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●  Ultracold Atoms

aside:  X(3872) meson 

●  Quantum Field Theory

●  Fermions with two spin states
    phase diagram, contact

●  Identical bosons
    trimer spectrum, unitary Bose gas

aside:  quark-mass dependence in nuclear physics  

Ultracold Atoms
How QFT Invaded Atomic Physics



Cold Atom Physics
Atoms trapped and cooled using lasers

Nobel Prize 1997:  Chu, Cohen-Tannoudji, Phillips
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Temperature of trapped atoms 
decreased further by evaporative cooling

Cold Atom Physics



Bose-Einstein condensation of atoms!
87Rb atoms                 JILA (Cornell,  Wieman)     1995
    7Li atoms                 Rice (Hulet)                      1995
23Na atoms                 MIT (Ketterle)                  1995

Nobel Prize 2001:  Cornell,  Wieman, Ketterle
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bosons fermions

Cold Atom Physics

ground state of many-atom system

Fermi seaBEC



Cold Atom Physics

Cooling of fermions to quantum degeneracy!

40K atoms         JILA (Jin)                               Jan 2001 

6Li atoms         Ecole Normale (Salomon)       July 2001
 6Li atoms         Rice (Hulet)                          Aug 2001

(boson) (fermion)



Interactions between Atoms 

−C6/r6

Req

size of atoms:        Req  ∼ 0.4 nm                  (for Rb)

interaction range:  R6 = (mC6/ħ2)1/4  ∼ 8 nm   (for Rb)  



Interactions between Atoms 

size of atoms:        Req  ∼ 0.4 nm   (for Rb)

interaction range:  R6   ∼ 8 nm  

   T         λth      (for Rb)

1 K      0.2 nm
1 mK      6 nm
1 μK     20 nm
1 nK    600 nm

T < 1 K:     atoms behave like point particles.
T < 1 mK:  atoms behave as if they had 
                                           zero-range interactions.

thermal de Broglie wavelength:  λth = (2πℏ2/mkT)1/2

cold

ultracold



geometrical          scattering   
cross section        cross section

generically, 
scattering cross section is comparable to (range)2

Interactions between Atoms 

scattering cross section:  
               area of beam that intercepts 
               as many particles as are scattered



convenient measure of interaction strength
                              for low-energy atoms:

     scattering cross section at zero energy 
                    σ = 4πa2

     OR scattering length a

Interactions between Atoms 

generically, a is comparable to interaction range



Helium atoms (4He)
range:  0.7 nm
scattering length:  
     a = +8 nm 

Neutrons
range:  3 fm
scattering length:  
 a = −20 fm

σ = 4πa2

But quantum mechanics allows scattering of particles
                               far beyond the interaction range!

Interactions between Atoms 

Large Scattering Length 



Universal properties determined by a 
              binding energy:  ħ2/(m a2)
              mean separation:  a/2 

a/2

Large Scattering Length 
Quantum mechanics allows bound states
                whose constituents spend most of their time
                beyond their interaction range!

4He dimer
range:  0.7 nm
mean separation:  ⟨r⟩ = 4 nm 

Interactions between Atoms 

Deuteron
p n range:  1.8 fm
mean separation:  ⟨r⟩ = 2.7 fm 



X(3872) Meson

●  decays into J/ψ π+π−
    like ψ(2S) = c c meson

●  decay is into J/ψ ρ*
    which has isospin 1

⟹  cannot be c c meson 
         which has isospin 0

_

_
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discovered in B+ decay         Belle    (September 2003)
confirmed in pp collisions     CDFII   (December 2003)

ψ(2S)

X(3872)

 What is the X(3872)?

_



X(3872) Meson

⟹ must be weakly bound molecule of D*0 D0 
                   with universal properties 
                   determined by binding energy

_

●  quantum numbers 1++     LHCb 2014

    ⟹ S-wave coupling to charm mesons D*0 D0
_

_●  mass is extremely close to the threshold 
                               for the charm mesons D*0 D0

     mass measured most accurately by CDF2, Belle, LHCb, Babar, BES3
      threshold measured most accurately by Babar, CLEO, LHCb, KEDR

    ⟹ binding energy is only 0.2+0.3 MeV



Uranium nucleusX(3872)

X(3872) Meson
loosely bound charm meson molecule
           comparable in size to the largest nuclei!

