

THE HIGGS MASS, TOP PARTNERS, AND COLLIDERS: WHAT WE LOSE BY LETTING GO

Timothy Cohen

Princeton University Institute for Advanced Study

> Fermilab Colloquium March 4, 2015

HIGGSDEPENDENCE DAY!

Most important lessons:
Higgs boson exists!
Weakly coupled!!

HIGGSDEPENDENCE DAY!

THE STANDARD MODEL IS A MODEL

Set the low energy Higgs mass and forget it.

Make predictions.

No conflict with experiment (so far).

BRIEF SIDEBAR

DIMENSIONFUL SCALES

Relativity:

Space \equiv Time Convert meters to seconds with speed of light: c. Mass \equiv Energy Convert mass to energy with speed of light: c.

DIMENSIONFUL SCALES

Relativity:

Space \equiv Time Convert meters to seconds with speed of light: c. Mass \equiv Energy Convert mass to energy with speed of light: c.

Quantum Mechanics:

Energy $\equiv 1/\text{Time}$ Convert energy to time with Planck's constant: \hbar .

DIMENSIONFUL SCALES

Relativity:

Space \equiv Time Convert meters to seconds with speed of light: c. Mass \equiv Energy Convert mass to energy with speed of light: c.

Quantum Mechanics:

Energy $\equiv 1/\text{Time}$

Convert energy to time with Planck's constant: \hbar .

Large mass scales are like short distance scales. The LHC is a giant microscope!

END SIDEBAR

REDUCTIONISM

What does it mean to have a theory for the Higgs mass?

Higgs mass is a function of well defined (finite) inputs. The Standard Model encompassed by larger framework. Naively: Higgs mass quadratically sensitive to new mass scales.

Historical precedent for reductionism:

Underlies progress in fundamental physics. New frameworks encompass the old, giving "reasons".

REDUCTIONISM

NEW SCALES?

Evidence for physics beyond the Standard Model:

- dark matter
- matter/anti-matter asymmetry
- neutrino masses
- gravity

Very likely new dimensionful scale exists.

Want to protect the Higgs from physics at high energy scales.

OUTLINE

- I. The Higgs and its Potential
- II. Supersymmetry: An Example Theory
- III. SUSY Naturalness Confronts Experiment
- IV. Alternative Theories
- V. Summary

I. THE HIGGS AND ITS POTENTIAL

CHARGED SCALAR

Introduce a charged scalar state: ϕ .

" ϕ carries a charge" is equivalent to $\phi \rightarrow \phi' = e^{i q_{\phi} \xi} \phi$ under a symmetry (gauge) transformation.

"Charge is conserved" is equivalent to Lagrangian \mathcal{L} invariant under transformation.

 ϕ and ϕ^* have opposite charge.

SCALAR MASS

Scalar mass always phase rotation invariant:

 $\mathcal{L} \supset m^2 |\phi|^2$

No phase rotation can forbid mass.

Anything can happen in quantum mechanics!

Implication:

If ϕ interacts, quantum corrections can generate a mass.

$$\frac{\phi}{\text{stuff}} \frac{\phi}{-16\pi^2} \sim \frac{\text{coupling}^2}{16\pi^2} \Lambda^2$$

SCALAR MASS

Scalar mass always phase rotation invariant:

 $\mathcal{L} \supset m^2 |\phi|^2$

No phase rotation can forbid mass.

Anything can happen in quantum mechanics!

If ϕ interacts, quantum corrections can generate a mass.

Problem for Higgs boson!

VACUUM EXPECTATION VALUE $\langle \phi \rangle$: vacuum expectation value (vev).

Vacuum "sees" the phase.

The vev spontaneously breaks the symmetry.

This is how the Higgs vev breaks electroweak symmetry.

