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● Algos  + Applications

● Opportunities for HEP 

Outline:



Full-stack Hybrid Quantum-Classical 
Architecture in the Cloud

Algorithms & 
Applications

U.S.-Based 
Captive Foundry

Higher Speed

Encode & manipulate data in an 
exponentially large state space.

Better Accuracy

Reduce approximations needed 
to make problems computable.

Lower Cost

Quantum computing largely decouples 
compute power from energy consumption.

Market Outlook
$13Bn by 2022

$25-50Bn by 2030s

● Quantum Instruction Language (Quil)
● Quil-based compiler (quilc)
● Quantum virtual machine (QVM)
● Forest SDK

● Develop & tailor algorithms 
for hybrid architecture

● Distribute Rigetti and 
partner libraries and 
applications 

● Superconducting quantum circuits
● Josephson junctions, TSVs, Caps
● 3D integration and packaging 

● Chip
● Cryo-RF
● Control Systems
● QPU
● Cloud integration
● Algos + Apps



SUPERCONDUCTING QUANTUM INTEGRATED CIRCUITS

quantized charge, flux

nonlinear Josephson potential

Circuit chip

Cap chip

scalable chip architecture High-fidelity two-qubit gates
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Circuit-QED: qubits coupled to 
high-Q resonators for readout



Rigetti Computing Proprietary and Confidential

Rigetti Fab-1

Fremont, CA



Quantum Computing Facility, Berkeley CA



Enterprise and Government Users

Research Partners

Application Partners

10 Global Fortune 500 companies in:

● Pharma
● Finance
● Chemicals
● Defense
● Consulting
● Manufacturing
● Insurance

4 National Labs

2 International research entities

(not exhaustive)

● Currently Available 16Q QPUs 

● 4,000 users have run 120M jobs 
on our platform

● 100+ active customers

QUANTUM CLOUD SERVICES TODAY



QPU ROADMAP AND CHALLENGES

2020

2021

2016thin-film 
superconductor

Josephson 
junction

surface passivation
through-silicon 

via

high-density RF 
I/O

flip-chip padmetrology/modeling

calibration/IC design

Basics Performance Scalability
Year # 2Q Error

1-4 >40%

2017 8 10-20%

2018-19 16 5-7%

30+ 3-4%

100+ 1-2%

Chip Roadmap
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Coherence Times

>200µs T
1 

May 2018

Jul 2019

Feb 2019

400

300
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100
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Qubit ID

Device Interfaces

 MS: Metal-Substrate | SA: Substrate-Air | MA: Metal-Air | MM: Metal-Metal

Qubit Coherence Test

Nersisyan*, Poletto*, Alidoust*, Manenti*, et al arXiv:1901:08042 (2019)

Fabrication Flow Metrology

Isolate single interfaces, test iterative fabrication parameters
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TECHNOLOGY PROGRESS SNAPSHOT: COHERENCE



Abrams et al, arXiv:1908.11856

TECHNOLOGY PROGRESS SNAPSHOT: CROSS-TALK
Combination of superconducting through-silicon vias and caps reduces cross-talk

DC on-chip 
cross-talk:

-60 to -100dB

RF cross-talk:  
~0.05-1%



● T1 naturally fluctuates by ~ 2.5x (12-30𝜇s) 

● 2Q gate error rate follows T1 variation, 0.8-2.0%

● Gate and Hamiltonian are fully understood, and 
coherence limited. 

Hong et al, arXiv: 1901.08035

99.2 ± 0.15% 2Q 
Gate Fidelity 

TECHNOLOGY PROGRESS SNAPSHOT: 2Q GATES
Parametrically Activated 2Q Gates Protected from Flux Noise Achieve 99% Fidelity



TWO MAJOR HYBRID ALGORITHMS: VQE* & QAOA**

Estimate 
<H(x)>

Pick an initial x Encode the H
Select a 

parametrized 
ansatz U(x)

Does x 
minimize  
<H(x)>?

Choose new x

QPU

Done

* Peruzzo et al.,  arXiv:1304.3061    ** Farhi, Goldstone,  Gutmann,  arXiv:1411.4028

VQE: Variational Quantum Eigensolver
QAOA: Quantum Approximate Optimization 

Algorithm

Objective

Example application

Find lowest-lying eigenvalue of a Hamiltonian

Molecule ground-state calculations

Find a solution that minimizes a cost function

Approx. solution for combinatorial 
optimization

Algorithms

Overall approach

e.g., Unitary 
Coupled Clustere.g., H

2
 molecule
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Simulation of H2 and LiH ground state with chemical accuracy on 
Rigetti QCS, using qubit coupled-cluster (QCC) ansatz, leveraging a 
variation of UCC implemented directly in qubit space. 

Ryabinkin et al, arXiv:1809.03827 [quant-ph]

Has now also been applied to water, results to be published soon.

