel said, ‘Look, why don’t I program this EVAL?’ and I said to him, ‘Ho, ho,
you’re confusing theory with practice—this EVAL is intended for reading, not for
computing!’ But he went ahead and did it.”

APL (ancestor of MATLAB, R, and Numpy) was also a notation for describing programs
years before it was executable. The book was named A Programming Language.
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Programmers had to manually translate
these notations into instruction codes.

That’s why it was called “coding.”

Von Neumann called assembly language “a waste of a valuable
scientific computing instrument—using it for clerical work!”
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The Software Crisis

Now that our programming languages do push abacus beads, software engineering
has become an odd discipline: saying something is the same as making it.

And yet, we still get it wrong.
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We favor high-level languages because they have fewer concepts,
hopefully just the ones that are essential for a problem.

But what about speed? Don’t we choose languages for speed?

“There’s no such thing as a ‘fast’ or ‘slow’ language.”

— so sayeth the StackOverflow
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Except Python. Python is slow, right?

https://benchmarksgame-team.pages.debian.net/benchmarksgame
20 / 57
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But it really isn’t the language; it’s the implementation.

import numpy

def run(height, width, maxiterations=20):
y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
c = x + y*1j
fractal = numpy.full(c.shape, maxiterations,

dtype=numpy.int32)
for h in range(height):

for w in range(width): # for each pixel (h, w)...
z = c[h, w]
for i in range(maxiterations): # iterate at most 20 times

z = z**2 + c[h, w] # applying z → z2 + c
if abs(z) > 2: # if it diverges (|z| > 2)

fractal[h, w] = i # color the plane with the iteration number
break # we're done, no need to keep iterating

return fractal

Now 50× faster, about equal to C code (-O3).
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Here’s the catch

The @numba.jit decorator translates a subset of Python bytecode to machine
instructions. You only get a speedup for statically typable, numeric code.

Same language (subset), completely different implementation.

Pure Python is slower than Numba or C because it has more hurdles in the way:
dynamic typing, pointer-chasing, garbage collection, hashtables, string equality. . .
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Greg Owen’s talk on Spark 2.0
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So although it’s the implementation, not the language, that’s slow,

that implementation can be hampered by the flexibility
that the language promises.
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Domain-specific languages:

specialized languages for narrowly defined problems.

I Main purpose: reduces complexity, the mental clutter that
obscures general-purpose languages.

I Secondary purpose: limited flexibility allows for streamlined
implementations.
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Domain-specific languages that you’re probably already using

Any guesses?
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Domain-specific languages that you’re probably already using

Regular expressions
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Domain-specific languages that you’re probably already using

TTree::Draw (TTreeFormula)

ttree->Draw("lep1_p4.X() + lep1_p4.Y()");

-400 -300 -200 -100 0 100 200 300

lep1_p4.X() + lep1_p4.Y()

0

20

40

60

80

100

Looping and reducing constructs:

"fMatrix[][fResults[][]]" −→

for (int i0; i0 < 3; i0++) {
for (int j2; j2 < 5; j2++) {

for (int j3; j3 < 2; j3++) {
int i1 = fResults[j2][j3];
use the value of fMatrix[i0][i1]

}
}

Length$(·) Sum$(·) Min$(·) Max$(·) MinIf$(·,·) MaxIf$(·,·) Alt$(·,·)
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Domain-specific languages that you’re probably already using

Makefiles
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Domain-specific languages that you’re probably already using

Format strings

printf/scanf: distinct syntax from C/C++, must be quoted

printf("Error 0x%04x: %s", id, errors[id]);

I/O streams: defined within C/C++ via operator overloading

std::cout << "Error 0x" << std::hex << std::setfill('0')
<< std::setw(4) << id << ": " << errors[id] << std::endl;

printf/scanf is “external” and I/O streams is “internal” (embedded)
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External versus internal (embedded) domain-specific languages

External: SQL has a distinct syntax from Python; must be quoted in PySpark.
import pyspark
pyspark.sql("""

