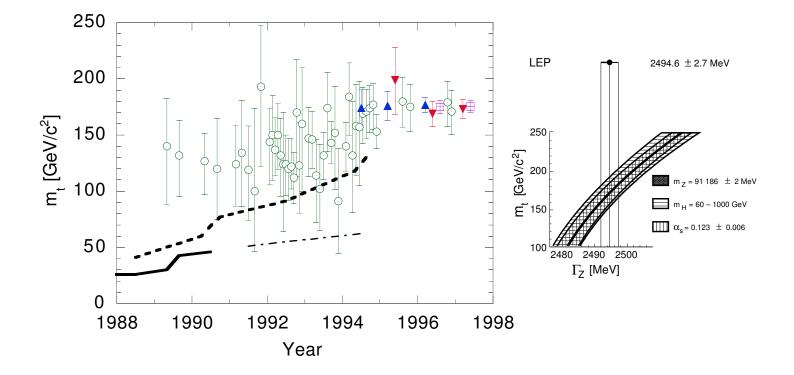
Global fits ...

to precision EW measurements:

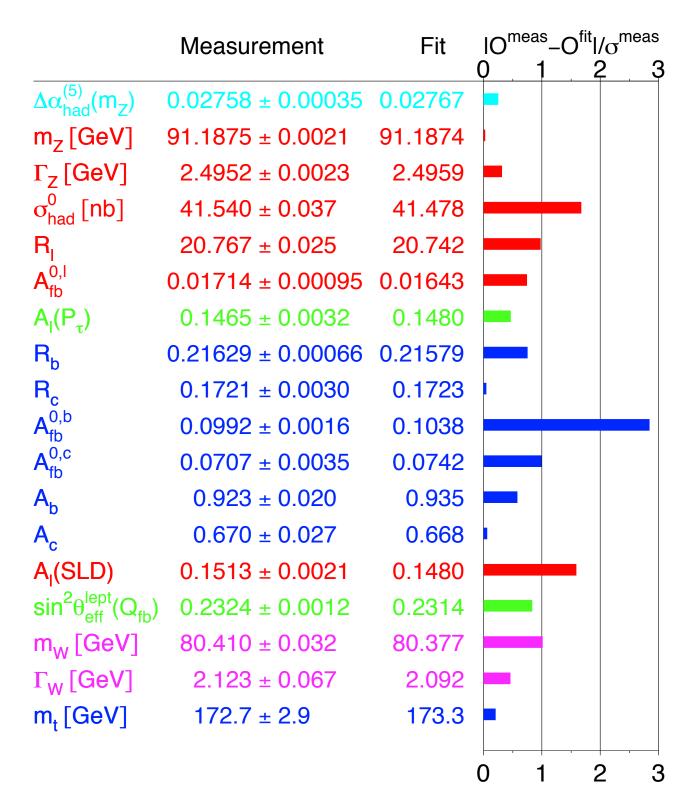
\triangleright precision improves with time

▷ calculations improve with time



11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19} \text{ GeV}/c^2$

Direct measurements: $m_t = 174.3 \pm 5.1 \text{ GeV/}c^2$



LEP Electroweak Working Group, Summer 2005

Parity violation in atoms

Nucleon appears elementary at very low Q^2 ; effective Lagrangian for nucleon β -decay

$$\mathcal{L}_{\beta} = -\frac{G_F}{\sqrt{2}}\bar{e}\gamma_{\lambda}(1-\gamma_5)\nu\,\bar{p}\gamma^{\lambda}(1-g_A\gamma_5)n$$

 $g_A \approx 1.26$: axial charge

NC interactions $(x_W \equiv \sin^2 \theta_W)$:

$$\mathcal{L}ep = \frac{G_F}{2\sqrt{2}} \bar{e}\gamma_\lambda (1 - 4x_W - \gamma_5) e \ \bar{p}\gamma^\lambda (1 - 4x_W - \gamma_5) p ,$$

$$\mathcal{L}en = \frac{G_F}{2\sqrt{2}} \bar{e}\gamma_\lambda (1 - 4x_W - \gamma_5) e \ \bar{n}\gamma^\lambda (1 - \gamma_5) n$$

 \triangleright Regard nucleus as a noninteracting collection of Z protons and N neutrons \triangleright Perform NR reduction; nucleons contribute coherently to A_eV_N coupling, so dominant P-violating contribution to eN amplitude is

$$\mathcal{M}_{\mathsf{pv}} = \frac{-iG_F}{2\sqrt{2}} Q^W \bar{e} \rho_N(\mathbf{r}) \gamma_5 e$$

