Early Days of CDF Japanese Contribution

Masa Mishina (KEK, Fermilab Retired)

Tribute to Kunitaka Kondo (Tsukuba/Waseda University) (1934-2011) Played a central role in entire process.

Prehistoric Tales

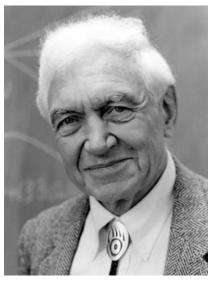
before this large scale International collaboration

Japanese International Collaboration

• INS Tokyo U.- Brazil Mt. Chacaltaya (Bolivia))

: Cosmic ray (nuclear emulsion) experiment 1962~

- Osaka City U.(Miyake) India, Kolar Gold Mine (India)
 - : Cosmic ray experiment. Scintillation counter and Neon flash Tubes 1961~
- Tokyo U. (M. Koshiba),


```
DASP (DORIS), JADE (PETRA, DESY) (1977~1979)
```

OPAL(LEP) (1998~2000)

• KEK & Other Universities (K. Takahashi)

15-ft bubble chamber (Fermilab, L. Voivodich)

• Tsukuba U. (K. Kondo) – Yale U. (V. W. Hughes) (1973-1980)

Vernon Willard Hughes (Yale University) (1921-2003)

From "A Biographical Memoir" by Robert K. Adair National Academy of Science Vol 84 (2003) National Academies Press

Kuni Kondo stayed at Yale in 1971-1972(?)

Since they had a lifelong friendship.

Yale-Tsukuba collaboration (1973-1980)

SLAC : Polarized electron beam on polarized proton target BNL (M. Zeller, Yale) : Hadron beams on polarized proton target Collaboration in CDF (Colliding Detector Facility Department) started in 1979 before a formal agreement between DOE and Mombusho.

US-JAPAN COLLABORATION IN HIGH ENERGY PHSYCS

Implementation signing November 1979 at SLAC

Kondo organized the 30th anniversary symposium .

30th Anniversary Symposium OF THE US/JAPAN COLLABORATION IN HIGH ENERGY PHYSICS 高エネルギー物理学日米科学技術協力事業 30周年記念シンポジウム OCTOBER 20-21, 2010

HAWAII, U.S.A.

(Proceedings edited by Satoshi Ozaki, BNL)

Organizing Committee

M. Nozaki (KEK), K. Kondo (Waseda), T. Yamanaka (Osaka), S. Kim (Tsukuba)

G. Loew, (SLAC), S. Ozaki(BNL), R. Rubinstein(FNAL)

Satoshi Ozaki passed away on July 22.

Bernard Hildebrand (DOE, Retired)

<u>and</u>

William Wallenmeyer (Head DOE Office of HEP, Retired)

Gave a detailed account of the events leading to the final agreement.

William Wallenmeyer

"President Carter considered the energy crisis the Nation's greatest challenge, except for preventing war.

On the day after his inauguration in January 1977, he named James Schlesinger as his personal representative to work on an immediate energy problem.

On February 2, Carter proclaimed a national emergency on energy.

In the first 90 days of Carter's presidency, Schlesinger developed the administration's basic energy-reorganization plans, including a new Cabinet Level Department of Energy, and new energy policy strategies.

Legislative action creating the Department of Energy was completed by August 3, 1977, Carter signed the Bill into law on August 4, and the next day named Schlesinger as the first Secretary of Energy.

The Department was officially activated on October 1, 1977."

Umbrella agreement

Japan/US Collaboration in R & D on New Energy Sources and Related Fields

(Nuclear Fusion, Coal Liquification, Solar Photo synthesis, Geo Thermal Energy, Wind Mill, Superconducting Power Transmission Cable,....)

> Carter – Fukuda Agreement (Schlesinger - Saito) May 1978

<u>1978 in High Energy Physics</u>

- Leon Lederman designated as the next director
- Alvin Tollestrup took over the head of CDF Department
- ISABELLE workshop. Tunnel ground breaking.
 - Kuni Kondo, Fumihiko Taksaki, and M.M. attended the workshop,
 - Kondo had a discussion with Alvin about a possible collaboration.
- Rochester Conference in Tokyo

Idea of US-Japan collaboration I high energy physics was intensely discussed.

Testuji Nishikawa (KEK) (1926-2010)

started talking with :

Leon Lederman (Fermilab) Satoshi Ozaki (BNL) Ryuji Yamada (Fermilab) Bernard Hildebrand (DOE) William Wallenmeyer(DOE,Office of HE)

a possibility of including *High Energy Physics in the energy-related agreement*.

with Panofsky too

Wolfgang (Pief) K. H. Panofsky (1919-2007)

Nishikawa was an expert on linac. Panofsky and Nishikawa were good friends

Vernon Highes and Panofsky were classmates at CALTECH. Kuni Kondo was working with Hghes on polarized electron-polarized target experiment at SLAC and Hughes introduced Kondo to Panofsky. Nov 6, 1978

Secretary of Energy Schlesinger met Prime Minister Fukuda in Japan on Nov.6, 1978. One subject they discussed was the proposed Japan/US Collaboration in R & D on New Energy Sources and Related Fields *including High Energy Physics.*

Joint Working Group set up.

HEP Subgroup

T. Saito (MOE)T. Nishikawa (KEK)L. Lederman (FNAL)

S. Ozaki (BNL)

J. Sandweiss (Yale)

B. Hildebrand (DOE)

W. Wallenmeyer (DOE)

May 2, 1979

Ohira (New Prime Minister) visited Washington DC.

AGREEMENT between US and JAPAN on COOPERATION in R & D in ENERGY and RELATED FIELDS (High-Energy Physics included)

was signed by

J. Schlesinger : Secretary of Energy, S. Sonoda : Foreign Minister Nov 11, 1979

signing

"IMPLEMENTING ARRANGEMENT between US DOE and Japanese MOE on COOPERATION in the FIELD of HIGH ENERGY PHYSICS".

1978 November

1979

MOMBU SHO instructed Kikuchi to make 10-year plan for US-Japan Collaboration Kikuchi and Kondo made a draft proposal in a hurry. Nov 11: Armistice Day Shoot Out at Fermilab Plan A: \bar{p} -p (1 TeV x 1 TeV Tevatron) Plan B: p (400 GeV Main Ring)-p (1-TeV Doubller/Saver)

April:First year budget from Japanese government allocated.August:M. M. settled in Fermilab

Events around the time

1978 Stochastic Cooling was tested at ICE (CERN).

Test on electron cooling ring at Fermilab in progress

- 1981 Technology transfer for the ISABELLE superconducting magnet to Grumman failed.
- 1981-1984 CERN $Sp\bar{p}S$
- 1982 December Energy Saver/Doubler commissioned
- 1983 W, Z discovered

ISABELLE/CBA cancelled in favor of SSC (cancelled 1993)

512 GeV reached by Energy Saver/Doubler

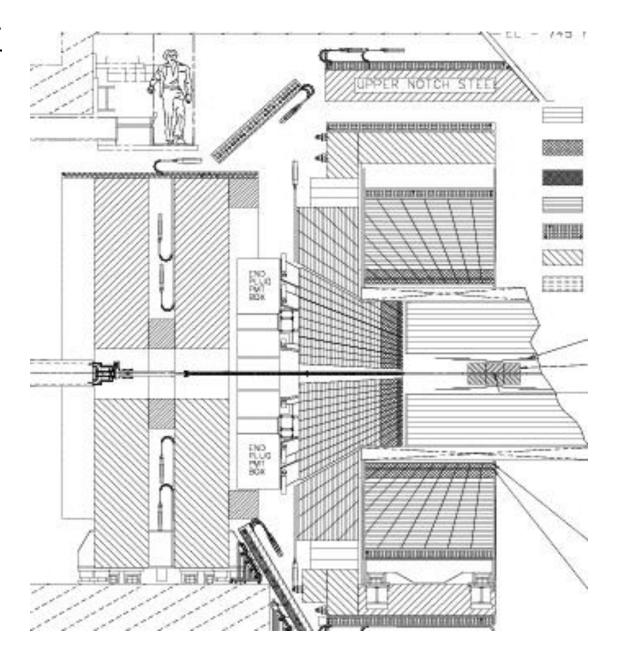
<u>May 1979</u> (From Ken Kikuchi's memoir)

