The Road Ahead: Challenges for Future Gravitational Wave Detectors

Hartmut Grote Cardiff University UK

Fermilab Colloquium, March 7th, 2018

GW150914 WWW	W		М	= 36+29=6	52			
LVT151012 ~~~~	^^^^	~~~~W	М	= 15+23			Z~0.2	2
GW151226 ~~~~	~~~~~	~~~~~	M	= 14.2+7.5	=20.8	·····		
GW170104 ///// GW170608 GW170814 /////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		M M	= 31.2 + 1 = 7+12 = 30.5+25.	7.04 = 48. 3=53.2	.7	Z~0.2	2
0.00	0.25	0.50	0.75 time obs	1.00 ervable (1.25 seconds)	1.50	1.75	2.00

This is only the beginning

You are here!

This is only the beginning

You are here!

Credit: S. Vitale, MIT

-BBH mass distribution and formation channels -Precision tests of GR

One BBH merger every ~5 minutes in the universe

GW150914 WM	M		M	= 36+29=6	52						
LVT151012 ~~~~	•	~~~~W	M	M = 15+23							
GW151226 ~~~~	~~~~~	~~~~~	M=	= 14.2+7.5	=20.8	·····					
GW170104	~~~~~		M	= 31.2 + 1	7.04 = 48.7						
GW170608			M =	M = 7 + 12							
GW170814 ////////				M= 30.5+25.3=53.2							
0.00	0.25	0.50	0.75 time obso	1.00 ervable (1.25 seconds)	1.50	1.75	2.00			
GW170817								-			
			M=	=1.36+1.17	7=2.74						
Ó	10		20 time obs	30 ervable (1	4 ⁰ seconds)		50				
						LIGO/Virgo/Ur	niversity of Oregon	/Ben Farr			

.

.

H			B	ig ang Ision		Dy lov	ing v-mas urs	s	E m	xplodi nassiw ars	ing e						He
Li 3	Be 4	-	с	osmic		Me	rging		E	xplodi	ing	Б	C 6	N 7	0	F 9	Ne 10
Na 11	Mg 12		fi:	iy ssion		sta	utron		w ch	hite Marfs		AI 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	-Ru 44	Rh 45	Pd 48	Ag 47	Cd 48	In 49	50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	•	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra	٩	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
			57	58	59	60	61	62	63	64	65	86	67	68	69	70	71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94									

Nucleosynthesis of heavy elements: More than the mass of earth in gold

Binary neutron star observations...

-nuclear equation of state
-hubble constant
-more tests of GR (speed of Gws...)
-multi-messenger astronomy

One BNS merger every 15 seconds in the universe

Constraints on Nuclear Equation of State from GW170817

Need more signal to noise and/or more events (stacking possible)

Sources and Detector Generations

Neutron star

physics

Higher BH masses

Higher SNR's

Really Really Really a Black Hole?

Need higher SNR to resolve BBH ringdown:

LIGO Hanford, WA, United States

Virgo, Italy

State of the art: ~10⁻²⁰ m/rt(Hz) @ 100Hz position measurement

"2 G"

Advanced LIGO Design

-seismic -thermal -quantum

Seismic input

Ground tilt cannot Be distinguished From acceleration: Need tilt-free seismomters Or tilt sensors

Thermal noise

Which material for mirrors and suspension? Silicon and Sapphire being researched Optical Coatings Limiting: Ion-beam Sputtered Coatings With lossy High-n layers

Coating reseach: low-loss high-n materials, crystaline coatings

Cooling: under way at KAGRA

Challenging: seismic attenuation and mirror heat load Using Sapphire mirrors

Quantum noise Seismic noise **Gravity Gradients** Suspension thermal noise Coating Brownian noise Coating Thermo-optic noise 10⁻²² Substrate Brownian noise **Excess Gas** Total noise Strain [1/⁄Hz] 10⁻²³ To reduce shot noise: increase laser power. Soon optimal! 10³ 10¹ 10² Frequency [Hz]

> Shot noise and rad. Press. Noise: two quadratures of vacuum fluctuation Entering the interferometer [Caves 1981]

Quantum noise reduction: Squeezing the EM-vacuum state

Of course there is more: e.g. Parametric Instability

...a technical problem for high power operation For now: feedback control. But perhaps not enough in the future...

From 2G to 2G+

-Newtonia noise subtraction
-squeezing the EM vacuum (being installed in LIGO and Virgo now)
-filter cavities to squeeze rad. Pressure noise (amplitude quadrature)
-better coatings, heavier masses
-new materials and cryogenics: Silicon (120K, 10K), Sapphire (20K)

From 2G+ to 3G

-new facilities: longer arms
-heavier test masses, larger beams, longer suspensions
-new materials and cryogenics: Silicon (120K, 10K), Sapphire (20K)
-higher power lasers (500W ? → 3MW in IFO arms?)
-new topologies: speed meters

Longer arms

ET: Einstein Telescope

=====

The quantum vacuum

Examples that can be associated: -Lamb shift -Anomalous magnetic moment of e and μ -Casimir force (though other interpretations exist)

my.