D*0

D0

> 5 fm

_



Scattering length a
for ultracold atoms, can be controlled experimentally!

Interactions between Atoms 

a changes slowly with magnetic field B 
except near Feshbach resonance where a diverges to ±∞

B

a weak 
interactions

strong
repulsive
interactions

strong
attractive
interactions



scattering length a can be controlled by magnetic field
                           can be made much larger than range

Interactions between Atoms 

Large Scattering Length 

4|a|



Trapped  Atoms
number density of atoms n
OR Fermi wavenumber kF = (3π2n)1/3

inter-atom spacing 1/kF: 
         controlled by number of trapped atoms
                   and by trapping potential
          (even at center of trap,  1/kF  ≫  range)

1/kF

Interactions between Atoms 

typical spacing between atoms:  1/kF



Universality
particles with short-range interactions 
               and large scattering length  |a| ≫ range 
have identical behavior at low temperature, low density
         (if expressed in terms of dimensionless variables kF a,  kF λth)

Interactions between Atoms 

neutrons with T ≪ 10 MeV,  n ≪ 10-3/fm^3
can be studied experimentally using ultracold atoms
                           (6Li atoms in lowest two hyperfine spin states)
even though length scales differ by orders of magnitude



If a = ±∞ (unitary limit), 
scattering cross section 
at zero energy is infinite!

no length scale  ⟹  scale-invariant interactions!

Unitarity bound from quantum mechanics:
                     σ  ≤  4πħ2/mE

At nonzero energy, 
scattering cross section saturates unitarity bound:

                             σ(E)  =  4πħ2/mE

Interactions between Atoms 

Scale Invariance 

B

a



QFT for Ultracold Atoms

(sufficiently) Fundamental  Theory

many-body Schroedinger equation 
         for atoms in a trapping potential  V(r)
         interacting through interatomic potential U(r-r’)

(atoms may have multiple spin states)



equivalent formulation:  
Nonlocal Quantum Field Theory 
         for atoms in a trapping potential  V(r)
         interacting through potential U(r-r’)

interaction at a distance!

particles:  atoms

QFT for Ultracold Atoms



λth

However ultracold atoms behave like point particles
                                        with zero-range interactions

1/kF

QFT for Ultracold Atoms

can be described by local quantum field theory

thermal wavelength λth                                  size of atoms
interatom spacing 1/kF                              interaction rangemuch larger than



Ultracold Atoms
Local Quantum Field Theory (zero-range interactions)

interaction strength:  scattering length a 
(perhaps different scattering length for each pair of spin states)

particles:  atoms 
(perhaps with multiple spin states)

point interaction

QFT for Ultracold Atoms



Advantages

●  zero-range limit is taken from beginning

●  allows different calculational methods
                                  integral equations
                                  lattice Monte Carlo
                                  operator product expansion

QFT for Ultracold Atoms

Ultracold Atoms can be described by 
                         Local Quantum Field Theory

interactions can be weak:  kF |a| ≪ 1
                      or strong:   kF |a| ~ 1 
         or infinitely strong:   a = ±∞   (unitary limit)



Quantum Field Theory

loop diagrams involve integrals 
        over momenta of virtual particles 
        that are often ultraviolet divergent

Local Quantum Field Theory

divergences can be controlled by  “renormalization”



Quantum Field Theory

general framework for interacting particles
               consistent with   ● quantum mechanics
                                     ● Lorentz invariance
                                        Galilean invariance
                                     ● cluster decomposition

Stephen Weinberg   
“What is quantum field theory and what did we think it is?” 
hep-th/9702027

weakly interacting QFT 
can be defined in terms of Feynman diagrams

Local Quantum Field Theory



Strongly-coupled Quantum Field Theory 
                can be defined by 
Renormalization Group flow to ultraviolet fixed point
                                               Ken Wilson

RG defines flow in abstract theory space
                        of equivalent theories at increasingly shorter distances

  free 
theoryinteracting

fixed point

Quantum Field Theory

RG fixed point  ⟹  scale invariance!