Proposed Experment (Approved)						
1) Neutrino Scattering	Nagashima (Osaka)	- BNL				
2) Bubble Chamber	Kitagaki (Tohoku)	- BNL, FNAL,SLAC				
3) p-p Colliding Beam	Kondo (Tsukuba)	- FNAL				
E 605	Miyake (Kyoto)	- FNAL				
4) Neutrino Interaction E 594	Osugi (Hiroshima)	- FNAL				
5) Bubble Chamber	Kitagaki (Tohoku)	- FNAL				
6) Neutrino (Emulsion) E531 (E872	Fujioka (Kobe), Nyu (Nagoya) DONUT later)	- FNAL				
7) Charm Production	Ozaki (Osaka)	- FNAL				
8) Electromagnetic Shower	Dake (Konan)	- FNAL				
9) PEP-4 (TPC) experiment	Kamae (Tokyo)	- SLAC				
10) LASS	Kajikawa (Nagoya)	- SLAC				
11) Hybrid Bubble Chamber	Takahashi (KEK)	- SLAC				

* K-TeV was proposed and approved much later.

The Tevatron Collider: A Thirty Year Campaign Fermilab Colloquium March 10, 2010 John Peoples

The Tevatron I Project


- In mid 1979 Leon gets a phone call from Washington. "If Fermilab submits a proposal for colliding beams it is likely that it will be approved."
- Fermilab submits a proposal for Tevatron I. Cost \$41.5 million without R&D. It appears in the FY81 budget.

<u>Consensus on the CDF</u> <u>detector was reached</u> <u>quickly</u>.

Axially symmetric :

Tracking Calorimeter (EM + HAD) Muon

- 4π coverage
- Hermeticity
- Projective towers

THIN WALL SUPERCONDUCTING SOLENOID

Possibity:

*ANL group : Just finished large solenoid for MHD generator and shipped to Moscow.

The director petitioned for the task in a letter to Leon

*Fermilab : a)Active on Tevatron magnet

b) Bob Kephart just finished converting Chicago Cyclotron magnet into a superconducting analyzing magnet.

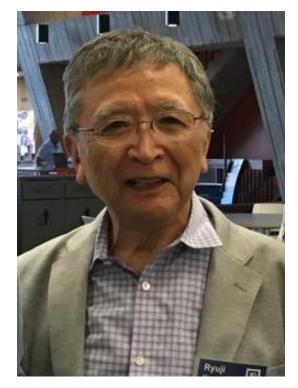
<u>Ryuji Yamada</u>

proposed to Kondo that Japanese group carry the task.

Made a prototype together with M. Wake at <u>KEK.</u>

*Japanese group (Tsukuba, KEK, Shigeki Mori)

References:


"Characteristics of Thin Wall Superconducting Solenoid Magnets and Its Model Magnet Populte"

Results",

R.Yamada, et al.,

Proc. International Cryogenic Engineering Conference, vol9 (Kobe) p221 (1980)

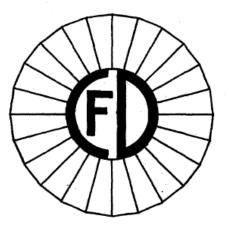
"Quench Simulation in the Thin Superconducting Solenoid", T.Tominaka, M.Takasaki, M.Wake and R.Yamada KEK 83-11 (1980)

"Cooling and Tests of a Thin 1mØ X 1m Superconducting Solenoid Magnet", H. Hirabayashi et al., Japan J. Appl. Phys. [21] 1149 (1982)

Funding in Japan secured through Tsukuba University.

Leon decided to assign the task to Tsukuba University under the overall charge of Bob Kephart.

Responsibility


Bob Kephart	: In charge of the solenoid project					
Japanese group	: Solenoid fabri	: Solenoid fabrication				
Ferlmilab	: Return yoke	: Return yoke				
Cryogenic system						
Operation						
Mapping						
<u>US side</u>		<u>Japan side</u>				
R. Kephart : Pro D. Theriot R. Yamada R. Fast	oject Leader	Shigeki Mori : In charge H. Hirabayashi A. Yamamoto K. Morimoto				

R. Wands

R. Saito (Engineer from Hitachi)

FERMILAB-TM-1135

DESIGN REPORT FOR AN INDIRECTLY COOLED 3-m DIAMETER SUPERCONDUCTING SOLENOID FOR THE FERMILAB COLLIDER DETECTOR FACILITY

Parameters
Superconducting cables
Structure
Field distribution
Cryogenics
Finite element analysis

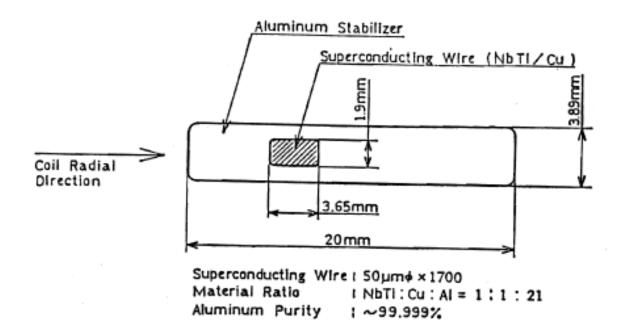
Design Report (254 pages)

FERMILAB OCTOBER, 1982

Troubled			CELLO	CLEO	TPC	CDF
Predecessors			PETRA DESY	CESR Cornell	PEP SLAC	TEVATRON
	Bore					
	Diameter	m	1.656	2	2.18	2.858
Thin wall	Length	m	3.4	3.25	3.3	5.067
solenoid	Radial Thickness	Rad L	0.5	0.75	0.75	0.84
was						
	Central Field	Tesla	1.3	1	1.5	1.5
regarded as	Current	kAmp	3.2	1.6	2.23	5
a risky	Stored Energy	MJ	5.4	9.4	10.9	30
gadget.						
	Conductor					
	Superconductor Stabilizer		NbTi/Cu	NbTi/Cu	NbTi/Cu	NbTi/Cu
				Al(2ndary)	Al/Cu(2ndary)	AI
	NbTi-CuAl ratio					1:01:21
	Cross Section	(mm)²	2.24 x 10.6	1.83 x 3.43	1 x 3.7	3.89 x 20
	Fabrication Process		NbTi soldered	NbTi/Cu	NbTi/Cu	NbTi/Cu-Al
			on Cu			Co-extruded
	Frame		Al Bobbin	Al Bobbin	Al Bobbin	Outer Frame
	Completion		1979	1981	1983	1984

Three major innovations

- Pure Aluminum Stabilizer*
- *In case of a quench, a nearby stabilizer bypasse the huge current to avoid heat voltage surge.
- •


A) At low temperature, better conductivity than Copper <u>NBS Note 1053</u>

		<u>273 K</u>	ς ρ (273 K)/p	<u>(4 K)</u>	=> 4 K	<u>X</u>
Al: Cu:	:	•	ıΩ∙ cm ıΩ∙ cm	4x10 ⁴ 1.2x10 ⁴	4		l6 nΩ· <i>cm</i> 3 nΩ·cm
B) Thinner material							
	Z	A	d g/cm³	dE/dx MeV / (g/cm²	MeV) / cm	Rad L cm	Nuc_Int L g/cm ²)
AI:	13	26.98	2.70	1.615	4.37	8.9	106.4
Cu:	29	63.55	8.96	1.403	12.58	1.43	134.9

<u>Co-extrued with superconducting cable</u>

o Invention by Hitachi Densen

Greater mechanical bonding with superconductor cable

- Outer bobbin/frame
 - : When energized, coil expands (=radial tension) and rather flimsy outer frame provides superior grip.

