\ U.S. DEPARTMENT OF Ofﬁce of
Y Science

Multi-threaded art

Kyle J. Knoepfel
25 June 2019
LArSoft Workshop 2019

Outline

 arf’s path processing
— Consequences

« art's multi-threading behavior
— Command-line invocation
— Guarantees and limitations
— Kinds of modules
* lllustrations
— Services

« Guidance moving to multi-threaded art programs

2% Fermilab

2 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Processing a data-containment level (e.g. Event)

 The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}

produceG4Steps: {...} L MOdUIG deCIarationS
}

analyzers: {
plotHits: {...}
}

hitPath: [makeHits, makeShowers]

geomPath: [produceG4Steps] - Path deCIarationS

analyzePath: [plotHits]

2% Fermilab

3 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Processing a data-containment level (e.g. Event)

 The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}
}
analyzers: {
plotHits: {...}
}

Trigger path hitPath: [makeHits, makeShowers]
Trigger path geomPath: [produceG4Steps]
End path analyzePath: [plotHits]

2% Fermilab

4 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Processing a data-containment level (e.g. Event)

 The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}
}
analyzers: {
plotHits: {...}
}

Trigger path hitPath: [makeHits, makeShowers]

Trigger path geomPath: [produceG4Steps]

End path analyzePath: [plotHits]

5 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

 The order in which trigger
paths are executed is

unspecified (single-threaded).

* In MT art trigger paths will be
executed simultaneously.

* Modules in a trigger path are
executed in the order specified.

« End paths are always

processed after all trigger paths.

« A module is executed once per

event.
2% Fermilab

Processing a data-containment level (e.g. Event)

 The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

 The order in which trigger

hysics: { .
PHYSIES paths are executed is
producers: { unspecified (single-threaded).
makeHits: {...} . .
makeShowers: {...} * In MT art trigger paths will be
, Produceeasteps: Lo.o) executed simultaneously.
analyzers: { * Modules in a trigger path are
plotHits: {...} . e
} executed in the order specified.
Trigger path hitPath: [makeHits, makeShowers] * End paths are alwayg
Trigger path | geomPath: [produceG4Steps] processed after all trigger paths.
End path analyzePath: [plotHits] N L. L
e per
Heeding these facts is essential for successful use of art 3.
e £ Fermilab

6 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Consequences of arf’'s guarantees

« Modules on one trigger path may not consume products created by modules that
are not on that same path.

2% Fermilab

7 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Consequences of arf’'s guarantees

« Modules on one trigger path may not consume products created by modules that

are not on that same path.

« The following is a configuration error (heuristically):

physics: {
producers: A{
pl: { produces:
p2: { consumes:

b
tpl: [p1]
tp2: [p2]

¥

[Ilin.tll’ IIII] }
["int", "pl::current_process"] }

8 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Consequences of arf’'s guarantees

« Modules on one trigger path may not consume products created by modules that

are not on that same path.

» The following is also a configuration error (heuristically):

9

physics: {

producers: {
pl: { produces:
p2: { produces:
readThenMake: {

consumesMany:

¥

¥

[Ilin.tll’ IIII] }
["int", "instanceName"] }

["int"] // calls getMany

tpl: [pl, readThenMakel
tp2: [p2, readThenMakel

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Consequences of arf’'s guarantees

« Modules on one trigger path may not consume products created by modules that
are not on that same path.

» The following is also a configuration error (heuristically):

| nhvcirc { |

art 3 catches these errors if you use the consumes interface.

Module readThenMake on paths tpl, tp2 depends on
Module p2 on path tpZ2

COUTTOUTNmCOT TOTT Y T LTT C J 7 7 CTO T CToO greTeTTerTTYy

}

}
tpl: [pl, readThenMakel
tp2: [p2, readThenMakel

2% Fermilab

10 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

art's multi-threading behavior

2% Fermilab

11 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

https://cdcvs.fnal.gov/redmine/projects/art/wiki#Multithreaded-processing-as-of-art-3

Multithreaded processing (as of art 3)

Basics

Schedules and transitions
Module threading types
Processing frame
Parallelism in user code
Upgrading to art 3

art's multi-threading behavior

2% Fermilab

12 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

The design

+ Largely based off of CMSSW'’s design
— We use Intel’s Threading Building Blocks (TBB)
— Steps to be performed are factorized into tasks
— You can think of a call to your module’s “produce” function as performing a task

» Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

« Each schedule processes one event at a time.

