

State-of-the-Art Superconducting RF Technology for Accelerators

Sam Posen Fermilab Colloquium 15 February 2017

Particle Acceleration via SRF Cavities

- Superconducting radiofrequency (SRF) cavities
- High quality EM resonators: Typical $Q_0 > 10^{10}$
- Over billions of cycles, large electric field generated
- Particle beam gains energy as it passes through

Particle Acceleration via SRF Cavities

- Superconducting radiofrequency (SRF) cavities
- High quality EM resonators: Typical $Q_0 > 10^{10}$
- Over billions of cycles large electric field generated

SRF: high current,

high energy, high

brightness beams

ately 4x10⁹

Niobium

Sam Posen

Par

Inpu

~1 m

Images from linearcollider.org, Wlkipedia

SRF Accelerators Around the World

Map from Wikipedia. Non-exhaustive facility list.

SRF Accelerators Around the World

Map from Wikipedia. Non-exhaustive facility list.

Duty Factor

Duty Factor and Cryogenic Costs

ILC (pulsed, <1% DF) ~0.5 W average per cavity LCLS-II (CW, 100%DF) ~10 W average per cavity

Cavity image: Rey Hori. Cryoplant image: CERN.

Duty Factor and Cryogenic Costs

ILC (pulsed, <1% DF) ~0.5 W average per cavity LCLS-II (CW, 100%DF) ~10 W average per cavity

Cavity image: Rey Hori. Cryoplant image: CERN.

Q₀ -> Cryogenic Infrastructure, Operating Cost

Gradient -> Length for Linear Accelerator Q_0 also important! ILC cost vs. Gradient and Q0 140 ---Q0=4.0e9 130 ---- Q0=6.0e9 120 ---Q0=8.0e9 ILC: 16,000 **Cost (%)** 110 (%) --Q0=1.6e9 ---Q0=3.2e9 cavities in 31 km linac 90 80 Baseline design 70 60 20 25 30 35 45 40 50 Gradient MV/m 8 cavities ~10 m Linearbeschleuniger Linear accelerator European XFEL

🛟 Fermilab

10 2/14/17 Sam Posen

Image from linearcollider.org. Tunnelflug video by European XFEL. Cost analysis by N. Solyak

Motivation State-of-the-Art SRF Technology

Map from Wikipedia. Non-exhaustive facility list.

Motivation State-of-the-Art SRF Technology

Map from Wikipedia. Non-exhaustive facility list.

Outline

- High Q_0 (medium E_{acc})
 - Nitrogen doping
 - Flux expulsion
- High E_{acc} and high Q_0
 - Nitrogen infusion
 - $-Nb_3Sn$
 - Plasma cleaning

ILC cryomodule with record average gradient for FAST facility

Aberration-corrected STEM image of the near-surface of Nb cavity - Y. Trenikhina

Niobium near-surface after the first step of nitrogen doping - Y. Trenikhina Fermilab

Team Effort

- Results shown here are due to many hardworking people
- Thanks to SRF department and Fermilab LCLS-II team for contributions

Note on Q₀ and BCS/Residual Surface Resistance

- Q_0 and R_s are related by a geometrical constant G: $Q_0=G/R_s$
- They measure efficiency
- Heat dissipated in the walls of the cavity: P_{diss} ~ R_s ~ Q₀⁻¹
- *R_s* decreases exponentially with decreasing *T*/*T_c* but it saturates at low *T*: residual resistance *R_{res}*
- Generally we decompose R_s into temperature dependent R_{BCS}(T) and temperature independent R_{res}
- Cavities often operate at ~2 K where both are significant

Treatment for Enhancement of RF Penetration Layer

Effect on Surface Resistance (and therefore $Q_0 = G/R_s$)

- >2x R_{BCS} improvement at 2 K, 16 MV/m
- Reduced maximum field OK for high duty factor applications
- A. Grassellino et al, 2013 Supercond. Sci. Technol. 26 102001 (Rapid Communication)
 A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

Origin of Improved Surface Resistance due to N-Doping

- ✓ N-doping modify the mean free path
 - \rightarrow Mean free path close to theoretical minimum of R_{BCS}
- ✓ N-doping seems to increase the reduced energy gap $\Delta/k_{\rm B}T_{\rm c}$

Sam Posen

Slide adapted from M. Martinello

🕻 Fermilab

Origin of Improved Surface Resistance due to N-Doping

Sam Posen

Slide adapted from M. Martinello

Materials Science Lab

Scale-Up

- Initial studies on single cell R&D-style cavities
- Several milestones required to demonstrate technology maturity for accelerator applications