Here: -Properties of the quantum vacuum in the presence of an external field

> Credit: G. Ruoso

External field

AM

The quantum vacuum

Examples: -Lamb shift -Anomalous magnetic moment of e and μ -Casimir force

m

MB

Here: -Properties of the quantum vacuum in the presence of an external field

-Study with light

 $\Delta n > 0$?

Credit: G. Ruoso

External field

m

QED Prediction

 Light slows down in vacuum in the presence of a magnetic field (perpendicular to the direction of light propagation).

$$\Delta n_{\parallel} = 9.3 * 10^{-24} * B^2 [1/T^2]$$

$$\Delta n_{\perp} = 5.3 * 10^{-24} * B^2 [1/T^2]$$

Vacuum is birefringent:

$$\Delta n_{\parallel -\perp} = 4 * 10^{-24} * B^2 [1/T^2]$$

Ellipsometer Method

Volu

Emilio Zavattini (1927 -2007)

ne 85B, number 1	PHYSICS LETTERS	30 July 1979
EXPERIMENTAL METHOD INDUCED BY A MAGNETIC	TO DETECT THE VACUUM BIREFRINGENCE C FIELD	
E. IACOPINI and E. ZAVAT CERN, Geneva, Switzerland	TINI	
Received 28 May 1979		
In this letter a method of mea evaluated using the non-linear Eu induced ellipticity on a laser bear	suring the birefringence induced in vacuum by a magnetic ler—Heisenberg—Weisskopf lagrangian. The optical appara n down to 10 ⁻¹¹ .	c field is described: this effect is itus discussed here may detect an

Absolute phase shift is hard to measure, study anisotropic Changes of refractive index instead. (birefringence, dichroism)

PVLAS: recent progress

Limited by currently unexplained noise: One suspect: birefringence of mirror coatings

Field modulation vs. measurement technique

	Rotate B-field	Modulate strength of B-field
Measure polarization	PVLAS, others	BMV
Measure phase	GW detectors?	GW detectors? (Get refractive indices for par. and perp. direction independently! → More implications for particle physics)

Connection to particle physics

- Milli charged particles: Hypothetical particles with mass < m(e),
 ->virtual pairs at lower energy, would show up as ellipticity in addition to QED prediction
- Axions: Effective absorption of photons (due to coupling to axions) would show up as dichroism (linear polarization rotation)

1979: Proposal to use Laser Interferometers

PHYSICAL PEVIEW D

VOLUME 19, NUMBER 8

15 APRIL 1979

Testability of nonlinear electrodynamics

A. M. Grassi Strini, G. Strini, and G. Tagliaferri

Institute of Physical Sciences of the University and Sezione dell'I.N.F.N., 20133 Milano, Italy (Received 21 April 1978; revised manuscript received 9 November 1978)

Laser interferometry combined with present-day electronic techniques now make it possible to test nonlinear-electrodynamics predictions in the weak-field limit, up to a sensitivity of 10^{-23} in the relative variation of the velocity of light. The significance of such tests in regard to QED predictions is noted.

I. INTRODUCTION

In the past, nonlinear equations for electromagnetism have often been proposed, on the basis of theoretical motivations of a widely varying nature. Such proposed nonlinearities are either intrinsic or represent the interaction with other fields such as, for instance, the effects of vacuum polarization deriving from the interaction of the electromagnetic field with the electronic field. However, as far as experimental confirmation is concerned, there is a nearly total lack of direct information because the theoretically anticipated nonlinearities are exceedingly small.

The purpose of the present paper is to suggest that the progress in instrumentation and experimental techniques in recent years now makes it equations predicted by QED should be of some testable case. For clarity, we pr report the procedure followed rather th stating the resulting figures.

The equations of electromagnetism m the inclusion of nonlinear terms read¹

$$\nabla \times \vec{\mathbf{E}} + \frac{1}{c} \vec{\mathbf{B}} = 0, \quad \nabla \times \vec{\mathbf{H}} - \frac{1}{c} \vec{\mathbf{D}} = 0,$$
$$\nabla \cdot \vec{\mathbf{B}} = 0, \quad \nabla \cdot \vec{\mathbf{D}} = 0,$$
$$\vec{\mathbf{D}} = \vec{\mathbf{E}} + \gamma [\alpha (E^2 - B^2) \vec{\mathbf{E}} + \beta (\vec{\mathbf{B}} \cdot \vec{\mathbf{E}}) \vec{\mathbf{B}}],$$
$$\vec{\mathbf{H}} = \vec{\mathbf{B}} + \gamma [\alpha (E^2 - B^2) \vec{\mathbf{B}} - \beta (\vec{\mathbf{B}} \cdot \vec{\mathbf{E}}) \vec{\mathbf{E}}],$$

where all symbols conform to common the coefficients α , β , γ have the followin QED:

FIG. 1. Sketch of laser interferometer with magnetic field perturbation.