Fermion with Two Spin States

particles
fermionic atoms (spin states 1 and 2)

1

22

1 1
point interaction

simplest QFT for ultracold atoms

interaction strength:  scattering length a



Fermion with Two Spin States

1

22
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fermionic quantum fields:  ψ1, ψ2



Fermion with Two Spin States

1

Weak coupling
quantum fields:           ψi                    scaling dimension 3/2
interaction operator:  ψ1†ψ2†ψ2ψ1     scaling dimension 6
                                                        (>5  ⟹  irrelevant)
perturbatively nonrenormalizable!

g0 = 4 π a (+ counterterms)

RG fixed point:
free field theory



1

RG fixed point:
scale-invariant 

interacting theory   
(unitary limit!)

QFT for Ultracold Atoms

Strong coupling
quantum fields:           ψi                    scaling dimension 3/2
interaction operator:  ψ1†ψ2†ψ2ψ1     scaling dimension 4
                                                        (<5  ⟹  relevant)
nonperturbatively renormalizable!
anomalous scaling dimensions!



a/2

Cross section
σ  →  4π a2                        at low energy
     →  4π ħ2/(m E)          at high energy

mean radius:         a/2

Diatomic molecule  if a > 0
binding energy:  ħ2/(m a2) 

2-Body Problem
Fermion with 2 Spin States

can be solved analytically



3-Body Problem
can be solved exactly numerically

Fermion with 2 Spin States

where                =

4-Body Problem
can be solved exactly numerically

5-Body Problem
frontier of few-body physics



UnitaryBECa) b) c) BCS

Fermi Gas with Two Spin States
balanced gas (n1 = n2)

weak interactions:  kF |a| ≪ 1

What happens in the unitary limit?

Ground state (T=0) is a Superfluid!

attractive interaction  a < 0
pairs of fermions
    with momenta near Fermi surface 
    form Cooper pairs, which condense

repulsive interaction  a > 0
pairs of fermions bind 
        to form diatomic molecules,   
        which condense

UnitaryBECa) b) c) BCS

BCS
superfluid

BEC
superfluid

Fermion with 2 Spin States



Fermi Gas with Two Spin States
phase diagram for homogeneous balanced gas (n1 = n2)

smooth crossover through unitary limit!   Leggett 1980

BCS
superfluid BEC

superfluid
unitary

superfluid

Fermion with 2 Spin States



Fermi Gas with Two Spin States

signature of superfluidity:  vortices!   
                  Ketterle group (MIT) using 6Li atoms   2005

Fermion with 2 Spin States

BEC
superfluid

BCS
superfluid

unitary
superfluid



Fermi Gas with Two Spin States
spin-imbalanced gas (n1 > n2)

Phase diagram?
dimensionless variables:  1/kF a,  T/EF,  and  n2/(n1+n2)

nonhomogeneous phases
Fulde-Ferrel?
Larkin-Ovchinnikov?

homogeneous phases
normal
superfluid with gapped fermions
superfluid with gapless fermions?
Sarma?

Fermion with 2 Spin States



In 2005, a graduate student 
at the University of Chicago named Shina Tan
introduced a new concept into many-body physics
                 called the “Contact”

Contact

The contact appears in many  “Universal Relations” 
                   that hold for any state of the system
(few-body or many-body, trapped or homogeneous, normal or superfluid, ...)

The contact plays a central role in many of the 
                   most important probes of ultracold atoms
(photoassociation, rf spectroscopy, photoemission spectroscopy...)

The contact relates the thermodynamics 
                   to the tails of correlation functions.



●  contact density measures the number of 1-2 pairs 
                                                per (volume)4/3

●  the contact C is extensive:
    integral over space of the contact density

●  contact has dimensions 1/(length)
      contact density has dimensions 1/(length)4

What is the Contact?

