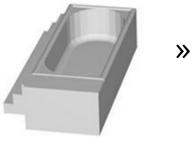
Computer Vision in the Cloud

Reza Zadeh

Twitter: @Reza_Zadeh

Computer Vision

Computers are opening their eyes, seeing the world in 2d and 3d


Beyond Image Recognition

Object Recognition (volume)

Video Search (time)

Object recognition

Given 3D model, figure out what it is

» bathtub

Princeton ModelNet

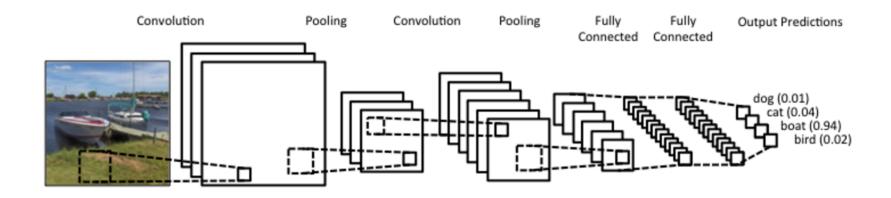
662 object classes, 127,915 CAD models

ModelNet40: 40 class subset

http://modelnet.cs.princeton.edu

Princeton ModelNet

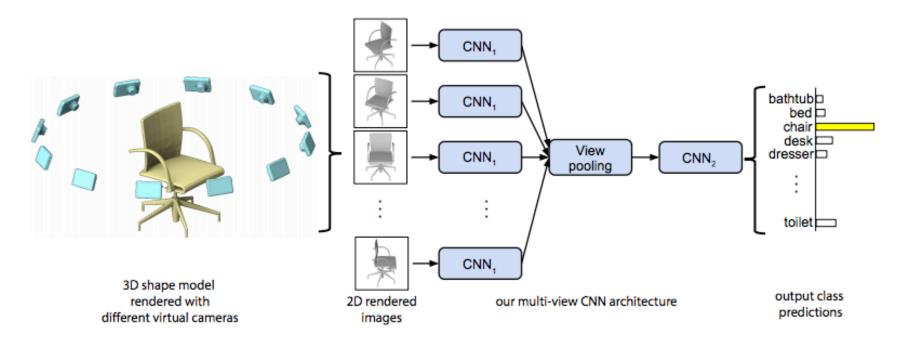
Problem of input representation


Try using image recognition on projections, but that only goes so far.

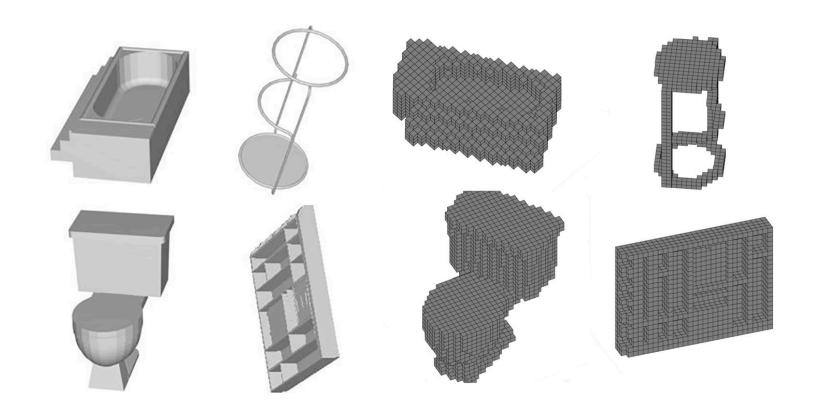
From Image Recognition to Object Recognition

Paper: http://matroid.com/papers/fusionnet.pdf

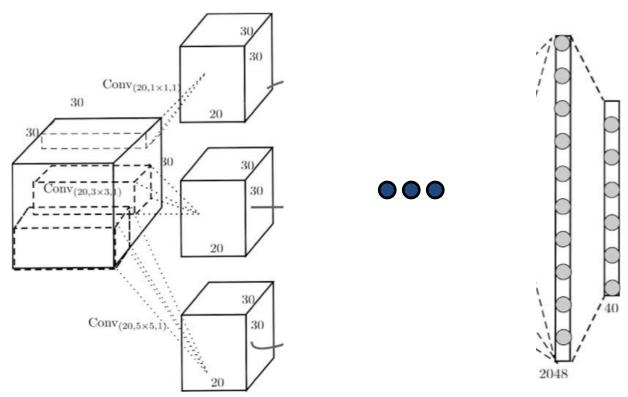
Joint with Vishakh Hegde


Convolutional Network

Slide a two-dimensional patch over pixels.

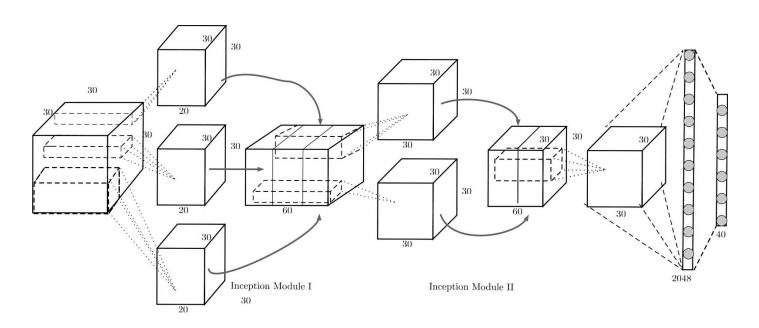

How to adapt to three dimensions?