Shrink Fitting

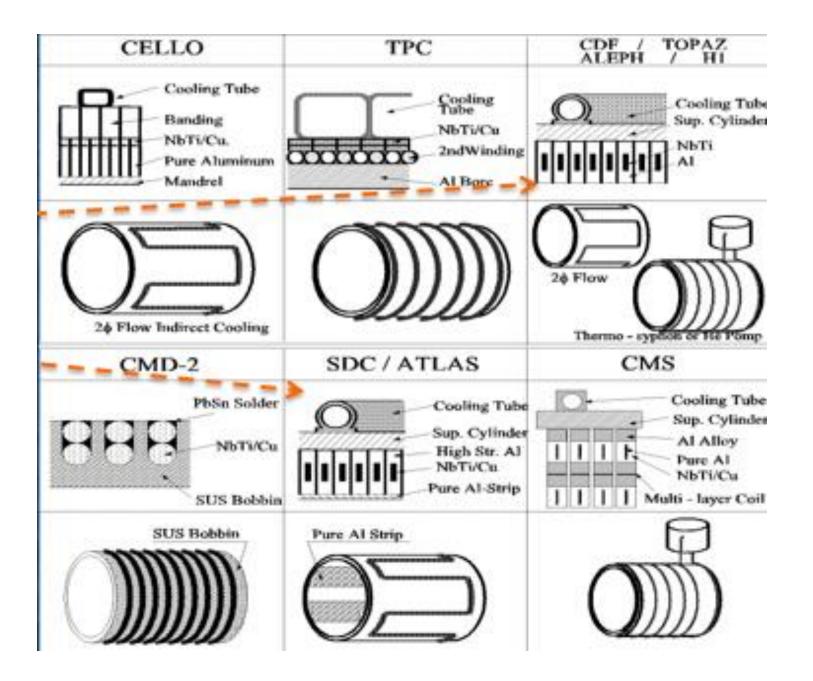
Heating the outer hoop to ~100°C)

Aluminum

- Thermal Expansion Coeff
- Temperature difference
- Diameter

25 x 10⁻⁶/°C (0-100°C)

- X ~ 80 °C
- X 3 meter
- Clearance in diameter $= \sim \frac{6 \text{ mm}}{2}$



Yamamoto devised <u>coil winding inside</u> <u>an outer frame</u> for TOPAZ solenoid.

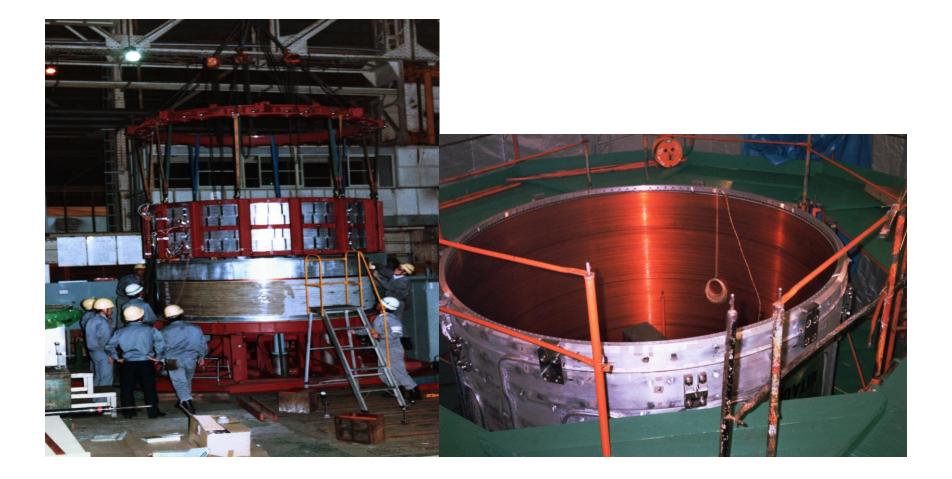
A.Yamamoto et al.,

"A Thin Superconducting Solenoid Would with the Internal Winding Method for Colliding Beam Experiments",

J. de Phys/ 45 (1984) C1-337

Nuclear Physics B (Proc. Suppl.) 78 (1999) 565-570

JOLLEMIENTS


www.elsevier.nl/locate/npe

Development towards Ultra-thin Superconducting Solenoid Magnets for High Energy Particle Detectors

Akira Yamamoto^a, Yasuhiro Makida^a, Ken-ichi Tanaka^a, Yoshikuni Doi^a, Takahiko Kondo^a Katsunori Wada^b, and Shin-ichiro. Meguro^b

CDF Solenoid coil winding at Hitachi

Bob Kephart prefered <u>air-lifting</u> for less chance of damaging the large but fragile object by minimizing the number of loading-unloading operations.

Possible Choices for						
1) Solenoid	550 cm	Х	339 cm	Х	356 cm, 11	Met T
	(18'	Х	11'1"	Х	11'8")	
2) Control Dewer :	304 cm	Х	220 cm	Х	347 cm, 1	L.1 Met T

-AT 125 (Antonov, Russian Military plane)	\$ 500k
-C5A (Galaxy) (US Airforce	\$ 0 or \$ 700K
-Belfast (Former British military plane) (Company: Heavy Lift)	\$ 200 K

NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS OHO-MACHI, TSUKUBA-GUN, IBARAKI-KEN, 305, JAPAN

Date : Jul. 7, 1984

INVOICE

¥654 M

/ ¥230/\$

=<u>\$2.8 M</u>

TELEPHONE: 0298 (64) 1171 TELEX: 3652-534 CABLE: KEK OHO

KEK

I N V O I C E

Messrs : Dr. Masanori Mishina C/O Fermi National Accelerator Laboratory P.O. Box 244 Batavia, Illinois 60510, U.S.A.

Shipped per : AircraftFrom : Narita, JapanTo : Chicago, U.S.A.

Qnantity Amount Shipping Mark Description FOB Narita 1 set ¥654,000,000.-CDF Superconducting Solenoid FERMI CHICAGO, U.S.A. with ACC. ____ _____ NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS . Ken Kelsneh

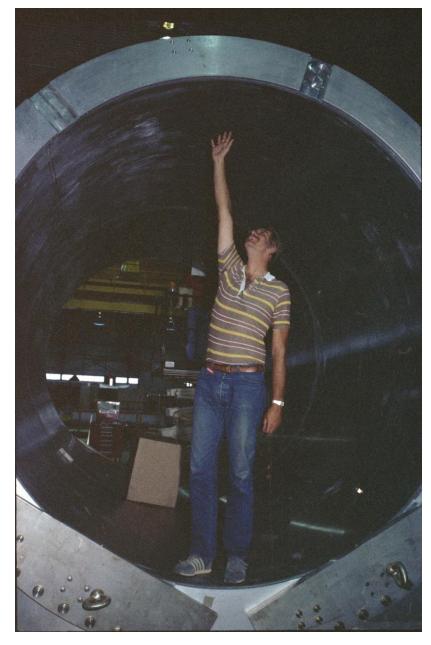
Transporting from O'Hare to Fermilab

Andy Muravka (Head, DOE Fermilab Site Office) pre-arraged :

- Waiver of Custom Inspection
- Waiver of Custom Duty : Based on the AGREEMENT

Air-ride truck

1) Solenoid	: 550 cm x 339 cm x 356 cm,			
	(18' x 11'1" x 11'8")			
	11 Met T			
2) Control Dewer	: 304 cm x 220 cm x 347 cm			
	1.1 Met T			


July 16, 1984

John Rob, Bob Kephart, Shigeki Mori, Bob Wands

Dean Beckner

Tom Kirk

Hans Kautzky

Prototype design	:	1980
Final solenoid design	:	1981
Fabrication	:	1981 – 1984

Successfully commissioned up to 1.5 Tesla without any quenches

Later developed a minor leak in transition piece => Repaired Since: kept at 1.4 Tesla to preserve detailed <u>field map</u> <u>No problem</u> <u>flipping coil</u> <u>particle tracks</u>