From single cell R&D to cryomodule ready technology: the two LCLS-II prototype cryomodules (FNAL and Jlab)

It is the highest average Q ever demonstrated in vertical test for 1.3 GHz nine cells at 2K, 16 MV/m in the history of SRF (larger than a factor of two the state of the art)

🛚 🛟 Fermilab

Integrated Testing

- Record Q₀ > 3x10¹⁰ at 16MV/m, 2 K for a LCLS-II dressed cavity in fully integrated horizontal test (with high power coupler, HOMs, tuner etc.)
- Important milestone to show new readiness for implementation in application

ർ

Technology Transfer

• SRF cavity vendors: from niobium material to N-doped cavities ready for qualification testing

Fermilab Prototype LCLS-II Cryomodule

Cavity	Usable Gradient* [MV/m]	Q0 @16MV/m* 2K Fast Cool Down
TB9AES021	18.2	2.6E+10
TB9AES019	18.8	3.1E+10
TB9AES026	19.8	3.6E+10
TB9AES024	20.5	3.1E+10
TB9AES028	14.2	2.6E+10
TB9AES016	16.9	3.3E+10
TB9AES022	19.4	3.3E+10
TB9AES027	17.5	2.3E+10
Average	18.2	3.0E+10
Total Voltage	148.1 MV	\uparrow
Spec: 133 MV		Spec: 2.7x10 ¹⁰

Outline

- High Q_0 (medium E_{acc})
 - Nitrogen doping
 - Flux expulsion
- High E_{acc} and high Q_0
 - Nitrogen infusion
 - $-Nb_3Sn$
 - Plasma cleaning

ILC cryomodule with record average gradient for FAST facility

Aberration-corrected STEM image of the near-surface of Nb cavity - Y. Trenikhina

Niobium near-surface after the first step of nitrogen doping - Y. Trenikhina Fermilab

Cooldown through Critical Temperature

Flux image from Rose-Innes and Roderick, Introduction to Superconductivity

Measuring Flux Expulsion

• An axial magnetic field is applied during cooldown. Fluxgate magnetometers at the equator measured the magnetic field before B_{NC} and after B_{SC} superconducting transition.

2.0

- Complete trapping: $B_{SC}/B_{NC} = 1$
- Complete expulsion: $B_{SC}/B_{NC} \sim 1.7$

Thermal Gradients

- Slow cool-down → poor flux expulsion
- Suggests depinning by thermal forces

Sam Posen

A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014)

Measure temp at

top of cavity

As middle hits T_c

В

B₂

Ť,

Sam Posen

A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014)

Variability in Material and Modifying Expulsion Behavior

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor

Variability in Material and Modifying Expulsion Behavior

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor
- High temp vacuum furnace treatment improves expulsion
- Surface treatments do not affect expulsion \rightarrow bulk property

Variability in Material and Modifying Expulsion Behavior

LCLS-II - Preproduction

Cooling in 5 mG applied field (spec for background field in module)

LCLS-II - Preproduction

5

 ΔT During Cooldown [K]

10

15

Cooling in 5 mG applied field (spec for background field in module)

2/14/17

0

LCLS-II - Production

- After seeing results of first batch of 16 cavities, planned for modifications for next batch
- Modified recipe 900 C now standard
- Still some stubborn material, but now qualifying great cavities!

Outline

- High Q_0 (medium E_{acc})
 - Nitrogen doping
 - Flux expulsion
- High E_{acc} and high Q_0
 - Nitrogen infusion
 - $-Nb_3Sn$
 - Plasma cleaning

ILC cryomodule with world record gradient for FAST facility

Aberration-corrected STEM image of the near-surface of Nb cavity - Y. Trenikhina

Niobium near-surface after the first step of nitrogen doping - Y. Trenikhina Fermilab

Motivation behind experiments

- N Doping at T> 800C proven to manipulate mean free path, but constantly throughout several microns, giving high Q
- 120C bake known to manipulate mean free path at very near surface on clean bulk, and produce the highest gradients

Slide from A. Grassellino

Motivation behind experiments

- Therefore, we decided to study how to better "engineer" a dirty layer on top a clean bulk, using low T nitrogen treatments → aim to create few to several nanometers of nitrogen enriched layer on top of clean EP bulk, to attempt to bring together the benefit of the Q and gradient
- Nitrogen enriched nanometric layer to be created in the furnace post 800C treatment – when no oxide is present at the moment of injection of nitrogen at low T
- Studies aim also at fundamental understanding of HFQS and 120C cure of high field Q slope