THE HIGGS BOSON

 $\phi \to H$

HIGGS POTENTIAL

$$V(v, H) = -\frac{\mu^2}{2}|v + H|^2 + \frac{\lambda_H}{16}|v + H|^4$$
Solving $\frac{\partial V(v, 0)}{\partial v} = 0 \implies v^2 = \frac{2\mu^2}{\lambda_H}$
Solving $\frac{\partial^2 V(v, 0)}{\partial v^2} = m_H^2 \implies m_H^2 = 2\mu^2$

$$V(H) \qquad (H) \equiv v$$
Higgs mass $\implies v \simeq 246 \text{ GeV}$
Higgs mass $\implies m_H \simeq 125 \text{ GeV}$

$$W^{\pm} \text{ mass} \implies m_H \simeq 125 \text{ GeV}$$
Vields $\frac{\lambda_H \simeq 0.26}{\mu \simeq 88 \text{ GeV}}$
Value for all SM parameters known!

HIGGS MASS CORRECTIONS $\mathcal{L} \supset y_t H \overline{t} t \longrightarrow m_t = \frac{y_t}{\sqrt{2}} \langle H \rangle$

Top quark is heaviest particle; has strongest coupling to Higgs.

HIGGS MASS CORRECTIONS $\mathcal{L} \supset y_t H \overline{t} t \longrightarrow m_t = \frac{y_t}{\sqrt{2}} \langle H \rangle$

Top quark is heaviest particle; has strongest coupling to Higgs.

TAME THE CUTOFF

Recall: $\mu^2 = (88 \text{ GeV})^2$ extracted from experiment.

IS THERE A PHYSICAL INTERPRETATION OF THE CUTOFF?!?

WILL SEE THAT THIS REQUIRES A THEORY OF THE HIGGS MASS.

II. SUPERSYMMETRY: AN EXAMPLE THEORY

Fermions have spin 1/2. Is my fermion left or right handed?

Fermions have spin 1/2. Is my fermion left or right handed?

Take an electron spinning "up".

e

Fermions have spin 1/2. Is my fermion left or right handed?

Move into its rest frame.

 $e^{}$

00

Fermions have spin 1/2. Is my fermion left or right handed?

FERMION MASS

Fermions have spin 1/2. Is my fermion left or right handed?

e

00

FERMION MASS

Fermions have spin 1/2. Is my fermion left or right handed?

Going to rest frame is crucial step: flipping chirality requires mass.

 $\mathcal{L} \supset m \, \psi_L \, \psi_R$

Fermion mass mixes left and right chiralities.

FERMION MASS

Recall, scalar mass always symmetric under phase rotation.

 $\mathcal{L} \supset m_{\phi} \, |\phi|^2$

What about fermion mass?

 $\mathcal{L} \supset m_{\psi} \, \psi_L \, \psi_R$

FERMION MASS Recall, scalar mass always symmetric under phase rotation. $\mathcal{L} \supset m_{\phi} |\phi|^2$

What about fermion mass? $\mathcal{L} \supset m_{\psi} \psi_L \psi_R$ "Chiral" rotation: $\psi_R \rightarrow \psi'_R = e^{i\,\zeta} \,\psi_R$ $\psi_L \rightarrow \psi'_L = e^{i\,\zeta} \,\psi_L$ $\mathcal{L} \rightarrow \mathcal{L}' \subset e^{2\,i\xi} \,m_{\psi} \,\psi_L \,\psi_R$

FERMION MASS Recall, scalar mass always symmetric under phase rotation. $\mathcal{L} \supset m_{\phi} |\phi|^2$

What about fermion mass? $\mathcal{L} \supset m_{\psi} \psi_L \psi_R$ "Chiral" rotation: $\psi_R \rightarrow \psi'_R = e^{i \zeta} \psi_R$ $\psi_L \rightarrow \psi'_L = e^{i \zeta} \psi_L$ $\mathcal{L} \rightarrow \mathcal{L}' \subset e^{2i\xi} m_{\psi} \psi_L \psi_R$

Chiral symmetry can forbid fermion mass. Fermion mass correction proportional to m_{ψ} . **Cutoff does not infect fermion masses!**

"CHIRALITY" FOR SCALARS

Scalars inherit chirality of partner fermions.