 $ho_N({f r})$: nucleon density at e^- coordinate ${f r}$

$$Q^W \equiv Z(1 - 4x_W) - N$$
: weak charge

Bennett & Wieman (Boulder): 6S-7S transition polarizability

$$Q_W(Cs) = -72.06 \pm 0.28 \text{ (expt)} \pm 0.34 \text{ (theory)}$$

$$\rightarrow -72.71 \pm 0.29 \text{ (expt)} \pm 0.39 \text{ (theory)}$$

Theory = -73.19 \pm 0.13

Guéna, Lintz, Bouchiat, Mod. Phys. Lett. A 20, 375 (2005)

The vacuum energy problem

Higgs potential $V(\varphi^{\dagger}\varphi) = \mu^2(\varphi^{\dagger}\varphi) + |\lambda| (\varphi^{\dagger}\varphi)^2$

At the minimum,

$$egin{aligned} V(\langle arphi^{\dagger}arphi
angle_0) &= rac{\mu^2 v^2}{4} = -rac{|\lambda| \, v^4}{4} < 0. \end{aligned}$$
 Identify $M_H^2 = -2\mu^2$

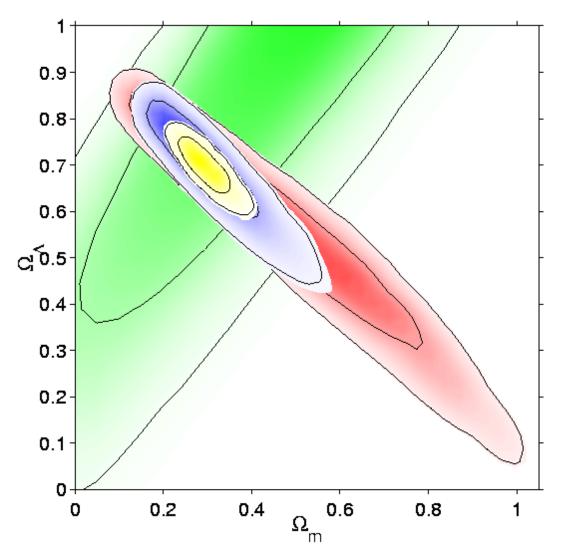
contributes field-independent vacuum energy density

$$\varrho_H \equiv \frac{M_H^2 v^2}{8}$$

Adding vacuum energy density $\rho_{vac} \Leftrightarrow$ adding cosmological constant Λ to Einstein's equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu} + \Lambda g_{\mu\nu}$$
$$\Lambda = \frac{8\pi G_N}{c^4}\varrho_{\text{vac}}$$

observed vacuum energy density $\rho_{\rm vac} \lesssim 10^{-46} {\rm GeV}^4$



Lewis & Bridle, astro-ph/0205436

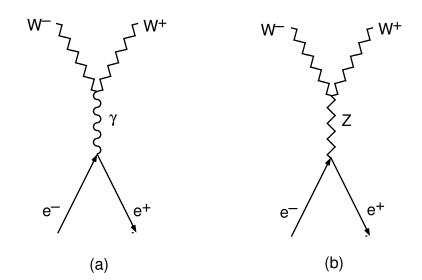
But $M_H \gtrsim 114 \text{ GeV}/c^2 \Rightarrow$

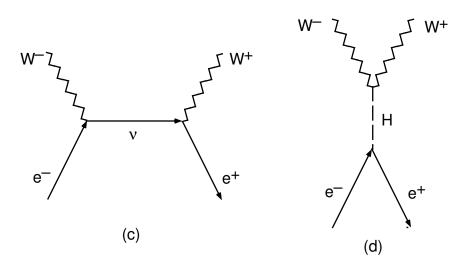
 $\varrho_H \gtrsim 10^8 \ {\rm GeV}^4$

MISMATCH BY 54 ORDERS OR MAGNITUDE

Why a Higgs Boson Must Exist

 \rhd Role in canceling high-energy divergences S-matrix analysis of $e^+e^- \to W^+W^-$