C =
�
d3R C(�R)

C(�R)

●  contact is the thermodynamic variable conjugate to 1/a 

Contact



momentum distribution has a power-law tail
                                    that falls like 1/k4

same coefficient C for both spins:  σ = 1,2
                         C is the contact 

Shina Tan  cond-mat/0505200
Tail of the momentum distribution

n�(k) �⇥ 1
k4

C

normalization:
R

d3k
(2⇡)3n�(k) = N�

Contact



change in free energy 
from small change in scattering length a

Shina Tan  cond-mat/0508320

If C is known as a function of a,
                    it can be integrated to get F.
C determines all other thermodynamic functions!

d

da
F =

�2

4�ma2
C

“Adiabatic relation”

Contact



n�(k) �⇥ 1
k4

C

d

da
F =

�2

4�ma2
C

Contact

Contact can be defined by 
       tail of the momentum distribution

Tail wagging the dog?

Contact determines 
             thermodynamics



n�(k) �⇥ 1
k4

C

Contact

●  Tail of the momentum distribution

     from operator product expansion

interaction energy density

contact density operator

●  Adiabatic relation

   from renormalization of effective field theory

QFT  Derivation
Braaten and Platter   2008
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Jin group (JILA) using 40K atoms   2010

Experimental  Validation

●  verified that momentum distribution has 1/k4 tail!

●  measured contact using
    --  momentum distribution
    --  rf spectroscopy
    --  virial theorem

●  verified that universal relations are satisfied



Identical Bosons

point interactions

         2→2

         3→3

not the simplest QFT for ultracold atoms!

interaction parameters
scattering length a

Efimov parameter κ✽   momentum scale on which dependence 
                                                            can only be log-periodic
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Weak coupling
quantum field:            ψ                    scaling dimension 3/2
interaction operator:  ψ†ψ†ψψ                                     6
                                 ψ†ψ†ψ†ψψψ                                         9
                                                       (>5  ⟹  irrelevant)
perturbatively non-renormalizable!

g0 = 8 π a (+ counterterms)

RG fixed point:
free field theory

Identical Bosons



1

Strong coupling
quantum field:             ψ                   scaling dimension 3/2
interaction operators:  ψ†ψ†ψψ        scaling dimension 4
                                                        (<5  ⟹  relevant)
                                  ψ†ψ†ψ†ψψψ  scaling dimension 5
                                                        (=5  ⟹  marginal)
nonperturbatively renormalizable!
anomalous scaling dimensions!

Identical Bosons

two interaction parameters

scattering length a

3-body parameter



Strongly-coupled Quantum Field Theory 
                can be defined by 
Renormalization Group flow to ultraviolet fixed point
                                                          or limit cycle or ...
                                                               Ken Wilson 

Identical Bosons

RG limit cycle

complete flow around the RG limit cycle  
                      changes scale by a discrete scaling factor λ0  
                      but returns to the same system

⟹  discrete scale invariance!



strongly interacting QFT 
             can be defined 
             by RG limit cycle

implies the existence of a physical momentum scale κ✽
                                                               that is equivalent to λ0 κ✽
⟹  dependence on κ✽ can only be log-periodic
                (such as sin[s0 log(k/κ✽)], where λ0=eπ/s0)

Identical Bosons

Renormalization of  local QFT for identical bosons   
                         involves RG limit cycle 
                         with discrete scaling factor 22.7
                               Bedaque, Hammer, and van Kolck  1999



a/2

Cross section
σ  →  8π a2                        at low energy
     →  8π ħ2/(m E)          at high energy

mean radius:         a/2

Diatomic molecule  if a > 0
binding energy:  ħ2/(m a2) 

2-Body Problem

can be solved analytically

Identical Bosons



3-Body Problem
can be solved exactly numerically

where                =

4-Body Problem
can be solved exactly numerically

5-Body Problem
frontier of few-body physics

Identical Bosons

+ 3→3 interactions



Efimov Effect                      Vitaly Efimov (1970)
In the unitary limit  a ➝ ±∞             
there are infinitely many triatomic molecules