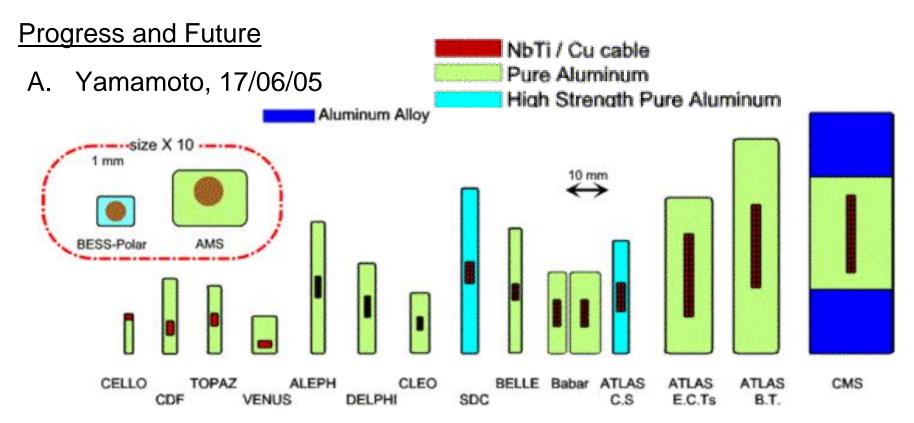
<u>Mystery</u>

When magnetic field polarity was flipped, it quenched.

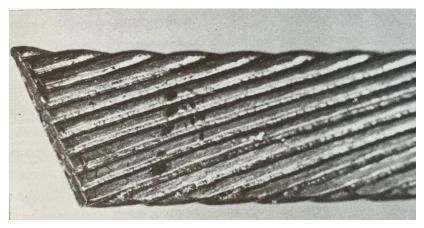
Since there is no need for flipping, the polarity was kept in one direction.

		TOPAZ	VENUS	AMY	CDF
		TRISTAN KEK	TRISTAN KEK	TRISTAN KEK	TEVATRON FNAL
Bore					
Diameter	m	2.72	3.5	2.22	2.858
Length	m	5.08	5.27	1.54	5.067
Radial Thicknes	Rad L	0.7	0.52	10	0.84
Central Field	Tesla	1.21	0.75	3	1.5
Current	kAmp	3.65	5	5	5
Stored Energy	MJ	19.5	12	40	30
Conductor					
Superconduc	tor	NbTi/cu	NbTi/Cu	NbTi/Cu	NbTi/Cu
Stabilizer		AI	Al	AI	AI
NiTi-Cu-Al Rat	tio	1:01:20	1:1.27:20.9	1:15.6:1.85	1:01:21
Cross Section	(mm)²	2.6 x 18	8 x 10	9.8 x 12	3.89 x 20
Fabrication P	rocess	NbTi/Cu - Al	NbTi/Cu - Al	NbTi/Cu - Al	NbTi/Cu - Al
		Co-extruded	Co-extruded	Co-extruded	Co-extruded
Frame		Outer frame	Outer frame	Outer frame	Outer frame
Cooling		Indirect	Indirect	Bath cooled	Indirect
		Forced flow	Forced flow		Forced flow
		2 phase He	2 phase He		2 phase He
Completion		1984	1984	1986	1984

Compiled by Hrabayashi


After CDF (Compiled by Yamamoto)

Progress of thin and some other Al-stabilized superconducting solenoid magnets for particle physics detectors


Experimen	ntLab.	В	R-coil	Х	E/M	Technical Remark	(Year)	[Ref]
CELLO	Saclay/DESY	1.5 T	0.85 m	0.6X ₀	[kJ/kg]	Al soldered to S/C	(1978)	[4]
PEP-4	LBL	1.5	1.1	0.83		Cu stabilized coil	(1983)	[5]
CDF	Tsukuba/Fermi	1.5	1.5	0.84	5.4	Al co-extruded with S/C	(1984)	[6]
TOPAZ	KEK	1.2	1.45	0.70	4.3	Inner coil winding,	(1984)	[7]
VÉNUS	KEK	0.75	1.75	0.52	2.8	CFRP vacuum shell,	(1985)	[8]
CLEO-II	Cornell	1.5	1.55	2.5	3.7	Double layer	(1988)	[9]
ALEPH	Saclay/CERN	1.5	2.75	2.0	5.5	Thermo-siphon cooling.	(1987)	[10]
DELPHI	RAL/CERN	1.2	2.8	1.7	4.2	LHe-pump cooling	(1988)	[11]
HI	RAL/DESY	1.2	2.8	1.8	4.8		(1990)	[11]
ZEUS	INFN/DESY	1.8	1.5	0.9	5.5	Current grading	(1988)	[12]
BESS	KEK	1.2	0.5	0.2	7.0	Pure-Al strip quench propagator	(1990)	[13]
SDC-prote	KEK/Fermi/SSC	2-1.5	1.85	1.2	9.6	High-st. Al, Isogrid/honeycomb	(1993)	[14]
WASA	KEK/Uppsala	1.3	0.25	0.18	7	Compact and thinnest	(1996)	[15]
BARBAR	INFN/SLAC	1.5	1.5				(1997)	[16]
D0	Fermilab	2.0	0.6	0.9	3.7	Two layer coil	(1998)	[17]
BELLE	KEK	1.5	1.8		4.6	Al-co-extrusion by conforming	(1998)	[18]
ATLAS	KEK/CERN	2.0	1.25	0.66*	7.1	High-st. Al. (Ni-microalloyed)	(in progress)	[19]
CMS CE	RN/CEA/ETH/INFN	4.0	3.2			Hybrid high-st. Al, EB-welded	(in progress)	[20]

* no own cryostat and to be installed into the LAr calorimeter cryostat to save wall material.

<u>AI-Stabilized Superconductor developed for Detector Magnets:</u> E/M :

After ALEPH, Rutherford cable (multi-strand, twisted, flat) are also coextruded with Al stabilizer.

Tevatron magnet Rutherford

cable

Rutherford Cable

-Finer and longer filament/strand

-Multi-strand

-Twisted

-flattened

=> higher current, flexibility

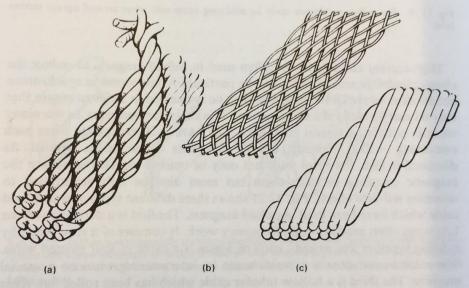
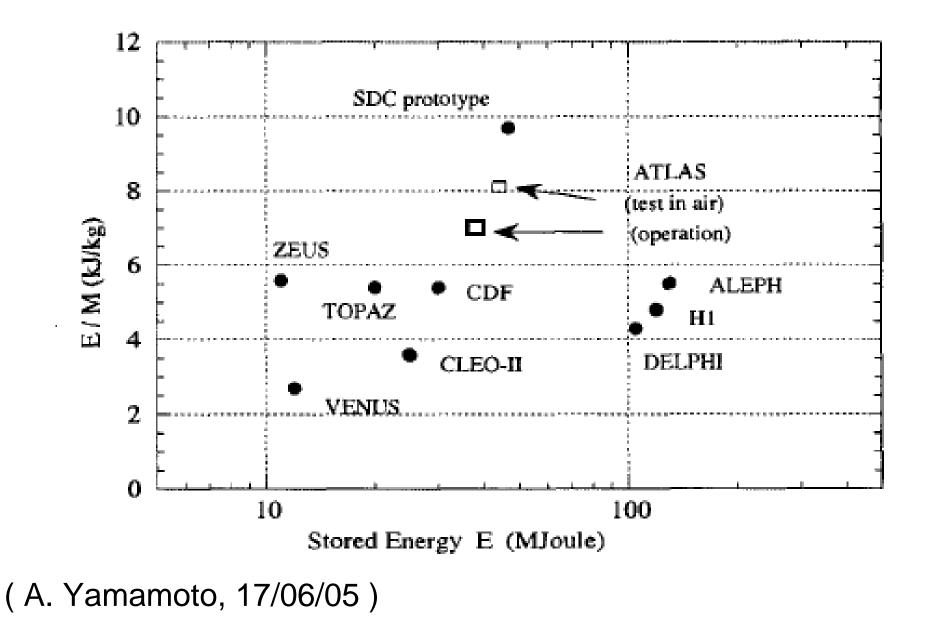




Fig. 12.21. (a) Transposed cable for a.c. use, made in form of a twisted rope; (b) transposed braid for a.c. use, made by a weaving process; (c) transposed cable for a.c. use, made by roll flattening a hollow twisted tubular cable.