Our goal:

2% Fermilab

13 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

The design

+ Largely based off of CMSSW'’s design
— We use Intel’s Threading Building Blocks (TBB)
— Steps to be performed are factorized into tasks
— You can think of a call to your module’s “produce” function as performing a task

» Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

« Each schedule processes one event at a time.

1 4 6 9 |[12 1
2 5 7 8 11 2 5 e o @
3 10 E 4 e o o

2% Fermilab

Currently implemented:

14 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

The design

+ Largely based off of CMSSW'’s design

« Each schedule processes one event at a time.

15

— We use Intel’s Threading Building Blocks (TBB)
— Steps to be performed are factorized into tasks

— You can think of a call to your module’s “produce” function as performing a task

» Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

Currently implemented:

Begin
Job

Begin
R1

Begin
SR1

12

11

Ejn

10

End
SR1

End
RA1

Begin
R2

Begin
SR 1

6/25/19

Kyle J. Knoepfel | LArSoft Workshop 2019

1 e o o
2 5 e o o
E e o o
2& Fermilab

The design

 Largely based off of CMSSW'’s design
— We use Intel’s Threading Building Blocks (TBB)
— Steps to be performed are factorized into tasks
— You can think of a call to your module’s “produce” function as performing a task

Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

Each schedule processes one event at a time.
Different modules can be run in parallel on the same event.
Users are allowed to use TBB’s parallel facilities within their own modules.

2% Fermilab

16 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Multi-threaded event-processing

 art 3 supports concurrent processing of events.
— The number of events to process concurrently is specified by the number of schedules
— The user can optionally specify the number of threads.

* The user opts in to concurrent processing.

2% Fermilab

17 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Multi-threaded event-processing

 art 3 supports concurrent processing of events.
— The number of events to process concurrently is specified by the number of schedules
— The user can optionally specify the number of threads.

* The user opts in to concurrent processing.

oSen,

art —c <config> .. (1, 1)
art —-c <config> -j 1 .. (1, 1)
art -c <config> -j 4 .. (4, 4)
art —c <config> -j 0 .. (nproc, nproc)
art —-c <config> --nschedules 1 --nthreads 4 .. (1, 4)

* In a grid environment, number of threads is limited to the number of CPUs
configured for the HTCondor slot (art adjusts the number of threads).
3£ Fermilab

18 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

art 3 guarantees

» Processing of an event happens on one and only one schedule.

« For a given trigger path, modules are processed in the order specified.
* A module shared among paths will be processed only once per event.
» Product insertion into the event is thread-safe.

» Product retrieval from the event is thread-safe.

» Provenance retrieval from the event is thread-safe.

« All modules and services provided by art are thread-safe.
— For TFileService, the user is required to specify additional serialization.

2% Fermilab

19 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

art 3 limitations— Primum non nocere (first, to do no harm)

* Only events within the same SubRun are processed concurrently.
« Analyzers and output modules do not run concurrently.

« Other details
— MixFilter modules are legacy modules.
— Secondary input-file reading is allowed only for 1 schedule and 1 thread.
— TFileService file-switching is allowed only for 1 schedule and 1 thread.

2% Fermilab

20 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Kinds of modules in art 3

 art guarantees that any currently-existing modules are usable in a multi-threaded
execution of art.

— No multi-threading benefits are realized with legacy modules

« To take advantage of arf's multi-threading capabilities, users will need to choose
the kind of module they use:

— Shared module: sees all events—calls can be serialized or asynchronous.