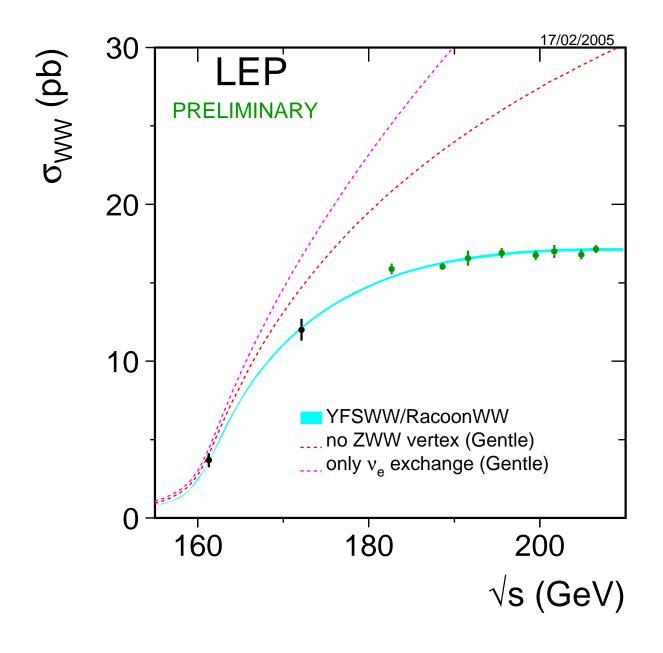




J = 1 partial-wave amplitudes $\mathcal{M}_{\gamma}^{(1)}$, $\mathcal{M}_{Z}^{(1)}$, $\mathcal{M}_{\nu}^{(1)}$ have—individually—unacceptable high-energy behavior ($\propto s$)

... But sum is well-behaved

"Gauge cancellation" observed at LEP2, Tevatron



J = 0 amplitude exists because electrons have mass, and can be found in "wrong" helicity state

 ${\cal M}_{
u}^{(0)} \propto s^{1\over 2}\,$: unacceptable HE behavior

(no contributions from γ and Z)

This divergence is canceled by the Higgs-boson contribution

 $\Rightarrow He\bar{e}$ coupling must be $\propto m_e$,

because "wrong-helicity" amplitudes $\propto m_e$

$$f = -im_f (G_F \sqrt{2})^{1/2}$$

If the Higgs boson did not exist, *something else* would have to cure divergent behavior

IF gauge symmetry were unbroken ...

- \triangleright no Higgs boson
- ▷ no longitudinal gauge bosons
- ▷ no extreme divergences
- \triangleright no wrong-helicity amplitudes

... and no viable low-energy phenomenology

In spontaneously broken theory ...

- gauge structure of couplings eliminates the most severe divergences
- lesser—but potentially fatal—divergence arises
 because the electron has mass
 ...due to the Higgs mechanism
- ▷ SSB provides its own cure—the Higgs boson

A similar interplay and compensation *must exist* in any acceptable theory

Bounds on M_H

EW theory does not predict Higgs-boson mass Self-consistency \Rightarrow plausible lower and upper bounds

▷ Conditional *upper bound* from Unitarity

Compute amplitudes \mathcal{M} for gauge boson scattering at high energies, make a partial-wave decomposition

$$\mathcal{M}(s,t) = 16\pi \sum_{J} (2J+1)a_J(s)P_J(\cos\theta)$$

Most channels decouple—pw amplitudes are small at all energies (except very near the particle poles, or at exponentially large energies)—for any M_H .

Four interesting channels:

 $W^+_L W^-_L Z^0_L Z^0_L / \sqrt{2} \quad HH / \sqrt{2} \quad HZ^0_L$ L: longitudinal, $1/\sqrt{2}$ for identical particles In HE limit,^a s-wave amplitudes $\propto G_F M_H^2$

$$\lim_{s \gg M_H^2} (a_0) \to \frac{-G_F M_H^2}{4\pi\sqrt{2}} \cdot \begin{bmatrix} 1 & 1/\sqrt{8} & 1/\sqrt{8} & 0\\ 1/\sqrt{8} & 3/4 & 1/4 & 0\\ 1/\sqrt{8} & 1/4 & 3/4 & 0\\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$

Require that largest eigenvalue respect the partial-wave unitarity condition $|a_0| \leq 1$

$$\implies M_H \le \left(\frac{8\pi\sqrt{2}}{3G_F}\right)^{1/2} = 1 \text{ TeV/}c^2$$

condition for perturbative unitarity

^aConvenient to calculate using Goldstone-boson equivalence theorem, which reduces dynamics of longitudinally polarized gauge bosons to scalar field theory with interaction Lagrangian given by $\mathcal{L}_{int} = -\lambda v h (2w^+w^- + z^2 + h^2) - (\lambda/4)(2w^+w^- + z^2 + h^2)^2$, with $1/v^2 = G_F \sqrt{2}$ and $\lambda = G_F M_H^2/\sqrt{2}$. ▷ If the bound is respected

