Domestic Nuclear Detection Office (DNDO)

Approaches to Detect Concealed Threats

Fermi National Laboratory Colloquium

5 August 2015

Joel Rynes, Ph.D., PMP Program Manager Transformational and Applied Research Domestic Nuclear Detection Office

Nuclear Terrorism is a Persistent Threat

"No threat poses as grave a danger to our security and well-being as the potential use of nuclear weapons and materials by irresponsible states or terrorists." - President's National Security Strategy, February 2015

- The nature of the threat:
 - Improvised Nuclear Device (IND)
 - Radiological Dispersal Device (RDD) – "dirty bomb"
 - Radiation Exposure Device (RED)

DNDO Mission

 DNDO is a unique interagency organization *focused exclusively* on preventing nuclear terrorism by leveraging technology, intelligence, and law enforcement to improve detection, interdiction, and forensics capabilities.

DNDO Functions

- Develop the global nuclear <u>detection</u> architecture (GNDA), and implement its domestic component
 - Systems Architecture: Develop strategies & plans, analyze risk, initiate programs
 - Research & Development: Conduct basic & applied research and engineering development
 - Systems Acquisition: Procure & deploy nuclear detections systems to support frontline operations
 - Assessments: Test & evaluate systems in controlled and operational environments, develop standards, assess deployed systems and operations using adversary tactics (Red Team)
 - Operations Support: Assist State & local stakeholders in developing nuclear detection programs, develop training curricula, conduct exercises, maintain situational awareness of the GNDA
- Provide centralized planning, integration, and advancement of USG technical nuclear <u>forensics</u> (TNF) programs
 - Technology Advancement: Conduct research to discover signatures of interest, develop analysis techniques and standard reference materials
 - Operational Readiness: Develop and conduct joint planning, exercising and assessments
 - National Expertise Development: Restore and maintain a nuclear forensics expertise pipeline

Global Nuclear Detection Architecture (GNDA)

Vision:

A coordinated, layered defense of effective capabilities for rapid and responsive detection, analysis, and reporting on nuclear and other radioactive materials out of regulatory control that makes nuclear terrorism prohibitively difficult.

The GNDA is a framework for:

- Technical radiological and nuclear detection
- Intelligence and analysis
- Communication
- Law enforcement
- CONOPS

How Operational Realities Impact the GNDA

- Land Border Pathway
 - 1.1 million individuals legally cross U.S. borders every day
 - 14,000 trucks cross into the U.S through our Southern Border daily
 - 7,400 miles of border with Canada and Mexico
 - 5,400 loaded rail cars cross into the United States every day
- Aviation Pathway
 - 640 million domestic and international aviation passengers and
 1.5 billion checked and carry-on bags are screened annually.
 - 200,000 general aviation aircraft and 19,500 landing facilities are in the U.S.
- Maritime Pathway
 - 32,000 seagoing containers arrive and are offloaded at U.S. seaports each day
 - 13 million registered U.S. recreational vessels, 282,000 fishing vessels, and 100,000 other commercial small vessels

Homeland Security

*Approximate numbers

6

Grand R&D Challenges

- <u>Cost effective equipment</u> with sufficient performance to ensure wide spread deployment
- <u>Detection of special nuclear material</u> even when heavily shielded
- <u>Enhanced wide area search</u> in a variety of scenarios, to include urban and highly cluttered environments
- Monitoring along <u>challenging GNDA pathways</u>, to include general aviation, small vessels, and in between ports of entry
- Forensic <u>determination of origin</u> and/or route of interdicted materials

R&D Program Elements

- Academic Research Initiative (ARI)
 - Advance fundamental knowledge for nuclear detection and forensics while investigating the toughest challenges
 - Create next generation of scientists and engineers
- Exploratory Research (ER)
 - Driven by gaps and weaknesses in the GNDA and technical nuclear forensics
 - Investigate promising concepts to show feasibility through laboratory Proof-of-Concept (PoC) demonstrations
- Advanced Technology Demonstration (ATD)
 - Further develop technology concepts previously demonstrated under the ER or equivalent
 - Characterize Performance Test Units (PTU) in a simulated operational environment to assess technology transition potential
- Small Business Innovative Research (SBIR)
 - Strengthen the role of innovative small business concerns with federally-funded research and development
 - Augments the ATD and ER with 2-4 new topics a year

Transition to Product Acquisition or Commercial Development

Notional Shielding Problem

The actual plot is more complicated and may vary significantly depending on the threat and shielding material.

