Interactions ...

$$\mathcal{L}_{W-\ell} = -\frac{g}{2\sqrt{2}} [\bar{\nu}\gamma^{\mu}(1-\gamma_5)eW^+_{\mu} + \bar{e}\gamma^{\mu}(1-\gamma_5)\nu W^-_{\mu}]$$

+ similar terms for μ and τ

Feynman rule:

gauge-boson propagator:

W

$$\sum_{\mu \nu} = \frac{-i(g_{\mu\nu} - k_{\mu}k_{\nu}/M_W^2)}{k^2 - M_W^2}$$

Compute $\nu_{\mu}e \rightarrow \mu \nu_{e}$

$$\sigma(\nu_{\mu}e \to \mu\nu_{e}) = \frac{g^{4}m_{e}E_{\nu}}{16\pi M_{W}^{4}} \frac{[1 - (m_{\mu}^{2} - m_{e}^{2})/2m_{e}E_{\nu}]^{2}}{(1 + 2m_{e}E_{\nu}/M_{W}^{2})}$$

Reproduces 4-fermion result at low energies if

$$\frac{g^4}{16M_W^4} = 2G_F^2$$

$$\Rightarrow g^4 = 32(G_F M_W^2)^2 = 64\left(\frac{G_F M_W^2}{\sqrt{2}}\right)^2$$

$$\Rightarrow \frac{g}{2\sqrt{2}} = \left(\frac{G_F M_W^2}{\sqrt{2}}\right)^{\frac{1}{2}}$$

Using $M_W = gv/2$, determine

$$v = (G_F \sqrt{2})^{-\frac{1}{2}} \approx 246 \text{ GeV}$$

the electroweak scale

$$\Rightarrow \langle \phi^0 \rangle_0 = (G_F \sqrt{8})^{-\frac{1}{2}} \approx 174 \text{ GeV}$$

W-propagator modifies HE behavior

$$\sigma(\nu_{\mu}e \to \mu\nu_{e}) = \frac{g^{4}m_{e}E_{\nu}}{16\pi M_{W}^{4}} \frac{[1 - (m_{\mu}^{2} - m_{e}^{2})/2m_{e}E_{\nu}]^{2}}{(1 + 2m_{e}E_{\nu}/M_{W}^{2})}$$

$$\lim_{E_{\nu} \to \infty} \sigma(\nu_{\mu} e \to \mu \nu_{e}) = \frac{g^{4}}{32\pi M_{W}^{2}} = \frac{G_{F}^{2} M_{W}^{2}}{\sqrt{2}}$$

independent of energy!

partial-wave unitarity respected for

$$s < M_W^2 [\exp(\pi\sqrt{2}/G_F M_W^2) - 1]$$

W-boson properties

No prediction yet for M_W (haven't determined g) Leptonic decay $W^- \rightarrow e^- \nu_e$

$$\mathcal{M} = -i\left(\frac{G_F M_W^2}{\sqrt{2}}\right)^{\frac{1}{2}} \bar{u}(e,p)\gamma_\mu (1-\gamma_5)v(\nu,q)\,\varepsilon^\mu$$

 $\varepsilon^{\mu}=(0;\hat{\varepsilon}):W$ polarization vector in its rest frame

$$|\mathcal{M}|^{2} = \frac{G_{F}M_{W}^{2}}{\sqrt{2}}\operatorname{tr}\left[\not((1-\gamma_{5})\not((1+\gamma_{5})\not)) \not((1+\gamma_{5})\not))\right];$$

$$\operatorname{tr}[\cdots] = \left[\varepsilon \cdot q \varepsilon^{*} \cdot p - \varepsilon \cdot \varepsilon^{*} q \cdot p + \varepsilon \cdot p \varepsilon^{*} \cdot q + i\epsilon_{\mu\nu\rho\sigma}\varepsilon^{\mu}q^{\nu}\varepsilon^{*\rho}p^{\sigma}\right]$$

decay rate is independent of W polarization; look first at longitudinal pol. $\varepsilon^{\mu} = (0; 0, 0, 1) = \varepsilon^{*\mu}$, eliminate $\epsilon_{\mu\nu\rho\sigma}$