Multi-View CNN

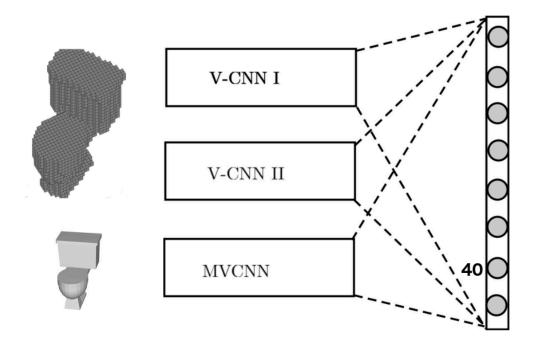


Rotate camera around object

Representations

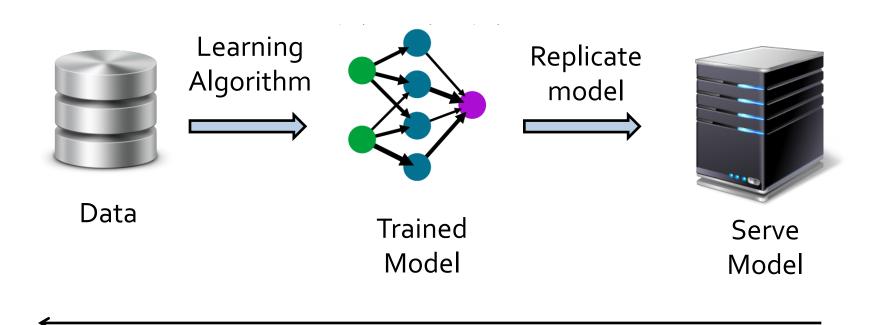

Volumetric (V-CNN)

Simple idea: slide a three-dimensional volume over *voxels*.


Volumetric CNNs

Use two different Volumetric CNNs (VCNN-I and VCNN-II). Example of one:

FusionNet


Fusion of two volumetric representation CNNs and one pixel representation CNN

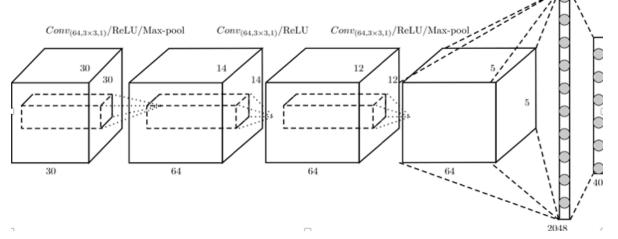
Hyperparameters tuned on a cluster

http://matroid.com/papers/fusionnet.pdf

Machine Learning Pipeline

Repeat entire pipeline

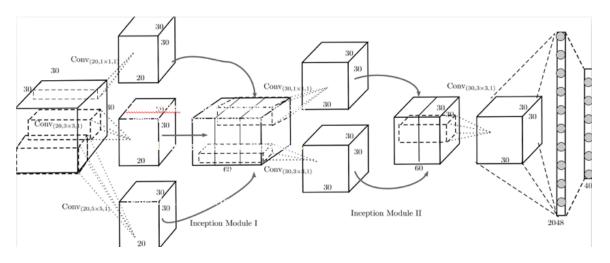
Deeper Dive into Networks


Multi-View CNN

View positions: Corners of icosahedron (20 faces)

Base network: AlexNet (# parameters ~ 60M)

Pre-training on ImageNet, fine-tune last three layers.


VCNN-I

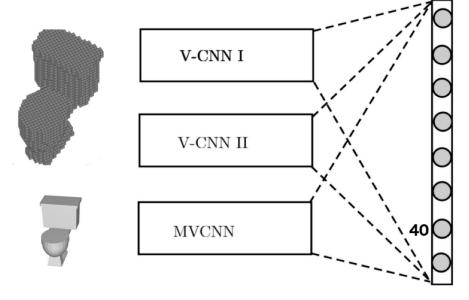
Long kernels learn features spanning the size of the 3D model

Data Augmentation: Gaussian noise added to vertex coordinates in CAD model

VCNN-II

GoogLeNet inspired inception modules Kernel sizes: 1x1x30, 3x3x30, 5x5x30

Hope: Learn features at multiple scales


Results

Results

Network	No. Views	Acc. (ModelNet10)	Acc. (ModelNet40)
Volumetric CNN (V-CNN) 1	60	91.48	82.41
V-CNN I*	60	_	80.63
V-CNN II	60	90.22	82.11
V-CNN II + V-CNN II	60	90.32	83.31
V-CNN I + V-CNN II	60	91.95	83.78
AlexNet (random) MV-CNN	20	_	85.82
AlexNet (FT) MV-CNN	20	92.69	86.92
AlexNet (FT) MV-CNN + V-CNN I	20, 60	93.04	88.50
FusionNet	20, 60	93.11	90.80

Table 3: Classification accuracy for individual models. FT = Fine Tuning. * = Data augmentation with Gaussian noise. random = Random initialization of all network weights. FusionNet achieves the best performance.