Shielded Threat Portfolio Overview

- Objective: Develop operationally viable technologies that can detect shielded threats and clear innocent objects for existing and new application scenarios
 - Enhanced Capability for Ports of Entry / Departure
 - Primary and secondary radiography/active interrogation
 - Fused radiation detection and particle interrogation
 - Exploration of New Application Scenarios
 - Highly mobile and human-portable systems
 - Rail, aircraft, and small vessel inspections
 - Personally occupied vehicles
 - Enabling Components
 - Compact high flux neutron generators and multi-energy, varying intensity electron accelerators
 - Mono-energetic photons sources and other techniques for low dose scanning
 - Fast detectors and electronics for more efficient signature extraction
 - Automated algorithms to enhance capability of existing radiographic systems
 - Exploration of new signatures to provide enhanced material discrimination (Z dependence)

Homeland Security

Enhanced Capability at the Ports

- Nuclear and Radiological Imaging Platform Primary Screening
 - Baseline characterization of commercial systems with integrated passive detection and radiography and/or automated threat recognition
 - SAIC IP6500, Smiths HVCP 6030, Varian IntellX3, Rapiscan Eagle M60
 - Next Generation X-ray Imager
 - High energy backscatter to create three dimensional (3D) image, photofission, transmission radiography, passive detection, and nuclear resonance fluorescence (NRF)
 - Continuous Wave (CW) electron accelerator
 - Muon Tomography no radioactive source
- Shielded Nuclear Alarm Resolution Secondary Scanning
 - Photofission Based Alarm Resolution (PBAR)
 - 9 MeV linac enables: transmission radiography, spectroscopic radiography, photo-fission
 - Differential Die-Away Analysis (DDAA)
 - 9 MeV linac with neutron convertor enables: DDAA, prompt neutron and delayed gamma from neutron induced fission and photo-fission, cargo characterization
- Passive and X-ray Imaging System

Test and Evaluation of deployed systems Homeland Security

Varian IntellX3

Commercial System

3D effective Z map

PBAR Prototype

DDAA Prototype

Exploration of New Applications

- Mobile SNM Detection System
 - Compact deuteron on deuterium (DD) neutron generator enables mobile detection of nuclear threats with optimized low dose
- Air Craft Inspection System
 - Low energy accelerator and compact DD neutron generator for primary and secondary scanning of airplanes
- High Speed Rail Cargo Scanning
 - Burst-mode, multi-energy linac specifically designed to take advantage of novel fast detectors needed for high speed scanning
 - High power intensity modulated x-ray and neutron sources
- Low Dose Inspection Using Mono-energetic X-rays
 - Ultra-compact ion accelerator capable of generating mono-energetic photons through nuclear reactions
- Mobile Radiography with Dose Mitigation
 - Tunable CW x-ray source with raster pencil beam scanning to provide optimized dose for each pixel

Conceptual Design of Mobile, Airplane, and Rail System

Material Discrimination Enabled by Mono-Energetic Photons

block imaged with 15.1 MeV gammas (MCNPX simulation)

Innovative Techniques to Mitigate Dose

Sources

- Portable D-D Neutron Generator
 - Human-portable neutron generator capable of 10⁷ D-D n/s, 200Hz, 2kHz rep rate and 5% duty cycle to help enable mobile scanning systems
 - Compact, high-voltage power supply to reduce the weight and size of generator
- Miniaturized High Energy X-ray Source for Mobile Systems
 - Compact , dual energy (6/9 MeV) x-band x-ray source suitable for mobile radiography applications
- Portable High-Power Superconducting RF X-ray Source
 - Compact and portable, high intensity, CW, x-ray source based on a 10 MeV, 10 kW superconducting RF linac
- Laser Driven X-ray Source for Low-Dose Radiography
 - Compact, beam-steerable, tunable multi-energy (4-12 MeV) and narrow-band x-ray source utilizing a laser plasma accelerator (LPA)
- Inexpensive High-Performance Betatron Source
 - Improved performance and reliability 6/9 MeV interlaced betatron producing 50 cGy/min @ 1 m dose rate.
- Mono-energetic Photon Source (MEPS) Study

Homeland Security

Enabling Technology for a Portable Neutron Source

Laser Driven Source

Recent and Future Events

- Small Business Innovation Research (SBIR)
 - Two topic solicitation closed early in 2015
 - Topic 1: Mass/Shielding Anomaly Passive Detector Module
 - New solicitation likely in December 2015
- Academic Research Initiative (ARI)
 - Four topic solicitation closed June 19, 2015
 - Topic 4: Approaches to Detect Shielded Special Nuclear Materials (SNM)
 - New solicitation likely in January 2016
 - Web Site: <u>https://www.grants.gov</u> search for "DNDO"
- Exploratory Research (ER) Broad Agency Announcement (BAA) for industry / academia and Call For Proposals (CFP) for laboratories
 - Likely released in August 2015
 - Topic 3: Radiographic Platform Agnostic Automatic Threat Detection Algorithm
 - Web Site: <u>https://www.fbo.gov</u> search for "DNDO"
- DNDO Development of Accelerator Requirements for Homeland Security Applications meeting
 - Held August 5-7, 2015 at Fermilab
 - Anticipate outcomes will be used to inform future research topics

Homeland Security