$$|\mathcal{M}|^2 = \frac{4G_F M_W^4}{\sqrt{2}} \sin^2 \theta$$

$$\frac{d\Gamma_0}{d\Omega} = \frac{|\mathcal{M}|^2}{64\pi^2} \frac{S_{12}}{M_W^3}$$
$$S_{12} = \sqrt{[M_W^2 - (m_e + m_\nu)^2][M_W^2 - (m_e - m_\nu)^2]} = M_W^2$$
$$\frac{d\Gamma_0}{d\Omega} = \frac{G_F M_W^3}{16\pi^2\sqrt{2}} \sin^2 \theta$$

and

$$\Gamma(W \to e\nu) = \frac{G_F M_W^3}{6\pi\sqrt{2}}$$

Other helicities: $\varepsilon^{\mu}_{\pm 1} = (0; -1, \mp i, 0)/\sqrt{2}$

$$\frac{d\Gamma_{\pm 1}}{d\Omega} = \frac{G_F M_W^3}{32\pi^2 \sqrt{2}} (1 \mp \cos\theta)^2$$

Extinctions at $\cos \theta = \pm 1$ are consequences of angular momentum conservation:

$$W^{-} \ \bigwedge \qquad \stackrel{e^{-}}{\downarrow} \qquad \stackrel{\psi}{\downarrow} \qquad (\theta = 0) \text{ forbidden} \qquad \stackrel{\bar{\nu}_{e}}{\downarrow} \qquad \stackrel{\varphi}{\uparrow} \qquad \stackrel{\varphi}{\uparrow} \qquad (\theta = \pi) \text{ allowed}$$

$$(\text{situation reversed for } W^{+} \rightarrow e^{+}\nu_{e})$$

$$e^{+} \text{ follows polarization direction of } W^{+}$$

$$e^{-} \text{ avoids polarization direction of } W^{-}$$

important for discovery of W^{\pm} in $\bar{p}p(\bar{q}q)$ C violation

Fig. 2. The W decay angular distribution of the emission angle θ^* of the electron (positron) with respect to the proton (antiproton) direction in the rest frame of the W. Only those events for which the lepton charge and the decay kinematics are well determined have been used. The curve shows the (V - A) expectation of $(1 + \cos \theta^*)^2$.

Interactions ...

$$\mathcal{L}_{A-\ell} = \frac{gg'}{\sqrt{g^2 + g'^2}} \bar{e}\gamma^{\mu} e A_{\mu}$$

...vector interaction; \Rightarrow A_{μ} as γ , provided

$$gg'/\sqrt{g^2 + g'^2} \equiv e$$

Define $g' = g \tan \theta_W$ θ_W : weak mixing angle $g = e/\sin \theta_W \ge e$ $g' = e/\cos \theta_W \ge e$

 $Z_{\mu} = b_{\mu}^{3} \cos \theta_{W} - \mathcal{A}_{\mu} \sin \theta_{W} \quad A_{\mu} = \mathcal{A}_{\mu} \cos \theta_{W} + b_{\mu}^{3} \sin \theta_{W}$

$$\mathcal{L}_{Z-\nu} = \frac{-g}{4\cos\theta_W} \bar{\nu}\gamma^\mu (1-\gamma_5)\nu Z_\mu$$
$$\mathcal{L}_{Z-e} = \frac{-g}{4\cos\theta_W} \bar{e} \left[L_e \gamma^\mu (1-\gamma_5) + R_e \gamma^\mu (1+\gamma_5) \right] e Z_\mu$$

$$L_e = 2\sin^2 \theta_W - 1 = 2x_W + \tau_3$$
$$R_e = 2\sin^2 \theta_W = 2x_W$$

Z-boson properties

Decay calculation analogous to W^\pm

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{G_F M_Z^3}{12\pi\sqrt{2}}$$

$$\Gamma(Z \to e^+ e^-) = \Gamma(Z \to \nu \bar{\nu}) \left[L_e^2 + R_e^2 \right]$$

Z-boson properties

Decay calculation analogous to W^{\pm}

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{G_F M_Z^3}{12\pi\sqrt{2}}$$

$$\Gamma(Z \to e^+ e^-) = \Gamma(Z \to \nu \bar{\nu}) \left[L_e^2 + R_e^2 \right]$$