— Replicated module: for a configured module, one copy of that module is created per
schedule—each module copy sees one event at a time. Use if moving to a concurrent,
shared module is not feasible.

2% Fermilab

21 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules

Single schedule

22

6/25/19

Kyle J. Knoepfel | LArSoft Workshop 2019

Begin
SR1

O = | sr

2% Fermilab

Time structure for calling modules

Single schedule

23

Begin
SR1

—[SubRun

6/25/19

Kyle J. Knoepfel | LArSoft Workshop 2019

L = | say

2% Fermilab

Shared modules
Modules shared across schedules

2% Fermilab

24 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules Begin | L1 /14 End

Multiple schedules SRIH I 3 SR1

2% Fermilab

25 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules Begin | L1 /14 End

Multiple schedules SRIH I 3 SR1

—[SubRun

2% Fermilab

26 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules Begin | L1 /14 End

Multiple schedules SRIH I 3 SR1

—[SubRun

- Data races are now possible.

2% Fermilab

27 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules
Multiple schedules

Begin
SR1

End

SR1

—[SubRun

28 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

If the state of one of the
modules is updated when
simultaneously processing
two events, there can be
a data race.

What are some ways
to handle this?

2% Fermilab

Using a legacy module

class HistMaker : public art::EDProducer {

public:
explicit HistMaker(Parameters const& p) : EDProducer{p}
{}

void produce(Event& e) override {} // Called serially wrt. all
// serialized modules

Y

» Legacy modules imply maximum serialization.

— Legacy modules cannot be run in parallel with any other legacy modules or any serialized
shared modules.

« With art 3, any new modules should not be legacy modules.

» The better solution is to use a SharedModu le, which can be serialized only wrt
itself.

2% Fermilab

29 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Use a shared module

class HistMaker : public art::SharedProducer {
public:
explicit HistMaker(Parameters const& p,
ProcessingFrame const&) : SharedProducer{p}
{

serialize<InEvent>(); // Declaration to process
// one event at a time.

}

// Called serially wrt. itself
void produce(Event&, ProcessingFrame const&) override;

s

« But there can be other data race problems.

2% Fermilab

30 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules
Multiple schedules

Begin
SR1

1 4 End

SR1

—[SubRun

31 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

If two modules are processing
different events at the same
time, but they are using a
common resource, there

can be a data race.

How do we avoid such a data
race?

2% Fermilab

Serialized module due to shared resource

2% Fermilab

32 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Serialized module due to shared resource

Suppose you want to call TCollection:: (Set|Get)CurrentCollection
First step: please don’t. This is only illustrating a thread-unsafe interface.

2% Fermilab

33 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Serialized module due to shared resource

class Fitter : public art::SharedProducer {
public:
explicit Fitter(Parameters const& p,
ProcessingFrame const& frame) : SharedProducer{p}
{

serialize<InEvent>("TCollection"); // Declare the common resource

}

// Called serially wrt. other modules that use TCollection
void produce(Event& e) override;

};

2% Fermilab

34 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

If you can guarantee no data races...

35

class HitMaker : public art::SharedProducer {
public:
explicit HitMaker(Parameters const& p ,
ProcessingFrame const&) : SharedProducer{p}
{

async<InEvent>();

}

void produce(Event&) override; // Called asynchronously

};

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Replicated modules
One module per schedule

2% Fermilab

36 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Replicated modules
One module per schedule

« Sometimes the easiest way to gain multi-threading benefits is to replicate modules

across schedules—avoids data races from sharing a module.

2% Fermilab

37 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules Begin | L1 /14 End

Multiple schedules SRIH I 3 SR1

2% Fermilab

38 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules Begin | L1 /14 End

Multiple schedules SRIH I 3 SR1

—[SubRun

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

2% Fermilab

39 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Time structure for calling modules
Multiple schedules

End
SR1

—[SubRun

40 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

Consequence: each module
copy does not see all events.