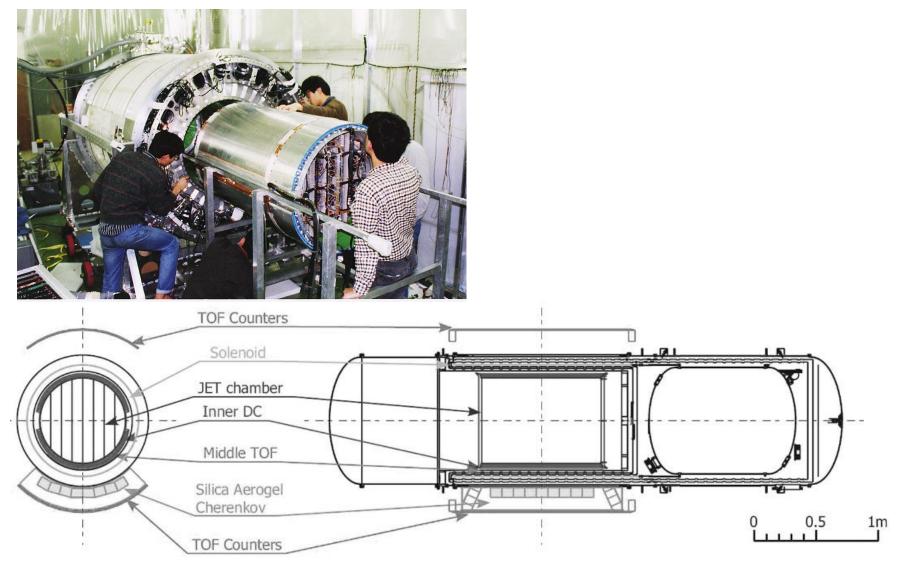
ATLAS Central Solenoid

Inner Bore	: 2.3 m D x 5.3 m L
Field	: 2 Tesla
Current	: 7.6 kAmp

(Photo: CERN Courier)

Rutherford type NbTi/Cu superconducting cable with aluminum stabilizer (Furukawa Electric and Hitachi)

"Design and Development of the ATLS Central Solenoid Magnet"

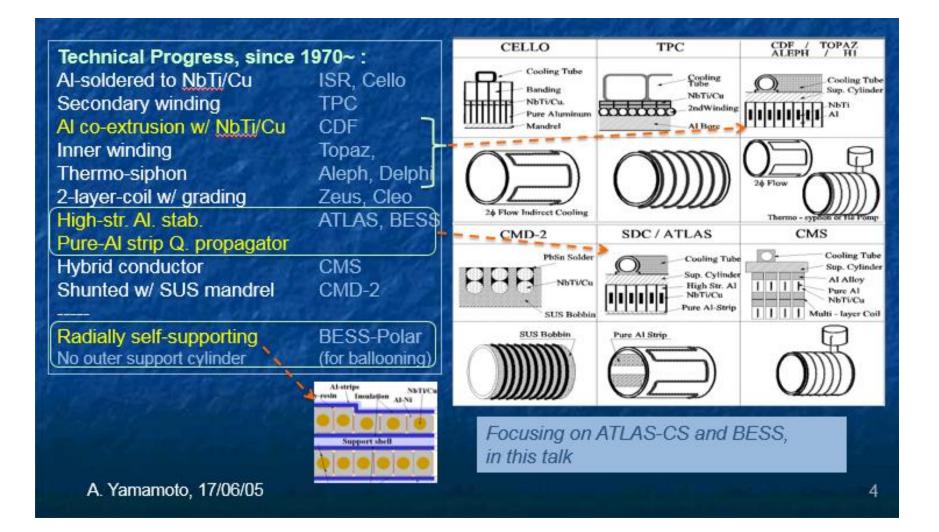

A. Yamamoto, T. Kondo, Y. Doi, Y. Makida, K. Tanaka, T. Haruyama, H. Yamaoka (KEK); H. ten Kate, L. Bjrset, (CERN); K. Wada, S. Meguro (Furukawa Electric CO.); J. S. H. Ross, K. D. Smith, (Oxford Instruments)

Micro-alloying with pure-Al with ATLAS-CS and BESS

Additve metal	A	Dens.	Solubility	resistivity contribution (in solution / crystal.)
States States		[g/cm ³]	[w-%]	[10 ⁻ⁱ² Ωm/wppm]
<u>Solid soluti</u>	ion:			
Si	28	2.6	1.65	0.7 0.088
Zn	65	7.1	83 @ 400C	0.10 0.023
<u>Crystallizat</u>	ion /	<u>Precipit</u>	ation:	
Ni	59	8.8	0.05 @640C	0.81 0.061
			<0.006 @<500C	
and and a fill			Clar Star Bar Alton	
Ni: Best i	reinfo	rcement v	with keeping Low	resistivity.
A Yamamoto 17/06	/05			10

BESS-Polar Experiment

(Balloon-borne Experiment with Superconducting Spectrometer)


BESS II

Conductor Ni micro-alloying, co	0.8 mmx 1.1 mm	Superconductor 1.1 mm x 0. 8 mm
Coil thickness	3.4 mm	► <u></u>
With cryostat	0.1 X0)	Ni(5
Current Field	570 A 0.8 T (test 1.2 T)	NbTi/Cu /
Dimension	0.9 m D x 1.4 m L	5
Stored energy	550 kJ	8_
Total	380 kg	0.59 mm
		¥ •

0.8 mm

15 % Cold Work

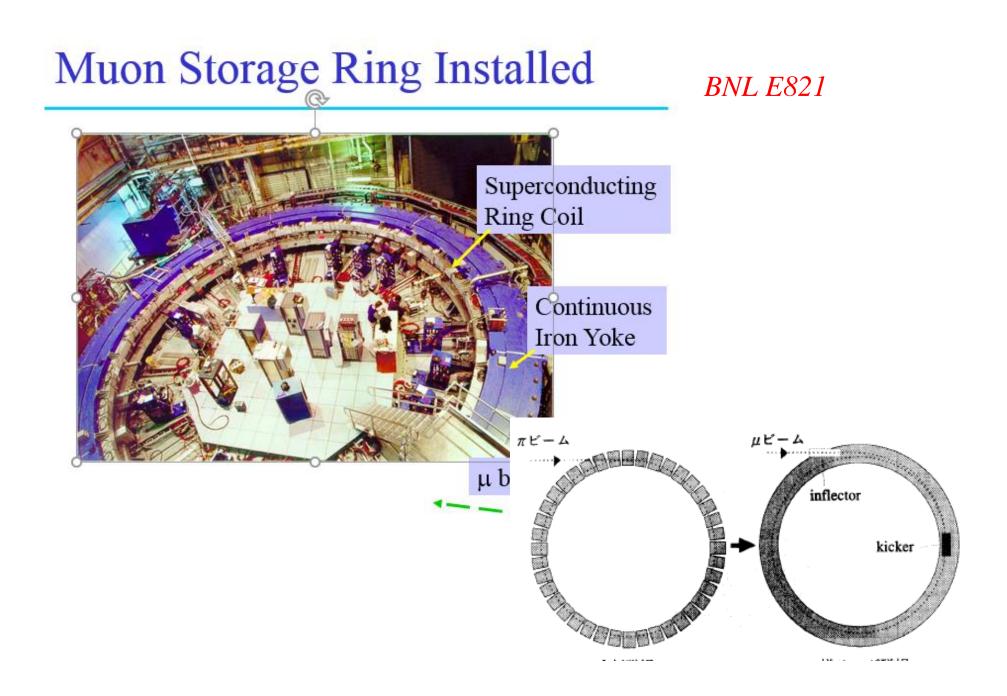
In flight : 24.5 days (2007-2008)