Neutral-current interactions

New νe reaction, not present in V-A

$$\begin{aligned} \sigma(\nu_{\mu}e \to \nu_{\mu}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[L_{e}^{2} + R_{e}^{2}/3\right] \\ \sigma(\bar{\nu}_{\mu}e \to \bar{\nu}_{\mu}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[L_{e}^{2}/3 + R_{e}^{2}\right] \\ \sigma(\nu_{e}e \to \nu_{e}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[(L_{e} + 2)^{2} + R_{e}^{2}/3\right] \\ \sigma(\bar{\nu}_{e}e \to \bar{\nu}_{e}e) &= \frac{G_{F}^{2}m_{e}E_{\nu}}{2\pi} \left[(L_{e} + 2)^{2}/3 + R_{e}^{2}\right] \end{aligned}$$

Gargamelle $\nu_{\mu}e$ Event

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 86

"Model-independent" analysis

Measure all cross sections to determine chiral couplings L_e and R_e or traditional vector and axial couplings v and a

$$a = rac{1}{2}(L_e - R_e)$$
 $v = rac{1}{2}(L_e - R_e)$
 $L_e = v + a$ $R_e = v - a$

model-independent in V, A framework

Neutrino-electron scattering

Twofold ambiguity remains even after measuring all four cross sections: same cross sections result if we interchange $R_e \leftrightarrow -R_e \ (v \leftrightarrow a)$ Consider $e^+e^- \rightarrow \mu^+\mu^-$

$$\mathcal{M} = -ie^{2}\bar{u}(\mu, q_{-})\gamma_{\lambda}Q_{\mu}v(\mu, q_{+})\frac{g^{\lambda\nu}}{s}\bar{v}(e, p_{+})\gamma_{\nu}u(e.p_{-}) +\frac{i}{2}\left(\frac{G_{F}M_{Z}^{2}}{\sqrt{2}}\right)\bar{u}(\mu, q_{-})\gamma_{\lambda}[R_{\mu}(1+\gamma_{5})+L_{\mu}(1-\gamma_{5})]v(\mu, q_{+}) \times\frac{g^{\lambda\nu}}{s-M_{Z}^{2}}\bar{v}(e, p_{+})\gamma_{\nu}[R_{e}(1+\gamma_{5})+L_{e}(1-\gamma_{5})]u(e, p_{-})$$

muon charge $Q_{\mu} = -1$

$$\begin{aligned} \frac{d\sigma}{dz} &= \frac{\pi \alpha^2 Q_{\mu}^2}{2s} (1+z^2) \\ &- \frac{\alpha Q_{\mu} G_F M_Z^2 (s-M_Z^2)}{8\sqrt{2}[(s-M_Z^2)^2 + M_Z^2 \Gamma^2]} \\ &\times [(R_e + L_e)(R_{\mu} + L_{\mu})(1+z^2) + 2(R_e - L_e)(R_{\mu} - L_{\mu})z] \\ &+ \frac{G_F^2 M_Z^4 s}{64\pi[(s-M_Z^2)^2 + M_Z^2 \Gamma^2]} \\ &\times [(R_e^2 + L_e^2)(R_{\mu}^2 + L_{\mu}^2)(1+z^2) + 2(R_e^2 - L_e^2)(R_{\mu}^2 - L_{\mu}^2)z] \end{aligned}$$

F-B asymmetry
$$A \equiv \frac{\int_0^1 dz \, d\sigma/dz - \int_{-1}^0 dz \, d\sigma/dz}{\int_{-1}^1 dz \, d\sigma/dz}$$

$$\lim_{s/M_Z^2 \ll 1} A = \frac{3G_F s}{16\pi \alpha Q_\mu \sqrt{2}} (R_e - L_e) (R_\mu - L_\mu)$$

$$\approx -6.7 \times 10^{-5} \left(\frac{s}{1 \text{ GeV}^2}\right) (R_e - L_e) (R_\mu - L_\mu)$$

$$= -3G_F s a^2 / 4\pi \alpha \sqrt{2}$$

J. Mnich Phys. Rep. 271, 181-266 (1996)

Measuring A resolves ambiguity

Validate EW theory, measure $\sin^2 heta_W$

Neutrino-electron scattering

With a measurement of $\sin^2\theta_W$, predict

$$M_W^2 = g^2 v^2 / 4 = e^2 / 4G_F \sqrt{2} \sin^2 \theta_W \approx (37.3 \text{ GeV}/c^2)^2 / \sin^2 \theta_W$$