Calculability of fermion masses inherited by scalars.

A NEW KIND OF SYMMETRY

Gauge invariance:

Phase rotation compensated by states of opposite charge: electron needed positron.

Supersymmetry:

"Rotation" compensated by states of different spin

THE TOP GETS A PARTNER

Top is a massive fermion; has L and R chirality. Consistency requires introducing two stops: \tilde{t}_L and \tilde{t}_R . Free parameters: two masses and a mixing angle.

Top coupling to the Higgs: y_t .

Strength of top partner coupling to the Higgs set by y_t .

HIGGS MASS CORRECTIONS

HIGGS MASS CORRECTIONS

HIGGS MASS CORRECTIONS

SUSY HIGGS POTENTIAL*

"Naturalness in SUSY"

$$V \simeq \left(m_H^2 - \frac{3}{4\pi^2} y_t^2 m_{\tilde{t}}^2\right) \left|H\right|^2$$

Calculable Higgs mass. Stop mass give physical meaning to quadratic divergence. Heavier stops imply larger cancellation.

Stop mass below ~1 TeV extremely plausible!

* in a simplified limit

SUSY HIGGS POTENTIAL*

$$\begin{aligned} V \simeq & \left(m_H^2 - \frac{3}{4\pi^2} y_t^2 m_{\widetilde{t}}^2 \right) |H|^2 \\ & + \left(\frac{g^2 + g'^2}{8} + \frac{3}{8\pi^2} y_t^4 \log \frac{m_{\widetilde{t}}}{m_t} \right) |H|^4 \end{aligned}$$

Calculable Higgs mass. Stop mass give physical meaning to quadratic divergence. Heavier stops imply larger cancellation.

Stop mass below ~1 TeV extremely plausible!

Heavier stops yield larger quartic.

* in a simplified limit

HIGGS MASS IN MSSM

Draper, Lee, Wagner [arXiv:1312.5743]

SUSY PARAMETER SPACE Highly simplified assumption for inputs (the CMSSM).

III. SUSY NATURALNESS CONFRONTS EXPERIMENT

NATURAL THEORIES HAVE OBSERVABLES

Existence of top partners -> physical observables!

Loop corrections to Higgs properties.

Direct production in proton collisions.

HIGGS COUPLINGS

Modification to Higgs production and decay.

Yields bounds independent of stop decay modes.

CONSTRAINTS

Reece, Fan [arXiv:1401.7671]

SIMPLIFIED MODEL FOR PROTON COLLIDERS

Stop-neutralino

Gluino-stop-neutralino

Essig, Izaguirre, Kaplan, Wacker [arXiv:1110.6443]; Papucci, Ruderman, Weiler [arXiv:1110.6926]

SIMPLIFIED MODEL FOR PROTON COLLIDERS

Essig, Izaguirre, Kaplan, Wacker [arXiv:1110.6443]; Papucci, Ruderman, Weiler [arXiv:1110.6926]

MAIN REQUIREMENTS

● 1 lepton

MAIN REQUIREMENTS

• 1 lepton • \geq 4 jets

MAIN REQUIREMENTS

- 1 lepton • \geq 4 jets
- $\geq 1 \ b$ -jet(s)

MAIN REQUIREMENTS

- 1 lepton
- $\geq 1 \ b$ -jet(s)
- One "hadronic top"

MAIN REQUIREMENTS

- 1 lepton
- \geq 4 jets
- $\geq 1 \ b$ -jet(s)
- One "hadronic top"

• Few hundred GeV missing energy

MAIN REQUIREMENTS

- 1 lepton
- \geq 4 jets

- $\geq 1 \ b$ -jet(s)
- One "hadronic top"
- Few hundred GeV missing energy
- Few hundred GeV transverse mass

. . .