Ground-state and potential energy curve calculations

Proper description of NaH dissociation 
on Rigetti QCS, using 2-body reduced 
density matrix to calculate energy and 
subsequent “purification” to remove the 
mixing of pure states due to noise.

McCaskey et al, arXiv:1905.01534
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EXAMPLE APPLICATIONS OF VQE

https://arxiv.org/abs/1809.03827


Simulation of H2 first and second excited states on 
Rigetti QCS, capturing features which are classically 
intractable for larger molecules; the method uses a 
constrained version of VQE.

Ryabinkin et al. arXiv:1806.00461 [physics.chem-ph]

EXTENDING VQE TO COMPUTE EXCITED STATES
High-accuracy calculation of energy spectra with stronger potential to outperform classical algos

Simulation of up to 3rd excited states for H2, 
using variational quantum deflation, a 
VQE-based approach without additional qubit 
overhead and at most 2x deeper circuit.

Higgot et al. arXiv:1805.08138 [quant-ph]

https://arxiv.org/abs/1806.00461
https://arxiv.org/abs/1805.08138


CAN QUANTUM COMPUTING BOOST MACHINE LEARNING?

universal 
optimization method for training 
deep neural networks

unsupervised machine 
learning
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Quanvolutional neural networks 

Early Exploratory Work



Sub-exponential scaling with condition number 
𝞳, ratio of largest to the smallest singular values 
in A

Logarithmic scaling with inverse precision 1/𝜖

Bravo-Prieto et al, arXiv: 1909.05820 (Sandia) 
An et al, arXiv:1909.05500 (Berkeley)

Solving NxN 
linear systems, 
A |x> = |b>

Variational Quantum Linear 
Solver (VQLS):

Variationally minimize the 
overlap between |b> and A|x>

● Implemented on Rigetti QCS 
for N=32 (5 qubits)

● Efficient runtime and quantum 
circuit to estimate overlap

● Runs w fixed depth circuit and 
shows some resilience to noise
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SOLVING LINEAR SYSTEMS WITH VARIATIONAL ALGOS

 Xu et al, arXiv:1909.03898 (Oxford)



McKiernan et al, arXiv:1908.08054

https://github.com/rigetti/gym-forest

Can we use a machine learning agent (instead of 
human-designed templates) to generate the ansatz

28
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CAN MACHINE LEARNING HELP DESIGN 
BETTER HYBRID ALGORITHMS? 



QAOA

Untrained
agent

Trained
agent

Run on noiseless 
simulator

Run on Rigetti 
Aspen QPU

McKiernan et al, arXiv:1908.08054               https://github.com/rigetti/gym-forest

Using reinforcement learning agent to generate quantum circuits can reduce gate depths and sensitivity to noise

CAN MACHINE LEARNING HELP DESIGN 
BETTER HYBRID ALGORITHMS? 
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QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Phase transitions in quantum field 
theories*

C. Kokail  et al, arXiv:1810.03421 (Innsbruck)

Simulating non-Unitary dynamics 
with imaginary time evolution

S. McArdle et al, arXiv:1804.03023 (Oxford)

Thermal quantum simulation

Jingxiang Wu, Timothy H. Hseih, 
arXiv:1811.11756 (Waterloo)



Integrated 
attenuators 

and filters

MX Plate Wiring and 32 I/O 
Quantum Processor Packaging

Flex reduces footprint 10x 
(from coax)
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SCALING UP: CRYOGENIC PLATFORM

Cryogenic dilution 
refrigerator

Flex cables 
connecting MX 

plate to RT 
electronics



SCALING UP: ELECTRONICS
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2013-2015

General Test Equipment

2016-2017

Off-the-shelf customizable 
instrumentation

2018-2019

Fully custom solution

AWG + Mixers
Precision current sources VNA

Software defined radio (USRP)
Precision current source

Custom waveform generation; DC 
current source; processor



SCALING UP: ELECTRONICS
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Direct digital microwave 
transmit and receive with 

FPGA logic:  

Built for high performance 
quantum algorithm 

implementation

Custom Hardware:

Key challenges in building 
custom electronics 

solutions

● Low-latency 
architectures for hybrid 
q-c computing, FTQC etc

● Achieving high 
temperature stability 
and better calibration

● Designing stable 
architecture to maintain 
phase coherence across 
all channels

● Bandwidth, dynamic 
range, noise etcGate CardFlux Card
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Quantum Computing Facility

Integrate quantum processors

   into the HEP cloud in order to

      expand the understanding of our universe.

Discover hybrid quantum-classical methods for 
HEP, ML, and data processing that can be made 
available to a broad community of researchers 
through HEP cloud
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DISTRIBUTIONS AND INTEGRATIONS
Accelerating Quantum Sciences with Quantum Computing
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