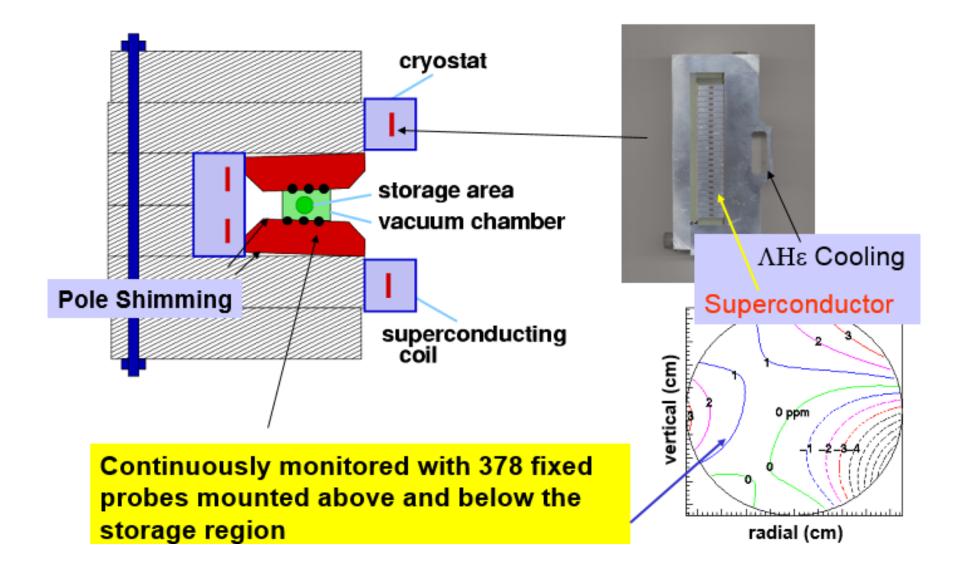
<u>μ g-2 BNL E-821</u>

Vernon Hughes conceived of a new experiment on muon g-2 after CERNs 3rd experiment.

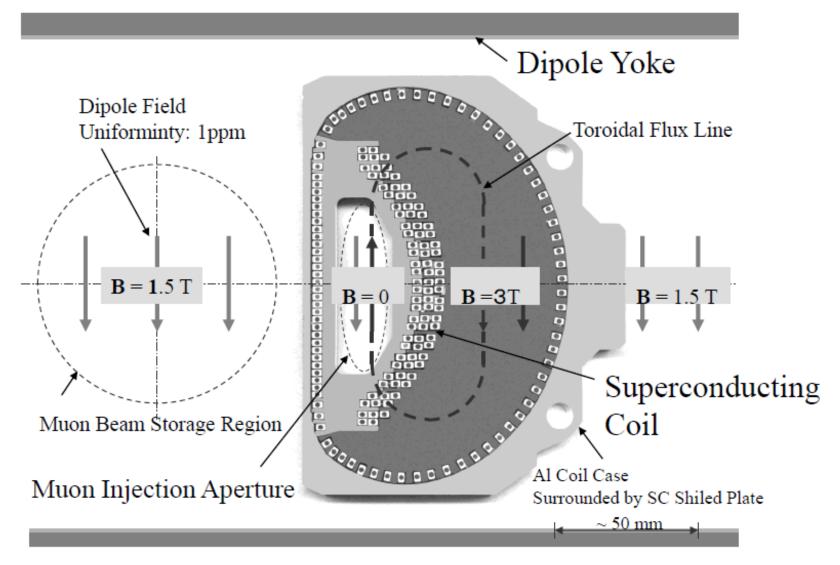
Kondo introduced Hughes to Nishikawa. Nishikawa suggested to recruit KEK's superconducting magnet group (Hirabayashi, Yamamoto)

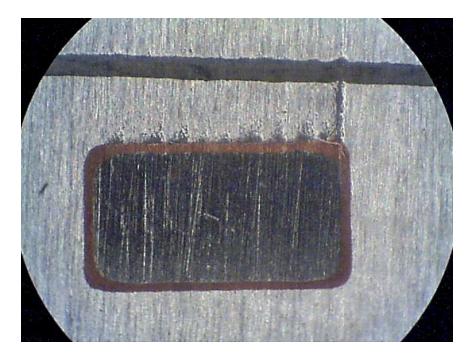
KEK	Superconducting coil design/fabrication,
	Iron yoke,
	Muon Inflector
Tokyo Inst Tech	Beam monitor

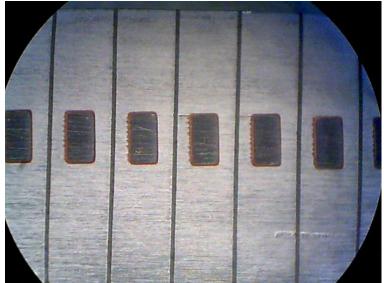

E821 was tucked into the US-Japan Collaboration umbrella.

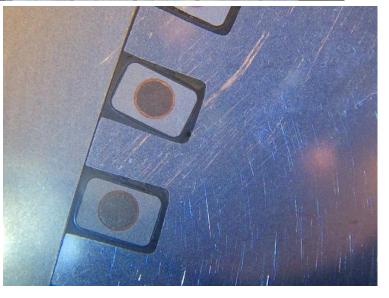

Brookhaven µ g-2 Experiment E821 (Presented by M. Iwasaki, A. Yamamoto, For E821 g-2 Collaboration)

Keep CERN's 3rd generation experiment parameters:

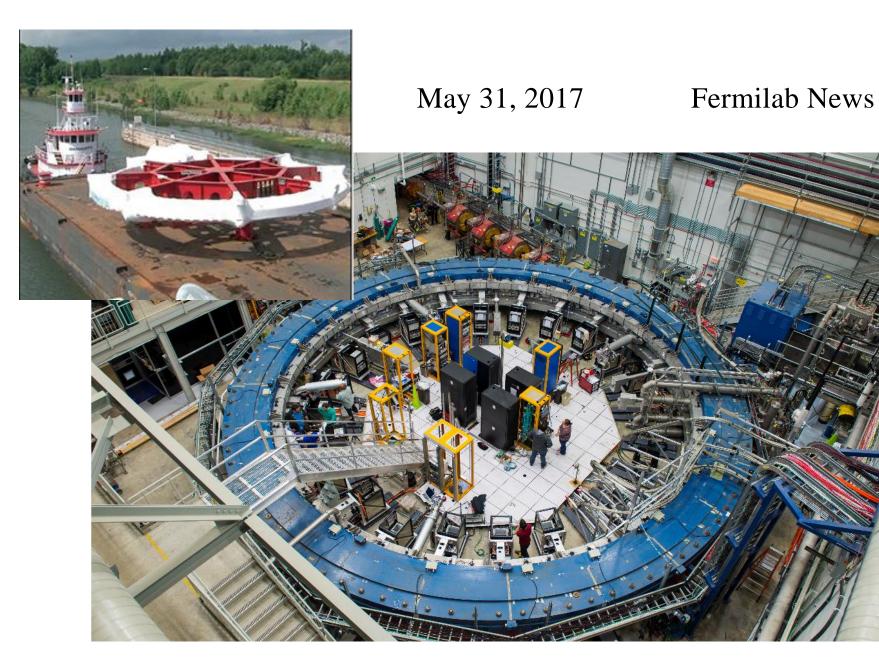

Magic number : $\gamma = 29.3$ => $p_{\mu} = 3.094 \text{ GeV}$


	CERN	BNL E821
Radius	7.112 m	7.112 m
Magnetic field	1.45 T	1.45 T
Magnet	40 separate dipoles Common coil	Single continuous ring of superconducting dipole
Current		5.2 kA
Storage aperture		90 mm D
Injection	π	μ
	Pulsed	DC superconducting inflector
Kicker Focusing		Pulsed kicker magnet Electrostatic quadrupole lens