FusionNet

Algorithm	ModelNet40 Classification (Accuracy)	ModelNet40 Retrieval (mAP)	ModelNet10 Classification (Accuracy)	ModelNet10 Retrieval (mAP)
FusionNet [7]	90.8%		93.11%	
Pairwise [6]	90.7%		92.8%	
MVCNN [3]	90.1%	79.5%		
GIFT [5]	83.10%	81.94%	92.35%	91.12%
VoxNet [2]	83%		92%	
DeepPano [4]	77.63%	76.81%	85.45%	84.18%
3DShapeNets [1]	77%	49.2%	83.5%	68.3%

At the time of submission (July 17th 2016)

ModelNet now

Algorithm	ModelNet40 Classification (Accuracy)	ModelNet40 Retrieval (mAP)	ModelNet10 Classification (Accuracy)	ModelNet10 Retrieval (mAP)
Geometry Image [13]	83.9%	51.3%	88.4%	74.9%
Set-convolution [11]	90%			
PointNet [12]			77.6%	
3D-GAN [10]	83.3%		91.0%	
VRN Ensemble [9]	95.54%		97.14%	
ORION [8]			93.8%	
FusionNet [7]	90.8%		93.11%	
Pairwise [6]	90.7%		92.8%	
MVCNN [3]	90.1%	79.5%		
GIFT [5]	83.10%	81.94%	92.35%	91.12%
VoxNet [2]	83%		92%	
DeepPano [4]	77.63%	76.81%	85.45%	84.18%
3DShapeNets [1]	77%	49.2%	83.5%	68.3%

Recent (December 5th 2016)

Conclusions

3D convolutions on different kernel sizes help

Combination MVCNN + VCNN helps

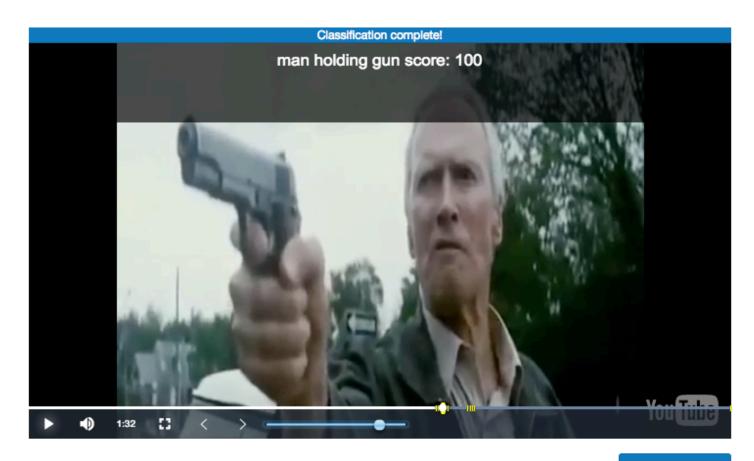
Hyper-parameter tuning helps

FusionNet paper

http://matroid.com/papers/fusionnet.pdf

Video Search

The Matroid Team



Matroid

Matroid is a studio for creating and using detectors.

Like a metal detector, a matroid detector finds things in media

Matroid

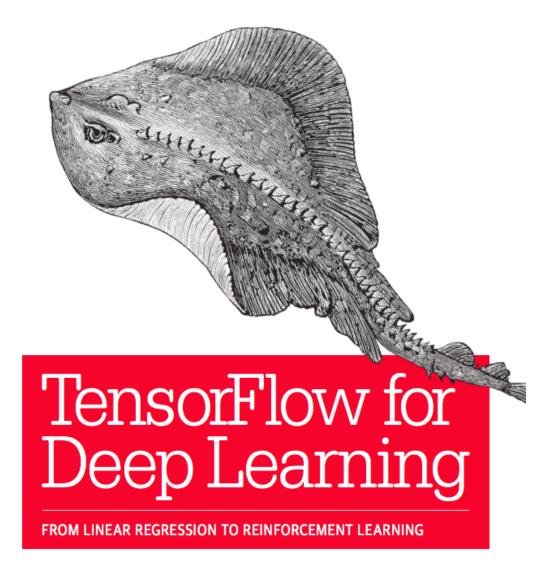
Is a studio for creating and using detectors.

Let's take a look.

Matroid

A studio for creating and using detectors.

An ever-growing detector library.


Video player with Computer Vision core.

Tight feedback loop for detector iteration.

An extensive API and stream monitoring.

Work-sharing amongst users, with privacy.

O'REILLY®

Bharath Ramsundar & Reza Bosagh Zadeh

Our Machine Learning Stack

A bank of machines managed by Kubernetes

Many models in a multi-tier cache

Architecture details in future talks

Signup at matroid.com

Thank you!