* weak interactions remain weak at all energies

- * perturbation theory is everywhere reliable
- \triangleright If the bound is violated
 - * perturbation theory breaks down
 - * weak interactions among W^{\pm} , Z, and H become strong on the 1-TeV scale

⇒ features of *strong* interactions at GeV energies will characterize *electroweak* gauge boson interactions at TeV energies

Threshold behavior of the pw amplitudes a_{IJ} follows from chiral symmetry

$a_{00} \approx$	$G_F s/8\pi\sqrt{2}$	attractive
$a_{11} \approx$	$G_F s/48\pi\sqrt{2}$	attractive
$a_{20} \approx$	$-G_F s/16\pi\sqrt{2}$	repulsive

New phenomena are to be found in the EW interactions at energies not much larger than 1 TeV

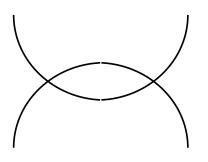
> Triviality of scalar field theory

Only *noninteracting* scalar field theories make sense on all energy scales

Quantum field theory vacuum is a dielectric medium that screens charge \Rightarrow *effective charge* is a function of the distance or, equivalently, of the energy scale

running coupling constant

In $\lambda \phi^4$ theory, it is easy to calculate the variation of the coupling constant λ in perturbation theory by summing bubble graphs



 $\lambda(\mu)$ is related to a higher scale Λ by

$$\frac{1}{\lambda(\mu)} = \frac{1}{\lambda(\Lambda)} + \frac{3}{2\pi^2} \log\left(\Lambda/\mu\right)$$

(Perturbation theory reliable only when λ is small, lattice field theory treats strong-coupling regime)

For stable Higgs potential (*i.e.*, for vacuum energy not to race off to $-\infty$), require $\lambda(\Lambda) \ge 0$ Rewrite RGE as an inequality

$$\frac{1}{\lambda(\mu)} \geq \frac{3}{2\pi^2} \log\left(\Lambda/\mu\right) \; .$$

implies an upper bound

$$\lambda(\mu) \le 2\pi^2/3\log\left(\Lambda/\mu\right)$$

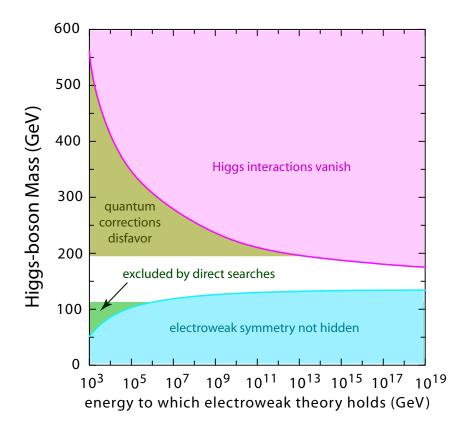
If we require the theory to make sense to arbitrarily high energies—or short distances—then we must take the limit $\Lambda \to \infty$ while holding μ fixed at some reasonable physical scale. In this limit, the bound forces $\lambda(\mu)$ to zero. \longrightarrow free field theory "trivial"

Rewrite as bound on M_H :

$$\Lambda \le \mu \exp\left(\frac{2\pi^2}{3\lambda(\mu)}\right)$$

Choose $\mu = M_H$, and recall $M_H^2 = 2\lambda(M_H)v^2$

$$\Lambda \le M_H \exp\left(4\pi^2 v^2 / 3M_H^2\right)$$



Moral: For any M_H , there is a maximum energy scale Λ^* at which the theory ceases to make sense. The description of the Higgs boson as an elementary scalar is at best an effective theory, valid over a finite range of energies

Perturbative analysis breaks down when $M_H \rightarrow 1 \text{ TeV}/c^2$ and interactions become strong

Lattice analyses $\implies M_H \lesssim 710 \pm 60 \text{ GeV/}c^2$ if theory

describes physics to a few percent up to a few $\ensuremath{\mathsf{TeV}}$

If $M_H \rightarrow 1$ TeV EW theory lives on brink of instability

 \triangleright Lower bound by requiring EWSB vacuum V(v) < V(0)

Requiring that $\langle \phi \rangle_0 \neq 0$ be an absolute minimum of the one-loop potential up to a scale Λ yields the vacuum-stability condition

$$M_{H}^{2} > \frac{3G_{F}\sqrt{2}}{8\pi^{2}} (2M_{W}^{4} + M_{Z}^{4} - 4m_{t}^{4})\log(\Lambda^{2}/v^{2})$$