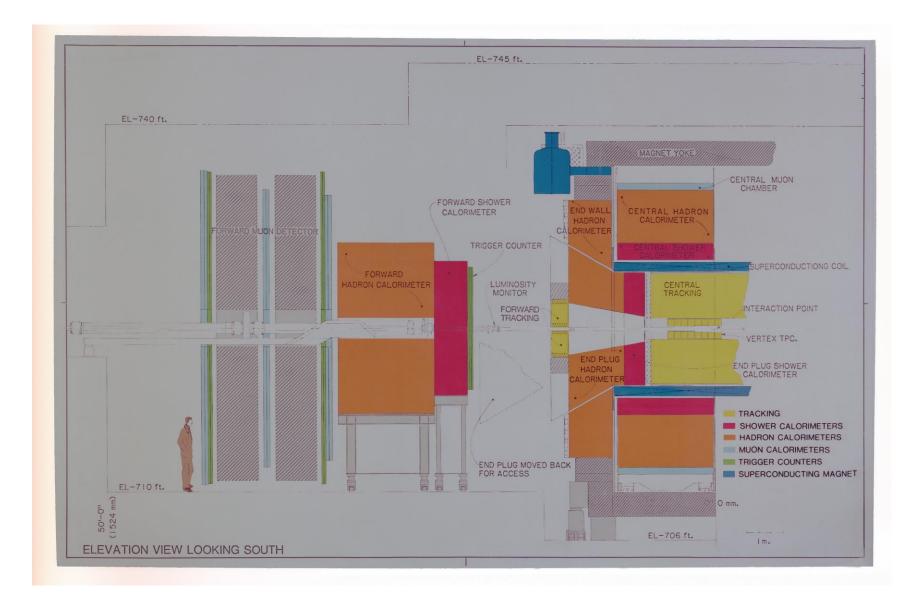




Superconducting Beam Inflector



Inflector



New era of Parton Fragmentation

Series of papers in '77-'78: Feynman, Field, Fox (CALTECH) (Field-Wolfram 1983) Rick Field later joined CDF from U. Florida

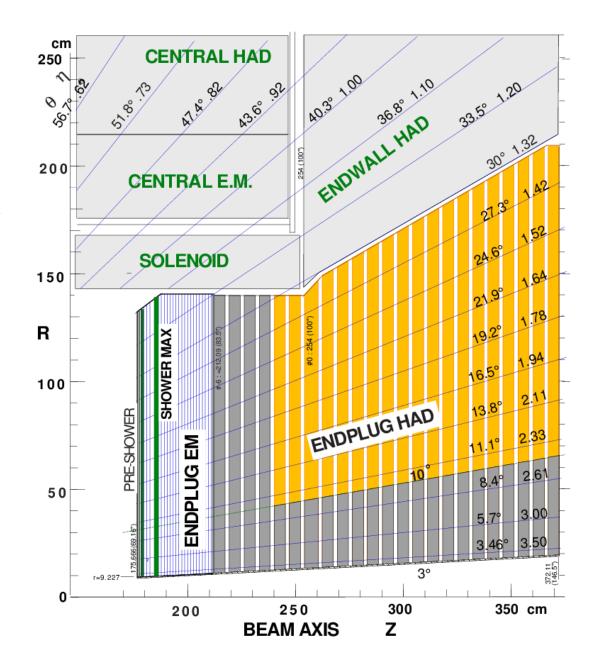
Jeff Fox gave a talk at CDF meeting:

- How messy the outcome of the parton fragmentation will be.
- Needs to measure energy flow in additon to individual particles
- Calorimeter has to have projective tower geometry.
- Lateral segmentation of ~1,000 in 4π , necessary/adequate
- ~ 1,000 projective towers were actually formed in 4π .

.

Kautzky mockup

Endplug Calorimeter

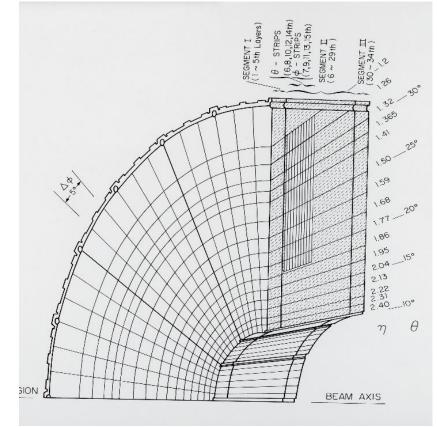

Tevatron Run I

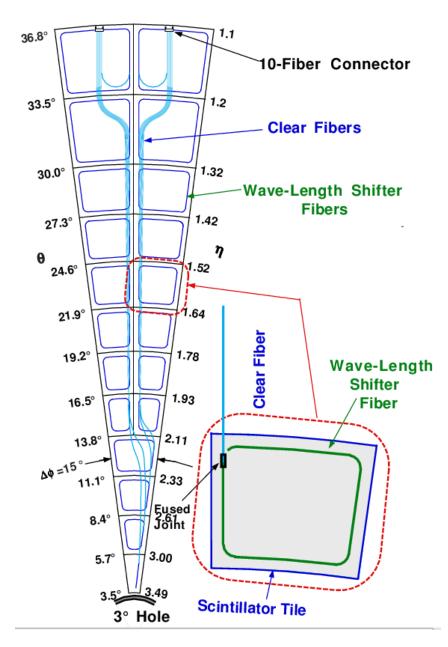
- 1 x 1 bunches / cycle
- 6 x 6 bunches / cycle later

Constraint

2

- 1.5 T magnetic field
- -- Small physical size of projective towers


➡ Proportional tube wire chamber_ - Absorber Sandwitch


Resistive wall with pick-up electrode plane behind

Fine lateral ($\Delta \theta x \Delta \phi$) segmentation was achieved by patterning "pickup" plane.

Worked well for 1x1 bunch ~ 6 x 6 bunches/cycle

TEVATRON Run II 36x36 bunces /cycle . => faster sytem.

<u>Scitillator tile – WLS fiber</u> <u>Readout</u>

Jim Freeman came up with an idea of refurbishing UA1's effort of

Scintillator tile-WLS fiber readout

"A uranium scintillator calorimeter With plastic-fiber readout" M.G. Albrow et al., NIM A 256(1987)23

After the decision, Japanese group, Tsukuba-KEK-Saga-Osaka City, with Fermilab team (including Freeman), worked on the refinement of the technology making it a viable option for a sampling calorimeter. In the course all the necessary details were worked out.

-Choice of fiber (attenuation length, fluor, flexibility, ..)