Slide from A. Grassellino

Kubo and Checchin models on bi-layer potentially increasing achievable accelerating gradients

43

- This idea is further strenghtened by Checchin (FNAL) and Kubo (KEK) models on bi-layer structure (eg dirty N doped layer on clean Nb) –claim that can enhance the achievable accelerating gradient
- Ideal Depth of this layer ? Can this trick help push beyond the 200 mT or achieve 200 mT with higher yield? We are investigating this empirically via low T N infusion (different T and durations)

Example of new surface processing sequence

- Bulk electro-polishing
- High T furnace with caps to avoid furnace contamination:
 - 800C 3 hours HV
 - 120C 48 hours with N2 (25 mTorr)
- NO chemistry post furnace
- HPR, VT assembly

TE1PAV007 - with caps - Process 12 April 2016 - IB4 Furnace

Protective caps and foils are BCP'd prior to every furnace cycle and assembled in clean room, prior to transporting cavity to furnace area

A. Grassellino et al, arXiv:1305.2182

Slide from A. Grassellino

To what depth does nitrogen diffuse?

First SIMS

 measurements on
 samples baked with
 cavities in furnace
 with N at low T show
 ~ few-tens nm
 potential nitrogen
 enriched layer,
 depending on T used

Slide from A. Grassellino

Results comparison : "standard" 120C bake vs "N infused" 120C bake

- Same cavity, sequentially processed, no EP in between
- Achieved: 45.6 MV/m → 194 mT With Q ~ 2e10!
- Q at ~ 35 MV/m
 ~ 2.3e10
 - All Q vs E curves shown are for 1.3 GHz single cells, T=2K

🛟 Fermilab

Slide from A. Grassellino

Sam Posen

Reproducibility: repeatedly highest Q ever measured >2e10 at very high gradients > 40 MV/m!

Slide from A. Grassellino

Reproducibility: repeatedly highest Q ever measured >2e10 at very high gradients > 40 MV/m!

Slide from A. Grassellino

Linearbeschleuniger Linear accelerator European XFEL

Outline

- High Q_0 (medium E_{acc})
 - Nitrogen doping
 - Flux expulsion

• High E_{acc} and high Q_0

- Nitrogen infusion
- $-Nb_3Sn$
- Plasma cleaning

ILC cryomodule with record average gradient for FAST facility

Aberration-corrected STEM image of the near-surface of Nb cavity - Y. Trenikhina

Niobium near-surface after the first step of nitrogen doping - Y. Trenikhina Fermilab

'S-shaped technology curve'

'S-shaped technology curve'

'S-shaped technology curve'

$Nb_3Sn Q_0(T)$

- Large T_c ~ 18 K
 - Very small $R_{BCS}(T) R_{BCS}(T) \sim e^{-1.76T_c/T}$
 - High Q₀ even at relatively high T
- Higher temperature operation
 - Simpler cryogenic plant
 - Higher efficiency

Big effect! Cryoplants for large installations cost ~\$100 million and require MW of power

Higher Q₀(T) with Nb₃Sn

- Large $T_c \sim 18$ K
 - Very small $R_{BCS}(T) R_{BCS}(T) \sim e^{-1.76T_c/T}$
 - High Q₀ even at relatively high T
- Higher temperature operation
 - Simpler cryogenic plant
 - Higher efficiency

Possibility of cryocooler operation! Industrial accelerators for treatment of wastewater & flue gas, border security...

High H_{sh} with Nb₃Sn

 Nb₃Sn is predicted to have 2x the fundamental metastable limit of niobium

- Twice the energy gain per cavity?
- Not there yet—additional R&D required

Increasing E_{acc} in Nb₃Sn Cavities

- Substantial recent improvement in maximum E_{acc} with high Q_0
- Several promising paths forward for continued progress including:
 - Smooth sharp-edged surfaced
 - Reduce low tin content regions
- 20-40% increase: 22-25 MV/m

Y. Trenikhina, S. Posen, D. Hall, and M. Liepe, Proc. SRF Conference 2015, TUPB056, 2015

S. Posen, Ph.D. Thesis, Cornell University (2015).

🎝 Fermilab

Coupons from Poorly Performing Cavity

- Poorly performing cavity coated in 2013
- In collaboration with Cornell, both labs retested it and cut out coupons from regions that showed high R_s and low R_s (hot spots and cold spots)

Thin Coatings in High Dissipation Hot Spots

 Regions with highest dissipation show very thin coatings, not thick enough to fully screen RF currents from Nb and intermediate Nb-Sn phases below Nb₃Sn layer