2002: Proposal to use GW detectors.

hep-ph/0204207 NIKHEF/2002-001

Exploring the QED vacuum with laser interferometers

Daniël Boer¹ and Jan-Willem van Holten^{1,2}

¹ Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081 NL-1081 HV Amsterdam, The Netherlands

² NIKHEF, P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands

February 1, 2008

It is demonstrated that the nonlinear, and as yet unobserved, QED effect of slowing down light by application of a strong magnetic field may be observable with large laser interferometers like for instance LIGO or GEO600.

12.20.Fv, 07.60.Ly, 41.20.Jb, 42.25.Lc, 41.25.Bs, 95.75.Kk

-too optimistic in assuming possible increase in sensitivity with increasing cavity Finesse
-neglecting possible integration of signal over time

2009: Virgo / Electro-Magnets

Eur. Phys. J. C (2009) 62: 459–466 DOI 10.1140/epjc/s10052-009-1079-y THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Probing for new physics and detecting non-linear vacuum QED effects using gravitational wave interferometer antennas

Guido Zavattini^{1,a}, Encrico Calloni²

¹INFN, Sezione di Ferrara and Dipartimento di Fisica, Università di Ferrara, Polo Scientifico, Via Saragat 1, Blocco C, 44100 Ferrara, Italy ²INFN, Sezione di Napoli and Dipartimento di Scienze Fisiche, Università "Federico II", Mostra d'Oltremare, Pad. 19, 80125, Naples, Italy

Received: 28 April 2009 / Published online: 27 June 2009 © Springer-Verlag / Società Italiana di Fisica 2009

-pointing out new physics potential

2009: LIGO/GEO Pulsed Magnets

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

July 2009

EPL, **87** (2009) 21002 doi: 10.1209/0295-5075/87/21002 www.epljournal.org

Interferometry of light propagation in pulsed fields

B. DÖBRICH^(a) and H. GIES

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena Max-Wien-Platz 1, D-07743 Jena, Germany, EU

received 16 April 2009; accepted in final form 30 June 2009 published online 28 July 2009

Abstract – We investigate the use of ground-based gravitational-wave interferometers for studies of the strong-field domain of QED. Interferometric measurements of phase velocity shifts induced by quantum fluctuations in magnetic fields can become a sensitive probe for nonlinear selfinteractions among macroscopic electromagnetic fields. We identify pulsed magnets as a suitable strong-field source, since their pulse frequency can be matched perfectly with the domain of highest sensitivity of gravitational-wave interferometers. If these interferometers reach their future sensitivity goals, not only strong-field QED phenomena can be discovered but also further parameter space of hypothetical hidden-sector particles will be accessible.

Copyright © EPLA, 2009

-assumes aperture of O~cm

2015: Feasibility / Magnet design

PHYSICAL REVIEW D 91, 022002 (2015)

On the possibility of vacuum QED measurements with gravitational wave detectors

H. Grote

Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut) und Leibniz Universität Hannover, Callinstrasse 38, 30167 Hannover, Germany (Received 17 September 2014; published 7 January 2015)

Quantum electrodynamics (QED) comprises virtual particle production and thus gives rise to a refractive index of the vacuum larger than unity in the presence of a magnetic field. This predicted effect has not been measured to date, even after considerable effort of a number of experiments. It has been proposed by other authors to possibly use gravitational wave detectors for such vacuum QED measurements, and we give this proposal some new consideration in this paper. In particular, we look at possible source field magnet designs and further constraints on the implementation at a gravitational wave detector. We conclude that such an experiment seems to be feasible with permanent magnets, yet still challenging in its implementation.

DOI: 10.1103/PhysRevD.91.022002

PACS numbers: 04.80.Nn, 42.50.Xa, 95.55.Ym, 95.75.Kk

I. INTRODUCTION

Corrections to the Maxwell equations that emerge from the quantum properties of the vacuum have been proposed many decades ago; see, e.g., [1]. Quantum electrodynamics All of the ongoing experiments make use of the difference $\Delta n_{\parallel-\perp}$ of the predicted refractive index changes for different angles of the magnetic field with respect to the polarization direction of the light; i.e., they attempt to

Integration time for sinusoidal signal

$$t_{SNR=1} = \left(\frac{\tilde{n}(f)}{S_{RMS,\parallel}}\right)^2$$

 Displacement signal

Displacement noise Ampl. spectral density

$$S_{\parallel} = \Delta n_{\parallel} \times D = 9.3 \times 10^{-24} \times B^2 [\frac{1}{T^2}] \times D$$

Magnet as Halbach Cylinder

B = Br * In(ro/ri) Br ~ 1.3T for NeFeB

Example: B = 1.0T for ro=121mm, ri=55mm \rightarrow m=328kg for D=1.2m NeFeB: 150\$ / kg \rightarrow 50k\$ / Magnet

Measurement time as function of displacement sensitivity

For Gravitational-wave IFO: Assembly with valves and baffles

 Chamber for baffle suspension at entry to smallaperture tube

Where?

Low displacement noise hard to reach with small beams

LIGO Hanford: Only facility with mid-tube gate valves

~10m space

e.g: install during A+ 2. upgrade phase, or Voyager upgrade...

Das Gravitationswellen-Spektrum

Inflation probe

Pulsar timing

Interferometers In space Ground-based interferometers

,