SELECT CONCAT(first, " ", last) AS fullname, AVG(age)
FROM my_table WHERE age BETWEEN 18 AND 24
GROUP BY fullname

""")

Internal (embedded): SparkSQL is an equivalent language, defined within Python.
import pyspark.sql.functions as F
df = pyspark.read.load("my_table")
(df.withColumn("fullname",

F.concat(F.col("first"), F.lit(" "), F.col("last")))
.select("fullname", "age")
.where(df.age.between(18, 24))
.groupBy("fullname")
.agg(F.mean("age")))
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Objection: a collection of libraries and operator overloads isn’t a language!

My answer: programming languages are human modes of expression,
implemented using other programming languages, all the way down.

What matters is whether it’s a coherent set of concepts, not whether
it was implemented by a parser.

(One might as well argue about the distinction between languages and dialects.)
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Perhaps the most widespread domain-specific language in data analysis:

SQL

But we rarely use it in particle physics. Why?
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Structure of a collider physics query: C++

“Momentum of the track with |η| < 2.4 that has the most hits.”

Track *best = NULL;

for (int i = 0; i < tracks.size(); i++) {
if (fabs(tracks[i]->eta) < 2.4)

if (best == NULL ||
tracks[i]->hits.size() > best->hits.size())

best = tracks[i];
}

if (best != NULL)
return best->pt;

else
return 0.0;
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Structure of a collider physics query: SQL

“Momentum of the track with |η| < 2.4 that has the most hits.”

WITH hit_stats AS (
SELECT hit.track_id, COUNT(*) AS hit_count FROM hit

GROUP BY hit.track_id),
track_sorted AS (

SELECT track.*,
ROW_NUMBER() OVER (
PARTITION BY track.event_id
ORDER BY hit_stats.hit_count DESC)

track_ordinal FROM track INNER JOIN hit_stats
ON hit_stats.track_id = track.id
WHERE ABS(track.eta) < 2.4)

SELECT * FROM event INNER JOIN track_sorted
ON track_sorted.event_id = event.id

WHERE
track_sorted.track_ordinal = 1
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The problem is that collisions produce a variable number of particles per event:
the tables are “jagged.”

This can be described using SQL’s relational concepts:

I separate tables for events and particles

I linked by a common “event number” index.

But each type of particle has to be a separate table and each operation has to be
INNER JOINed to maintain events as objects.

SQL makes particle physics problems harder, not easier, which defeats the point.
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It seems like there’s an opportunity here

Would a domain specific language for particle physics

I make analysis code easier to read?

I make mistakes more evident?

I make it easier to synchronize analyses from different groups/experiments?

I make it easier to preserve them in executable/recastable form?

I highlight physics concepts, like control regions, systematic variations, event
weights, combinatorics with symmetries?

I hide irrelevant concepts like managing files, memory, load balancing, and
other performance tweaks?

That was the subject of the Analysis Description Language Workshop.
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In fact, about that SQL. . .
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Why hasn’t this been done before?

(Why hasn’t it succeeded before?)

39 / 57



I think the answer is cultural, so I’ll take a historical perspective. . .

Starting in 1880.
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The U.S. Census’s problem

The U.S. does a census every 10 years. The 1880 census took 8 years to process.

−→ Big data problem!

Held a competition for a new method; winner was 10× faster than the rest:
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Census records on punch cards, which filtered electrical contacts
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Wired to a machine that opens a door for each matching pattern
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It was an SQL machine: 3 basic clauses of most SQL queries

SELECT: pre-programmed
(wired up) counters

WHERE: pins pass through
punch card and template

GROUP BY: door opens
to the appropriate bin
for aggregation

SELECT name WHERE literate GROUP BY marital_status
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Herman Hollerith (inventor) incorporated the Tabulating Machine Company, which
after a series of mergers became International Business Machines (IBM) in 1924.

The computation represented by this machine is not universal (Turing complete),
but has many applications.