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

 This is consistent with mechanism for growth of grains: diffusion of tin to interface via grain boundaries

Nb₃Sn SRF Experimental Program at Fermilab

- Goals: 1) further improvement to Q₀ and E_{acc} 2) scale up to production-style cavities
- Large Nb₃Sn SRF coating apparatus recently commissioned
- First samples coated Jan 30, 2017

1.3 GHz 1-cell (current state of Nb₃Sn R&D)

650 MHz 5-cell (future)

2/2/2017

First Nb₃Sn Samples via Vapor Diffusion at FNAL

🛟 Fermilab

Measurements by Yulia Trenikhina (FNAL), Jae-Yel Lee (Northwestern), and Zuhawn Sung (FNAL)

Excitement Brewing for Nb₃Sn SRF Coatings

First Fermilab Nb₃Sn Cavity Coated – RF Test Soon

Outline

- High Q_0 (medium E_{acc})
 - Nitrogen doping
 - Flux expulsion

• High E_{acc} and high Q_0

- Nitrogen infusion
- $-Nb_3Sn$
- Plasma cleaning

ILC cryomodule with record average gradient for FAST facility

Aberration-corrected STEM image of the near-surface of Nb cavity - Y. Trenikhina

Niobium near-surface after the first step of nitrogen doping - Y. Trenikhina Fermilab

In-situ plasma processing at SNS

- Most cavities at SNS are limited by field emission (FE) leading to thermal instability in end-groups
 - Avg. Eacc are ~12 and 13 MV/m for the two cavity geometries
- In-situ plasma processing to reduce FE and increase accelerating gradients
 - Higher linac output energy adds margin for reliable operation at 1.4 MW
 - Aim is to increase high-beta SRF cavities gradient by15%

DTL

Hydrocarbon contaminants on Nb surfaces

- Hydrocarbon contamination observed on various Nb surfaces
- Hydrocarbons lowers the work function of Nb surface
 - Lower work function aggravates field emission
 - In-situ plasma processing at SNS removes hydrocarbons from cavity RF surface

Neon-oxygen cleaning applied to SNS HB cavities

- Reactive oxygen plasma at room-temperature
 - 150 mTorr neon gas with ~1% oxygen
- Hydrocarbons removed from top surface through oxidation and formation of volatile by-products such as CO₂
- Residual gas analysis used to monitor plasma cleaning
 - Observed removal of ~monolayers equivalent of hydrocarbons
 - Six cells of SNS cavities cleaned sequentially

Slides courtesy M. Doleans, ORNL

Plasma processing in SNS tunnel started

Improvement of Eacc after plasma processing of 3 cryomodules

- Ranges from 0.2 MV/m to 5.5 MV/m
- 2.5 MV/m increase on average so far (21%)
- SNS linac
 - Currently operating at 972 MeV
 - Highest energy on production target at 60 Hz to date
 - Plan to reach 1 GeV in FY17

Mid-Term Goals: Plasma processing for LCLS-II

2017	2018	2019	2020
Present	Goals	Goals	Goals
Applicability of SNS plasma processing to	Plasma ignition in 9- cells cavity	Plasma processing in- situ in a cryomodule- like environment	Plasma processing in- situ in LCLS-II
LCLS-II	Plasma processing and RF test of 9-cell cavities in VTS		cryomodules
Design of RF and vacuum system		(HTS) Monitor of plasma ignition based on resonance shift	Improve maximum E_{acc} of ~ 15-20 %
Goals	Improve maximum <i>E_{acc}</i> of field emitting cavities		
Plasma processing of			

cavity RF test in VTS

‡ Fermilab

State-of-the-Art SRF Technology

- Exploring the limits of Q_0 and E_{acc} for accelerators
 - Impurity doping, Nb_3Sn , flux expulsion, plasma cleaning
- Science of RF Superconductivity
 - Manipulation of mean free path and energy gap with impurities
 - Decrease of surface resistance with increasing field
 - Flux trapping at grain boundaries and dislocations
 - Ultra-fast pulses to outpace vortex dissipation
 - Q_0 at *tiny* gradients (quantum computing)
- Auxiliaries: tuners, couplers, resonance control...
- Accelerators
 - LCLS-II
 - SRF for intensity frontier experiments at Fermilab
 - Future collider (circular or linear)

🛟 Fermilab

Huge thanks to VMS for this incredible video: Jim, Reidar, Al, Lauren (Narrator)

SRF Technology

SRF Technology Video

