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 ( |0〉+|1〉 )n

n=50: supercomputer  
n=300: more states than 

atoms in universe 

Really Big Data 



Our Goals for Quantum Supremacy* 

1) Exponential: demonstrate exponentially growing computation space 
      (computational complexity: not guaranteed for more qubits) 

2) Supremacy (Preskill): for well defined problem, show more computation  
      power for quantum computer 
 
3) Fidelity: need lower errors in qubit control, used to validate control 
 
4) Universal: forward compatible to general purpose computer 

*S. Boixo et. al., arXiv:1608:00263, similar to Boson sampling   



Encoding of quantum bits 

H atom: 

orbitals 

|0) 

|1) 

atom circuit: 

problem:  
light is 1000x bigger 



Encoding of quantum bits 

H atom: quantum circuit: 
 

6 GHz microwave oscillator 

100 𝜇m 

orbitals 

Easier control for large size 
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9	Qubit	Device	for	Quantum	Simula4on	







Quantum vs. Classical-Supercomputer Challenge 



Algorithm for Supremacy Test: Qubit Speckle 

     Clifford     Non-Clifford 
 X, Z, H, X1/2…     Z1/4 

 
       CZ                

(Random guess: any outcome k has probability  pcl = 1/2n) 

2) Run quantum computer, measure k  (2n possible outcomes) 
     repeat sampling 100,000 times 

4) Correlation: cross entropy S = 〈 ln p(k)/pcl 〉
5) Compare to theory Squ ≅  0.42    quantum 

Scl  ≅ -0.58    classical 
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6) Try another instance 

1 s 

days 
200 drives 

1) Choose 1 instance, randomly from gateset 

3) Calculate |ψ〉,  p(k)= |〈k|ψ〉|2 store in lookup table 

    



speckle = coherence 
predict = fidelity 
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•  Gaussian distribution Re{Ψ} & Im{Ψ} 
     gives Porter-Thomas (exponential) 
     distribution  
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0 errors: exponential 

How Does it Work? 
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•  Gaussian distribution Re{Ψ} & Im{Ψ} 
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•  With one error anywhere 
    distribution is flat (classical like) e-
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0 errors: exponential 
1+ errors: uniform 
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•  Gaussian distribution Re{Ψ} & Im{Ψ} 
     gives Porter-Thomas (exponential) 
     distribution  
 
•  With one error anywhere 
    distribution is flat (classical like) 

 Stot ≅ P0 Squ + (1-P0) Scl 

P0 = (1−ε1)
nd (1−ε2 )

nd (1−εm )
n

≅ exp[−nd(ε1 +ε2 )+ nεm ]
≡ exp[−Ne ] Include all 1, 2, measure errors ε

probability of no error 

e-
p  

0 errors: exponential 
1+ errors: uniform 



Exponential Decay of Quantum Information 
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number of errors  Ne ≅	nd ε2  

need Ne < 3 ~ 



Errors Destroy Quantum Computation 
 Stot ≅ P0 Squ + (1-P0) Scl 

Probability of no error:   
P0 = exp[ -Ng εg ] 

Average number of errors: 
Ng εg  = 49 x 7 x 0.005 = 1.7 

Need:  scaling   with low errors  



Quantum	Supremacy	with	gmon	Qubits	

H = h(t)•σ + g(t)[σ i
+∑∑ σ i+1

− + c.c.]+
h	~	200	MHz	
g	~	30	MHz	
t:	1	ns	to	20	us	
Cal.	to	~0.1MHz	

9-qubit	gate	
calibrated	from	8	
2-qubit	gates	



Pulse	sequence	(5	qubit	example)	

photon  
conserving 

2 photons  



Typical	dataset	with	5	qubits	

statistical 
error bars 

quantum info 
just from 

prob. histograms 

photon conserving 
states 



Histogram	of	measured	probabili4es	

exponential 
growth of  

 Nstates ≈ 2
n / n



Histogram	of	measured	probabili4es	

Collapses to 
exponential 
distribution 



Histogram	of	measured	probabili4es	

uniform 
distribution decoherence kills 

qubit speckle 



Fast	growth	of	entanglement	

9-qubit interaction: 
full entanglement 
in 2 cycles (90 ns) 

decoherence 



Compare	probabili4es	of	experiment	and	theory	

speckle pattern 
matches theory 



Measuring	fidelity	

cross entropy 
= fidelity 

(T1 decay excluded) 



Measuring	fidelity	

0.3% error 
per gate & cycle 

2.9% for 9-qubit gate! 



Scaled	fidelity	for	45	qubits	

45 qubits 

supremacy possible 
with margin 



Learning	a	beTer	control	model	

Tuneup flux offsets 
(as drifty) 

significant  
improvement 

Nelder-Mead 



Learning	a	beTer	control	model	

training 
verified 

Tuneup flux offsets 
(as drifty) Nelder-Mead 
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9 Qubits: theory fractal nature gives 
complex spectrum 



9 Qubits: theory + experiment extract complex 
physically useful information 



χ1(n) = σ n
X + i σ n

Y

1-Excitation Spectroscopy 



χ1(n) = σ n
X + i σ n

Y

1-Excitation Spectroscopy 



Energy-Level Statistics 

rα ≡
min{ΔEα −ΔEα−1}
max{ΔEα −ΔEα−1}



Energy-Level Statistics 

rα ≡
min{ΔEα −ΔEα−1}
max{ΔEα −ΔEα−1}



2-Excitation Spectroscopy 



2 Excitation 
Spectroscopy 

Now 45 energy levels 



Participation Ratio 
& Mobility Edges 

2nd moment of probabilities: 

Disorder causes eigenstates 
to move to center of  
energy band and lattice 







Huge Progress in Algorithms (Quantum Chemistry) 

N 

N2.7 

N6 

N8 

N11 

N4 

sec 

day 
year 

universe 

Exact: 100 logical qubits (error corrected) 
Approximate: 100 physical qubits (?) 

1985      Feynman    (proposal) 



Summary	&	Outlook	of	Quantum	Supremacy	
Validation:  
  Exponential computation space (now ~500) 
  Entanglement with qubit speckle 
  Fidelity with cross entropy 
  Tune-up 
Programmable quantum simulator  
  Complex algorithm 
  New spectroscopy tool, localization physics 





• For one device, qubits have  
      Coherence 
      Coupling 
      Measurement 
      Low errors 

Building a Real Quantum Simulator 

What’s so hard? 
Systems vs. Control:  
   Can’t copy quantum information 
   Hard to separate into sub-functions 

Quantum Systems Engineering 

competing requirements general purpose 

• Good control each qubit 
• Room for control circuitry 
• Reprogrammable 
• Flexible architecture 
• Scalable 

skip design and cal 