 $M_Z^2 = M_W^2 / \cos^2 \theta_W$

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 92

568 Intermediate Vector Bosons W^+ , W^- , and Z^0

UA1

At low energies: $\sigma(\bar{\nu}_e e \rightarrow \text{hadrons}) > \sigma(\nu_\mu e \rightarrow \mu \nu_e) >$ $\sigma(\nu_e e \rightarrow \nu_e e) > \sigma(\bar{(\nu_e e \rightarrow \bar{\nu}_\mu \mu)} > \sigma(\bar{\nu}_e e \rightarrow \bar{\nu}_e e) >$ $\sigma(\nu_\mu e \rightarrow \nu_\mu e) > \sigma(\bar{\nu}_\mu e \rightarrow \bar{\nu}_\mu e)$

EW interactions of quarks

▷ Left-handed doublet

$$I_{3} \qquad Q \qquad Y = 2(Q - I_{3})$$

$$\mathsf{L}_{q} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \qquad \frac{1}{2} \qquad +\frac{2}{3} \qquad \frac{1}{3}$$

▷ two right-handed singlets

$$I_{3} \qquad Q \qquad Y = 2(Q - I_{3})$$

$$\mathsf{R}_{u} = u_{R} \qquad 0 \qquad +\frac{2}{3} \qquad +\frac{4}{3}$$

$$\mathsf{R}_{d} = d_{R} \qquad 0 \qquad -\frac{1}{3} \qquad -\frac{2}{3}$$

▷ CC interaction

$$\mathcal{L}_{W-q} = \frac{-g}{2\sqrt{2}} \left[\bar{u}_e \gamma^\mu (1 - \gamma_5) d W^+_\mu + \bar{d}\gamma^\mu (1 - \gamma_5) u W^-_\mu \right]$$

identical in form to $\mathcal{L}_{W-\ell}$: universality \Leftrightarrow weak isospin

▷ NC interaction

$$\mathcal{L}_{Z-q} = \frac{-g}{4\cos\theta_W} \sum_{i=u,d} \bar{q}_i \gamma^{\mu} \left[L_i(1-\gamma_5) + R_i(1+\gamma_5) \right] q_i Z_{\mu}$$
$$L_i = \tau_3 - 2Q_i \sin^2\theta_W \quad R_i = -2Q_i \sin^2\theta_W$$
equivalent in form (not numbers) to $\mathcal{L}_{Z-\ell}$

Trouble in Paradise

Universal $u \leftrightarrow d$, $\nu_e \leftrightarrow e$ not quite right

Good:
$$\begin{pmatrix} u \\ d \end{pmatrix}_L \rightarrow$$
 Better: $\begin{pmatrix} u \\ d_\theta \end{pmatrix}_L$
 $d_\theta \equiv d \cos \theta_C + s \sin \theta_C \quad \cos \theta_C = 0.9736 \pm 0.0010$

"Cabibbo-rotated" doublet perfects CC interaction (up to small third-generation effects) but \Rightarrow serious trouble for NC

$$\mathcal{L}_{Z-q} = \frac{-g}{4\cos\theta_W} Z_\mu \left\{ \bar{u}\gamma^\mu \left[L_u(1-\gamma_5) + R_u(1+\gamma_5) \right] u \right. \\ \left. + \bar{d}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] d \, \cos^2\theta_C \right. \\ \left. + \bar{s}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] s \, \sin^2\theta_C \right. \\ \left. + \bar{d}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] s \, \sin\theta_C \cos\theta_C \right. \\ \left. + \bar{s}\gamma^\mu \left[L_d(1-\gamma_5) + R_d(1+\gamma_5) \right] d \, \sin\theta_C \cos\theta_C \right\}$$

Strangeness-changing NC interactions highly suppressed!