2% Fermilab

Replicated producer

class Accumulator : public art::ReplicatedProducer {
public:
explicit Accumulator(Parameters const& p,
ProcessingFrame const& frame)
: ReplicatedProducer{p, frame}

1}

// Each module copy sees one event at a time
void produce(Event&, ProcessingFrame const&) override;

s

« Do not use a replicated producer is you need to use a shared resource.
« For art 3.0, replicated modules cannot produce Run and SubRun data products.

2% Fermilab

41 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

What is the ProcessingFrame type?

“Oart::ServiceHandle<T>{}, thou time is short.”
- Anonymous

 Until now, users have been able to create ServiceHand les from anywhere; this
pattern is changing.

« The recommended pattern is for art users to create service handles from the
passed-in ProcessingFrame object.

void HitMaker::beginRun(Run&, ProcessingFrame const& frame)
{
auto hl
auto h2

}

frame.serviceHandle<Calib>(); // => ServiceHandle<Calib>
frame.serviceHandle<Calib const>(); // => ServiceHandle<Calib const>

 This will eventually allow for replicated services, akin to replicated modules.

2% Fermilab

42 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Services

« Services are globally shared objects (across schedules and threads).
— They can be accessed from anywhere through a ServiceHandle.
— They must be thread-safe.

2% Fermilab

43 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Services

« Services are globally shared objects (across schedules and threads).
— They can be accessed from anywhere through a ServiceHandle.
— They must be thread-safe.

LArSoft’s prevalent use of mutable services is the
primary limitation in realizing multi-threading benefits.

2% Fermilab

44 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Services

« Services are globally shared objects (across schedules and threads).
— They can be accessed from anywhere through a ServiceHandle.
— They must be thread-safe.

LArSoft’s prevalent use of mutable services is the
primary limitation in realizing multi-threading benefits.

* In order to use a service in an art job, with more than one schedule/thread enabled,
the service must be GLOBAL (SHARED, for art 3.03).

« LEGACY services are supported only in single-schedule/single-threaded mode.

---- Configuration BEGIN
The service 'MyService' is a legacy service,
which can be used with only one schedule and one thread.
This job uses 2 schedules and 2 threads.
Please reconfigure your job to use only one schedule/thread.
---- Configuration END

2% Fermilab

45 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

ROOT and MT

« ROOT'’s thread-safety flag has been enabled by art.
— Allows (e.g.) multiple ROOT files to be opened in parallel.
« ROOT’s implicit MT flag has not been enabled by art.
 All interactions art has with ROOT are serialized.
— Input-file reading
— Output-file writing
— Touse TFileService, you must use a shared module that calls the appropriate
serialize function.

2% Fermilab

46 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you’re relying on illegal path
configurations, you’ll run into
product dependency errors.

47 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you’re relying on illegal path
configurations, you’ll run into
product dependency errors.

48 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Recompile/rerun jobs with 1 schedule/1 thread

(default)

Add consumes statements to modules
(use —M program option for help)

Recompile/rerun jobs with 1 schedule/1 thread
and use ——errorOnMissingConsumes

Recompile/rerun jobs with more than 1
schedule/1 thread

2% Fermilab

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you’re relying on illegal path
configurations, you’ll run into
product dependency errors.

49 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

« Determine what kind of module you need.

Producer, filter, or analyzer?
Do you need to create (Sub)Run products?
Do you need to see every event?

Do you need to call an external library that is not
thread-safe?

Do you have mutable data members for which
operations are not thread-safe?

2% Fermilab

Guidance moving to art 3

« Solve workflow issues first. * Determine what kind of module you need.
— You might have thread-safe — Producer, filter, or analyzer?
modules and services. — Do you need to create (Sub)Run products?
— If you're relying on illegal path — Do you need to see every event?

configurations, you’ll run into

— Do you need to call an external library that is not
product dependency errors.

thread-safe?

— Do you have mutable data members for which
operations are not thread-safe?

* We can provide guidance in dealing with such issues.
« Contact us.

2% Fermilab

50 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