•  binding energies differ by factors of 1/22.72

•  radii differ by factors of 22.7

3-Body ProblemIdentical Bosons



Both NN scattering lengths 
              are large compared to the range
              ai=1 = −21 fm     ai=0 = +5.4 fm

Low-energy Nuclear Physics

2-nucleon bound states
 deuteron (pn):   binding energy ≈ 2.2 MeV
[dineutron (nn):  almost bound]

3-nucleon bound states
triton (pnn):  binding energy ≈ 7.6 MeV
3He (ppn):                             ≈ 7.7 MeV

What would happen if you changed
                    the up and down quark masses?



infrared RG limit cycle of QCD   Braaten and Hammer (2003)

The physical up and down quark masses 
                   are close to critical values 
where the triton has infinitely many excited states!

•  binding energies differ by factors of 1/22.72

•  radii differ by factors of 22.7

Low-energy Nuclear Physics



3-Body Recombination
resonant enhancement from Efimov trimer
                                  near 3-atom threshold
•  three low-energy atoms collide

•  they form a virtual Efimov trimer

•  trimer decays into atom and dimer 
                                     with large kinetic energy

Identical Bosons



discovery of  Efimov trimer in 133Cs atoms 
               through atom loss resonance
                         Grimm group (Innsbruck)    Nov 2005
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Tail of the momentum distribution 
                1/k4 tail plus log-periodic1/k5 tail

n(k) �⇥ 1
k4

C2 +
F (k)
k5

C3

where  s0 = 1.00624
           κ* = binding momentum of Efimov trimer at a = ±∞
                  (determined by position of Efimov loss resonance)

F (k) = 89.3 sin[2s0 log(k/��)� 1.34]

Universal Relations for Identical Bosons 
                                               Braaten, Kang, Platter  2011

●  derived from Operator Product Expansion 
●  involve 2-body contact C2 and 3-body contact C3!

Identical Bosons



Bose Gas
phase diagram for homogeneous gas

Where is boundary of  BEC superfluid phase? 
Does it extend to unitary limit?

Identical Bosons

normal Bose gas

Bose-Einstein
condensate

unstable to 
mechanical
collapse

?



Unitary Bose Gas

normal Bose gas

Bose-Einstein
condensate

unstable to 
mechanical
collapse

        1st experiments in 2013
 Salomon group              Jin group
(Ecole Normale)               (JILA)

?



Unitary Bose gas

Jin group (JILA)  2013
Weakly interacting BEC of 85Rb atoms
Ramped suddenly to unitary limit (a = ±∞)
Wait for a variable holding time t
Measure momentum distribution
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scaling

lower density

higher density

scaling violations no contact plateau

JILA momentum distributions
●  multiply by k4

●  scale by kF = (6π2⟨n⟩)1/3

Unitary Bose gas



Tail of the momentum distribution 
                1/k4 tail plus log-periodic1/k5 tail

n(k) �⇥ 1
k4

C2 +
F (k)
k5

C3

where  s0 = 1.00624
           κ* determined by position
               of Efimov loss resonance
               measured by JILA 2011

F (k) = 89.3 sin[2s0 log(k/��)� 1.34]

Universal Relations for Identical Bosons 
                                               Braaten, Kang, Platter  2011

Identical Bosons

 only unknowns 
         are C2 and C3
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JILA momentum distributions
can be fit very well by 1/k4 tail from 2-body contact
        plus log-periodic 1/k5 tail from 3-body contact
                    Smith, Kang, Platter, Braaten   2014

●  2 adjustable parameters:  2-body and 3-body contacts
●  positions of minima determined by JILA observation of Efimov trimer

Unitary Bose gas



Summary
Ultracold atoms 
can be approximated by point particles 
                            with zero-range interactions
can be described by a local quantum field theory
 

The relevant strongly coupled QFT’s can be defined 
             by an RG fixed point (fermions with 2 spin states)

         or by an RG limit cycle  (identical bosons)

Applications of QFT to ultracold atoms 
can also provide insights into particle physics.

Methods of QFT developed in particle physics
have powerful applications to ultracold atoms
                              (e.g.  renormalization,
                                      operator product expansion, ...)