Most recently as “map-reduce.”
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Google’s problem

In the early 2000’s, Google was struggling to keep up with the growing web
(index 5 months out of date, routine hardware failures, scale sensitive to bit flips).

At that time, each programmer had to divide tasks, distribute, and combine
results manually and account for failures manually.

2003: MapReduce created to abstract task management from analysis logic.

MapReduce is distributed SELECT-WHERE︸ ︷︷ ︸
“map”

-GROUP BY︸ ︷︷ ︸
“reduce”

.

2004: published as a paper by Jeffrey Dean and Sanjay Ghemawat.
2006: reimplemented as open-source software: Apache Hadoop.
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MapReduce is distributed SELECT-WHERE︸ ︷︷ ︸
“map”

-GROUP BY︸ ︷︷ ︸
“reduce”

.

2004: published as a paper by Jeffrey Dean and Sanjay Ghemawat.
2006: reimplemented as open-source software: Apache Hadoop.
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Problems like “index all webpages” plug into this framework.

SELECT-WHERE: filter and transform
each input to a 〈key, value〉 pair.

def map(webpage):
for word in webpage.split():

if not stopword(word):
yield (word, webpage)

GROUP BY: collect and transform all
values with a given key.

def reduce(word, webpages):
index[word] = set()
for webpage in webpages:

index[word].add(webpage)
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That’s how statisticians encountered computing.

Physics encountered computing differently.

48 / 57



Physicists got into computers when they became general-purpose

1944: John Mauchly (physicist) and J. Presper Eckert
(electrical engineer) designed ENIAC to replace mechanical
computers for ballistics.

ENIAC was one of the first computers driven by machine
code instructions, stored as a program in memory.

1945: John von Neumann learned of their work and
suggested using it for nuclear simulations (H-bomb).

His internal memo describing ENIAC’s stored programs
was leaked; now known as “Von Neumann architecture.”

Los Alamos group led by Nicholas Metropolis, developed
Monte Carlo techniques for physics problems.
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The actual programming was performed by these six women

Kathleen
McNulty

Frances Bilas Betty Jean
Jennings

Ruth
Lichterman

Elizabeth
Snyder

Marlyn
Wescoff
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Eckert-Mauchly Computer Corporation → Remington Rand

Mauchly and Eckert “went into industry” selling computers;
the first one (UNIVAC) to the U.S. Census.

1950: Short Code, the first executable high-level language:
a transliterated interpreter of mathematical formulas.

math: X3 = ( X1 + Y1 ) / X1 * Y1
code: X3 03 09 X1 07 Y1 02 04 X1 Y1

50× slower than machine code because it was interpreted.

1952–1959: At Remington Rand, Grace Hopper developed a
series of compiled languages, ultimately COBOL.

Meanwhile, IBM developed FORTRAN: 1954–1957.
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Physicists drove programming language development in the 1940’s and 1950’s but
stuck with FORTRAN until the 21st century.

In fact, FORTRAN (pre-Fortran 90) wasn’t even a good fit to data analysis problems.
It didn’t handle jagged data well, much like SQL.

This gap was filled with a library: ZEBRA provided a graph of structures and dynamic
memory management, even though these were features of Ada, C, Pascal, and PL/I.

“The whole concept of ZEBRA is a manifestation of one of FORTRAN 77’s needs.”

— Bebo White in 1989
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Ironically, a very similar talk was given almost 20 years ago today
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Are we halfway through the second major language shift?

Languages of non-fork repos︸ ︷︷ ︸
their own work

for GitHub users who also fork cms-sw/cmssw︸ ︷︷ ︸
physicists, specifically CMS

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
year
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Python
Jupyter Notebook
TeX
Java
R
VHDL
FORTRAN
Julia
Go

The shift from Fortran to C++ was a decision made by collaboration leaders.

What we see here are individuals choosing a language for their own work.
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Informal summary of the workshop at tomorrow’s

LPC Physics Forum at 1:30pm.
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