ATLAS [arXiv:1407.0583]; see also CMS [arXiv:1502.00300]

MAIN REQUIREMENTS

- 1 lepton
- \geq 4 jets

- $\geq 1 \ b$ -jet(s)
- One "hadronic top"
- Few hundred GeV missing energy
- Few hundred GeV transverse mass

DOMINANT BACKGROUNDS $t \bar{t}, W + jets, t \bar{t} + W/Z, ...$

1-LEPTON RESULTS

FUTURE COLLIDERS

Higgs factory and 100 TeV proton collider?

IHEP in China?

Talk by X. Lou [Aspen Future Colliders Conference, 2015]

CERN in Europe?

Talk by M. Benedikt [Aspen Future Colliders Conference, 2015]

MORE HIGGS MEASUREMENTS

Previous indirect probe required top partner be colored and charged.

Completely model independent probe:

Modification to $Z^0 - h$ associated production cross section $\delta \sigma_{\rm Zh}$.

Craig, Englert, McCullough [arXiv:1305.5251]

AT A FUTURE LEPTON COLLIDER

For a generic top partner t', with number of degrees of freedom $n_{t'}$.

Craig, Englert, McCullough [arXiv:1305.5251]

STOP DECAYS AT A 100 TEV COLLIDER

"Top is the new bottom."

TC, D'Agnolo, Hance, Lou, Wacker [arXiv:1406.4512]

SUPER BOOSTED TOP TAGGING

Require muon inside a jet.

MAIN REQUIREMENTS

- ≥ 2 jets
- $\bullet \geq 1$ muon inside a jet
- 0 isolated leptons
- Few TeV missing energy

•

Dominant background $t \, \overline{t} + W/Z, \dots$

SUPER BOOSTED TOP TAGGING

Require muon inside a jet.

MAIN REQUIREMENTS

- ≥ 2 jets
- $\bullet \geq 1$ muon inside a jet
- 0 isolated leptons
- Few **TeV** missing energy

• • • •

Dominant background $t \, \overline{t} + W/Z, \dots$

PROJECTED LIMITS

TC, D'Agnolo, Hance, Lou, Wacker [arXiv:1406.4512]

ALTERNATIVE THEORIES

COMPOSITE HIGGS

What if the Higgs were **not** an elementary scalar? Requires new strong dynamics.

Kaplan, Georgi [1984]; Kaplan, Georgi, Dimopoulous [1984]; ... for a recent review: Bellazzini, Csaki, Serra [arXiv:1401.2457]

COMPOSITE HIGGS

What if the Higgs were **not** an elementary scalar? Requires new strong dynamics.

Kaplan, Georgi [1984]; Kaplan, Georgi, Dimopoulous [1984]; ... for a recent review: Bellazzini, Csaki, Serra [arXiv:1401.2457]

TIMOTHY COHEN [PRINCETON/IAS]

FERMIONIC TOP PARTNERS

Calculable requires new fermions, T.

Quadratic divergences canceled by fermionic top partner loops.

OBSERVABLES

Search for top partners: T→t+Z⁰, T→t+H, T→b+W⁺,...
Modified Higgs properties set by v/f.

NEUTRAL NATURALNESS

Do top partners have to be colored?

TWO OPTIONS

Fermionic neutral top partners: Twin Higgs Chacko, Goh, Harnik [arXiv:hep-ph/0506256]

Scalar neutral top patterns: Folded Supersymmetry

Burdman, Chacko, Goh, Harnik [arXiv:hep-ph/0609152]

SUMMARY

SUMMARY

Reductionism: Want ''theory'' of the Higgs potential.

> Loops of top partners render Higgs mass calculable.

MANY MANIFESTATIONS:

- Supersymmetry: stops (scalars)
- Composite Higgs: T (fermions)
- SM x SM: neutral scalars or fermions

TESTABLE CONSEQUENCES:

- Direct production at colliders
- Modification of Higgs properties