Spectral Matching

scintillator emission \Leftrightarrow WLS fiber absorption

WLS emission \Leftrightarrow photocathode sensitivity

(extended bi-alkali)

-Bending curvature

-WLS fiber pattern/depth of grooves

-Reflecting end

-Cutting fibers

-Splicing/jointing

-Multi-fiber connector

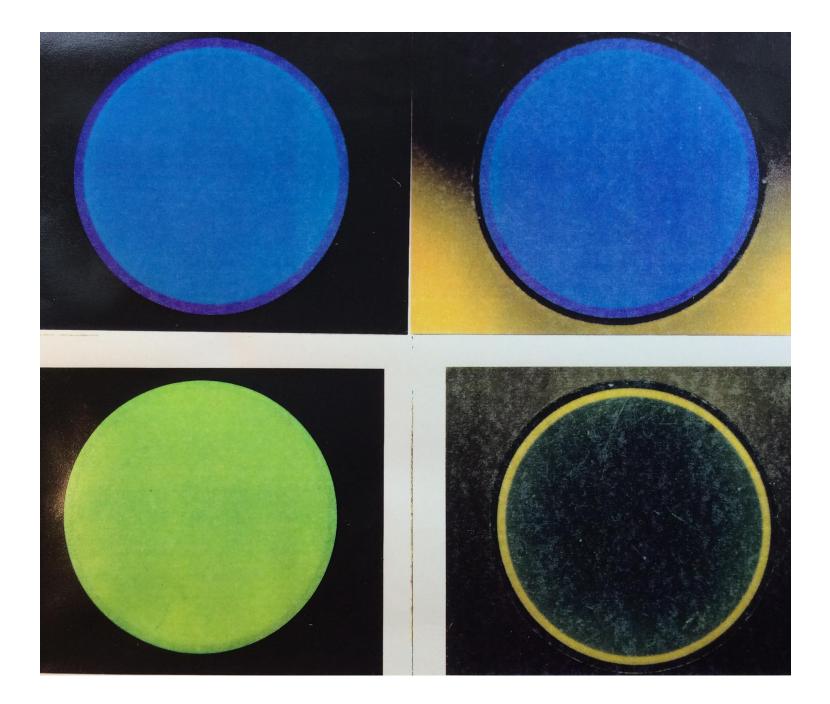
-Radiation damage

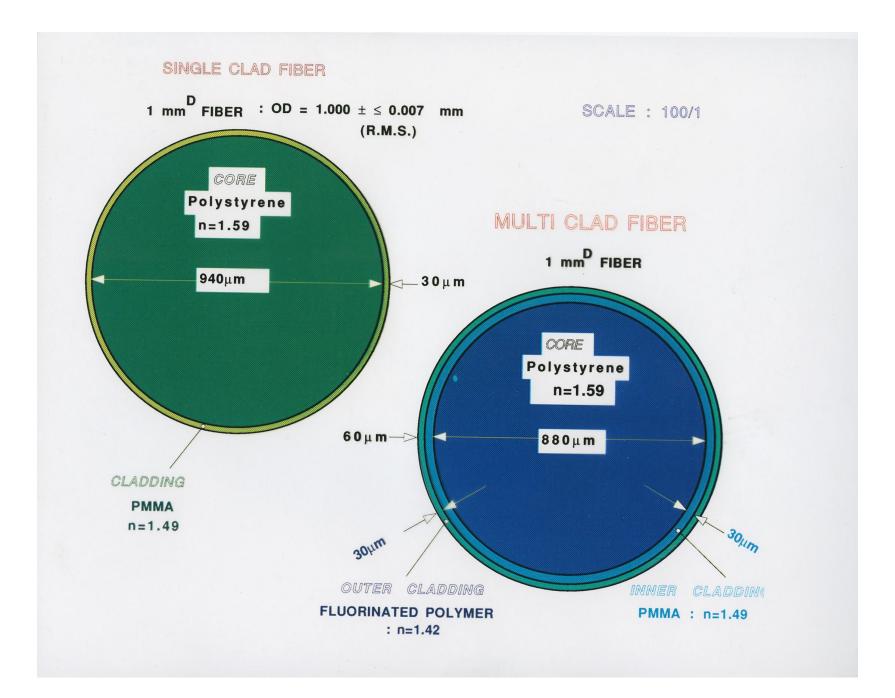
"A scintillating tile / fiber system for the CDF plug upgrade EM calorimeter"

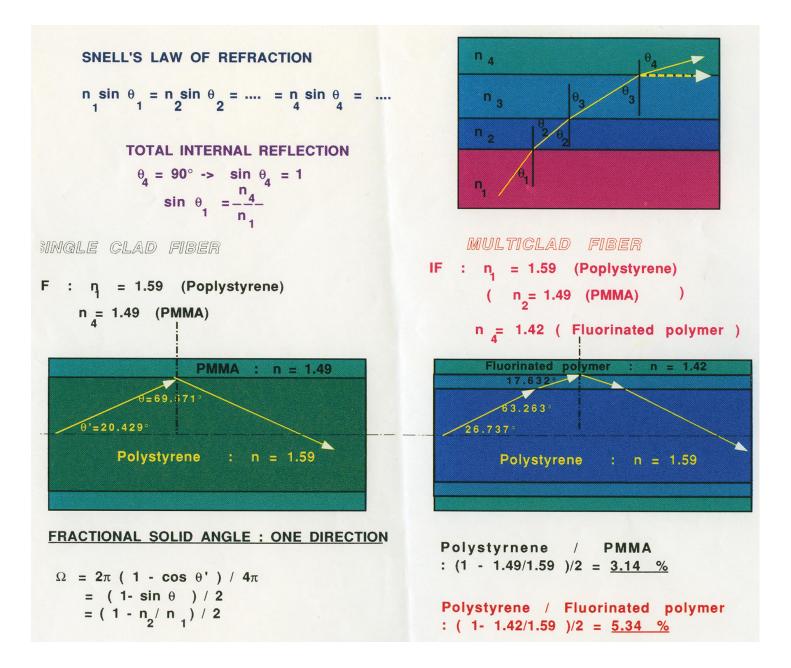
S. Aota et al., NIM A 352 (1995) 557-568

Features of Scintillating tile-WLS fiber readout calorimeter

- Fast
- Uniform
- Durable/low maintenance
- Fine segmentation into arbitrary pattern
- Without sacrificing hermeticity
- Easily scalable*(Ex. Spin-off: MINOS, GLAST)


KURARAY invented "Multiclad" fibers.


Core	: Polysyrene	n=1.5
Inner claddin	g : PMMA	n=1.49
Outer claddir	ng : Fluorinated Polymer	n=1.42


solid angle (aperture) 3.14% => 5.34 %

<u>=> 50% gain</u>

less sensitive to bending less brittle

"Thin scintillating tiles with high light yield for the OPAL endcaps" G. Aguillion, et al., NIM A 417 (1998) 266*Đ*277

CMS Hadron Calorimter

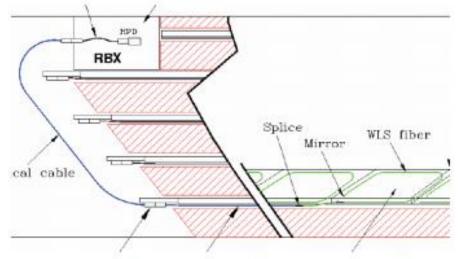


Figure 4, CMS hadronic calorimeter sampling geometry (schematic). Wavelength shifter fibers imbedded in the scintillator tiles couple the scintillation light to the HPD photo-detectors.

J. Proudfoot, 34th SLAC Summer Institute on Particle Physics (SSI) july 17-28, 2006

Spin off

"Development of a Low-Cost Extruded Scintillator with Co-Extruded Reflector for the MINOS Experiment"

D.F. Anderson, .. A. Para, .. A. Pla-Dalmau, et al., FERMILAB-Conf-00/261-E October 2 Presented IEEE NS, Lyon France, October 15-20, 2000000

"High efficiency plastic scintillator detector with wavelength-shifting fiber readout for the GLAST Large Area Telescope"

A.A. Moiseeva,_, et al., NIM A 583 (2007) 372–381

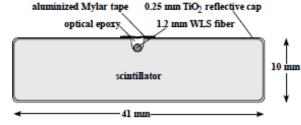


Figure 1: Profile of scintillator strip.

SPECIAL THANKS for warm friendship, kind help, useful advices, and continuous encouragement to Ryuji Yamada Akira Yamamoto Taiji Yamanouchi **Bruce Chrisman** Roy Rubinstein **Alvin and Janine Tollestrup** John and Nancy Peoples Leon and Ellen Lederman

THANKS

for

Steady Hands on Collaboration Business

tO

Kyoko Kunori