Glashow-Iliopoulos-Maiani

two left-handed doublets

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \begin{pmatrix} u \\ d_\theta \end{pmatrix}_L \begin{pmatrix} c \\ s_\theta \end{pmatrix}_L$$
$$(s_\theta = s \cos \theta_C - d \sin \theta_C)$$

+ right-handed singlets, e_R , μ_R , u_R , d_R , c_R , s_R

Required new charmed quark, c

Cross terms vanish in $\mathcal{L}_{Z^{-q}}$,

$$L_i = \tau_3 - 2Q_i \sin^2 \theta_W \quad R_i = -2Q_i \sin^2 \theta_W$$

flavor-diagonal interaction!

Straightforward generalization to n quark doublets

$$\mathcal{L}_{W-q} = \frac{-g}{2\sqrt{2}} \left[\bar{\Psi} \gamma^{\mu} (1 - \gamma_5) \mathcal{O} \Psi W^+_{\mu} + \text{h.c.} \right]$$

$$\begin{pmatrix} u \\ c \\ \vdots \\ \vdots \\ \\ d \\ s \\ \vdots \end{pmatrix} \qquad \text{flavor structure } \mathcal{O} = \begin{pmatrix} 0 & U \\ 0 & 0 \end{pmatrix}$$

$$U: \text{ unitary quark mixing matrix}$$

Weak-isospin part:
$$\mathcal{L}_{Z^-q}^{iso} = \frac{-g}{4\cos\theta_W} \bar{\Psi}\gamma^{\mu}(1-\gamma_5) \begin{bmatrix} \mathcal{O}, \mathcal{O}^{\dagger} \end{bmatrix} \Psi$$

Since $\begin{bmatrix} \mathcal{O}, \mathcal{O}^{\dagger} \end{bmatrix} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \propto \tau_3$
 \Rightarrow NC interaction is flavor-diagonal

General $n \times n$ quark-mixing matrix U: n(n-1)/2 real \angle , (n-1)(n-2)/2 complex phases 3×3 (Cabibbo–Kobayashi-Maskawa): $3 \angle + 1$ phase \Rightarrow CP violation Qualitative successes of $SU(2)_L \otimes U(1)_Y$ theory:

- ▷ neutral-current interactions
- ▷ necessity of charm
- \triangleright existence and properties of W^{\pm} and Z^{0}

Decade of precision tests EW (one-per-mille)

M_Z	91187.6 ± 2.1 MeV/ c^2
Γ_Z	$2495.2\pm2.3\mathrm{MeV}$
$\sigma^0_{ m hadronic}$	$41.541\pm0.037~\mathrm{nb}$
$\Gamma_{hadronic}$	$1744.4\pm2.0~{\rm MeV}$
$\Gamma_{leptonic}$	$83.984\pm0.086\mathrm{MeV}$
$\Gamma_{invisible}$	$499.0 \pm 1.5 \mathrm{MeV}$

where $\Gamma_{\text{invisible}} \equiv \Gamma_Z - \Gamma_{\text{hadronic}} - 3\Gamma_{\text{leptonic}}$

light neutrinos $N_{\nu} = \Gamma_{\text{invisible}} / \Gamma^{\text{SM}}(Z \to \nu_i \bar{\nu}_i)$ Current value: $N_{\nu} = 2.994 \pm 0.012$... excellent agreement with ν_e , ν_{μ} , and ν_{τ}

Three light neutrinos

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 100

The top quark must exist

 \triangleright Two families

$$\left(egin{array}{c} u \\ d \end{array}
ight)_L \left(egin{array}{c} c \\ s \end{array}
ight)_L$$

don't account for CP violation. Need a third family ... or another answer.

Given the existence of b, (τ)

▷ top is needed for an anomaly-free EW theory

 \triangleright absence of FCNC in *b* decay ($b \not\rightarrow s \ell^+ \ell^-$, etc.)

 $\triangleright b$ has weak isospin $I_{3L} = -\frac{1}{2}$; needs partner $\begin{pmatrix} t \\ b \end{pmatrix}_L$

 $e \qquad L_b = I_{3L} - Q_b \sin^2 \theta_W$ $Z^0 \qquad R_b = I_{3R} - Q_b \sin^2 \theta_W$