... for $m_t \lesssim M_W$

(No illuminating analytic form for heavy m_t)

If the Higgs boson is relatively light—which would itself require explanation—then the theory can be self-consistent up to very high energies

If EW theory is to make sense all the way up to a unification scale $\Lambda^{\star}=10^{16}$ GeV, then

134 GeV/
$$c^2 \lesssim M_H \lesssim 177$$
 GeV/ c^2

Higgs-Boson Properties

$$\Gamma(H \to f\bar{f}) = \frac{G_F m_f^2 M_H}{4\pi\sqrt{2}} \cdot N_c \cdot \left(1 - \frac{4m_f^2}{M_H^2}\right)^{3/2}$$

 $\propto M_H$ in the limit of large Higgs mass

$$\Gamma(H \to W^+ W^-) = \frac{G_F M_H^3}{32\pi\sqrt{2}} (1-x)^{1/2} (4-4x+3x^2)$$

 $x \equiv 4M_W^2/M_H^2$

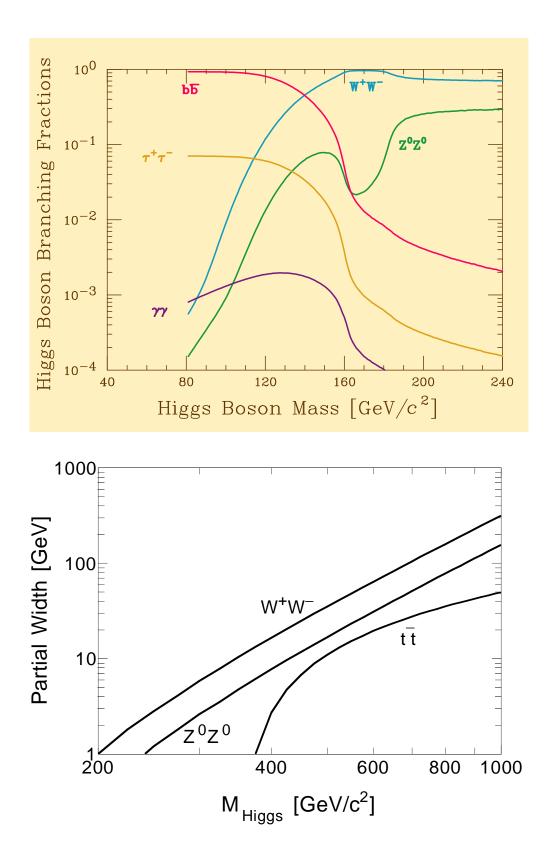
$$\Gamma(H \to Z^0 Z^0) = \frac{G_F M_H^3}{64\pi\sqrt{2}} (1 - x')^{1/2} (4 - 4x' + 3x'^2)$$

 $x' \equiv 4M_Z^2/M_H^2$

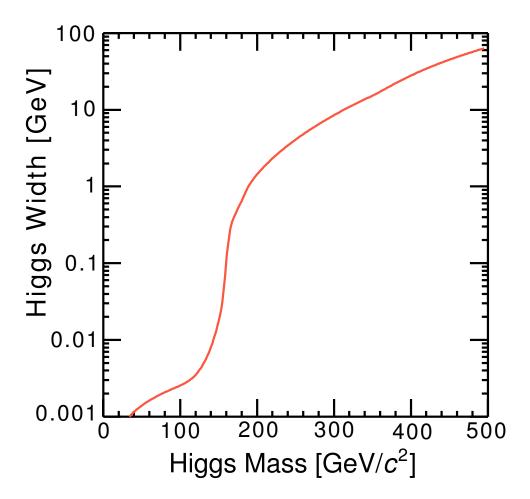
asymptotically $\propto M_H^3$ and $\frac{1}{2}M_H^3$, respectively $(\frac{1}{2} \text{ from weak isospin})$

 $2x^2$ and $2x'^2$ terms \Leftrightarrow decays into transversely polarized gauge bosons

Dominant decays for large M_H into pairs of longitudinally polarized weak bosons



Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 120



Below W^+W^- threshold, $\Gamma_H \lesssim 1 \text{ GeV}$

Far above W^+W^- threshold, $\Gamma_H \propto M_H^3$

For $M_H \rightarrow 1$ TeV/ c^2 , Higgs boson is an *ephemeron*, with a perturbative width approaching its mass.