Neutrinos: physics beyond the Standard Model

Neutrino University, July 23, 2025

Matheus Hostert mhostert@g.harvard.edu

Harvard University → University of Iowa

New Physics with Neutrinos: way more than I can cover in one lecture

References to other lectures series for those interested in phenomenology/theory:

https://npc.fnal.gov/neutrino-university-past-series/

- 1) Mainz lectures on Lab probes of DM and neutrinos Brian Batell
 - 2) TASI lectures on <u>neutrino mass models</u> André de Gouvea
 - 3) ICTP lectures on <u>neutrino physics</u> Pedro Machado
 - 4) TASI lectures on <u>neutrino physics</u> Shirley Li

+ many others...

Much more at the International Neutrino Summer School (INSS) 2025

We hope to record the INSS lectures, stay tuned!

By the way... what does phenomenology mean?

Theory:

Ideas to answer conceptual and empirical puzzles. Make sense of data.

Experiment:

Measurements of known and unknown phenomena, expansion of our empirical boundaries.

Phenomenology

NEAT: Neutrino Experiment and Theory (Workshop)

2nd Short-Baseline Experiment-Theory Workshop, April 2nd to 5th 2024

5th New Physics Opportunities at Neutrino Facilities Workshop (NPN 2025)

Joint workshops

The interface or transition between the two worlds.

Interprets and predicts measurements using existing or proposed theories.

Fermilab Theory division

This is the so-called "Wine and Cheese" seminar.

Regular seminars are Fridays at 3:30 p.m. in Wilson Hall, One West.

This Lecture / Talk

1) Neutrinos in the Standard Model — do they fit?

The Higgs and fermion masses: Dirac? Majorana? Both?

A taste of neutrino mass theories.

2) Neutrinos as probes of new fundamental physics

New forces and particles.

Neutrinos as portals to dark matter.

Note: I will take lots of shortcuts and will have to talk about things superficially. Please ask questions!

This Lecture / Talk

1) Neutrinos in the Standard Model — do they fit?

The Higgs and fermion masses: Dirac? Majorana? Both?

A taste of neutrino mass theories.

2) Neutrinos as probes of new fundamental physics

New forces and particles.

Neutrinos as portals to dark matter.

The Standard Model

Quanta Magazine: A New Map of the Standard Model of Particle Physics

Particles and Fields

Particles are the smallest excitations of "quantum field"

Each particle is associated with its own field

The Higgs

The Higgs Boson (Spin-0)

Dynamics

(Symmetries)

Strong Force
SU(3)

The Higgs Boson (Spin-0)

Dynamics

(Symmetries)

Strong Force
SU(3)

Electroweak Force $SU(2) \times U(1)$

The Higgs Boson (Spin-0)

The Higgs Boson

(Spin-0)

Bosons (Spin-1)

Left and right-handed quarks with 3 colors

The Higgs Boson (Spin-0)

Matter Content

The Higgs

Dynamics

(Symmetries)

Strong Force
SU(3)

Electroweak Force $SU(2) \times U(1)$

Left and right-handed quarks
with 3 colors
and 3 generations (u, c, t and d, s, b)

The Higgs Boson (Spin-0)

Leptons

The Higgs Boson (Spin-0)

(Spin-0)

Bosons (Spin-1)

(Spin-1/2)

All Fermions
(Spin-1/2)

The Higgs Boson (Spin-0)

How many neutrinos?

Usual lepton flavors.

How many neutrinos?

Usual lepton flavors.

"Sterile" or "right-handed" neutrinos.

Fermion Masses

Dirac Mass

Majorana Mass

$$\psi_L \xrightarrow{m_D} \psi_R$$

$$\psi_L \xrightarrow{W_L} \overline{\psi_L}$$

Couples two chiral particles

Going from particle to antiparticle

Put in "by-hand": a mass is an intrinsic property of the field.

It should be Lorentz-invariant, so I need to associate it with a combination that has "no spin":

$$\psi_L \psi_R$$
 or $\psi_L \overline{\psi_L}$

Fermion Masses

Dirac Mass

Majorana Mass

$$m_D$$
 $\psi_L \longrightarrow \psi_R$
 Q_{EM}

$$\psi_L$$
 \longrightarrow $\overline{\psi}_L$ Q_{EM} Q_{EM}

Any quantum number associated with the fermion is violated by a Majorana mass

Reason why all other SM fermions can only have a Dirac mass.

Electromagnetic charge Q_{EM} conservation is incompatible with a Majorana mass

What about neutrinos?

Dirac Mass

Majorana Mass

$$m_D$$
 $\nu_L \longrightarrow \nu_R$
 $Q_{\rm EM} = 0$
 $Q_{\rm EM} = 0$

$$\begin{array}{ccc}
 & m_L \\
 & \nu_L & \longrightarrow & \overline{\nu_L} \\
Q_{\text{EM}} & = 0 & -Q_{\text{EM}} & = 0
\end{array}$$

Neutrinos carry no electromagnetic charge, so Majorana masses are allowed.

The only fundamental fermion we know of that can do this.

What about neutrinos?

Dirac Mass

Majorana Mass

$$\begin{array}{ccc}
 & m_D \\
 & \nu_L & \longrightarrow & \nu_R \\
Q_W \neq 0 & Q_W = 0
\end{array}$$

However!

Left- and right-handed particles carry different charges (" $Q_{
m W}$ ") under the Weak force (the charge responsible for weak Z and W^{\pm} interactions).

Shouldn't " $Q_{\rm W}$ " also be conserved?

 Q_W is actually a combination of the fermion charge under the $SU(2)_L \times U(1)_Y$ gauge symmetries.

The Higgs Mechanism

Potential energy V(x)

$$V(x) \sim \left(h^2 - v_h^2\right)^2$$

The Higgs Mechanism

Potential energy V(x)

$$V(x) \sim \left(h^2 - v_h^2\right)^2$$

Higgs develops a non-zero "vacuum expectation value" (v.e.v.)

Cartoonish picture fermion masses from the Higgs field

Electron-Higgs interactions give rise to the electron mass.

As we will see, " e_L " and " e_R " are two sides of the same coin:

the Dirac fermion "e"

This is a "phib" (a physics fib): see this nice discussion by M. Strassler

"Dirac Mass"

$$m_D = y \times v_h$$

y Is called the Yukawa coupling (Typically between 0 and 1)

It turns out that the Higgs background allows this charge to be effectively violated.

The Higgs acts to "store" and "lend" any leftover " Q_W ".

 m_D and m_L are now no longer intrinsic properties of the field, but the result of the Higgs (background) interacting with fermions, conserving Q_W overall.

The problem with neutrinos

Without ν_R , the Standard Model predicts massless neutrinos.

As you know, this is **not** compatible with the fact that neutrinos oscillate!

What about Majorana masses?

"Majorana Mass"

$$m_L = \text{coupling'} \times \frac{v_h^2}{\Lambda}$$

 m_L implies the existence of a new energy scale Λ that is different from v_h . The SM is then an **effective theory** and recognize the existence of **new physics at scale** Λ .

Not a solution on its own, but a useful framework.

What about right-handed neutrinos?

"Dirac Mass"

Majorana Mass

$$\begin{array}{cccc}
& m_R \\
\nu_R & \longrightarrow & \overline{\nu_R}
\end{array}$$

 ν_R is "sterile" — it need not carry any (conserved) quantum number.

Unless new symmetries exist in nature, ν_R should have a Majorana mass.

This can now be a genuine fundamental parameter.

What about right-handed neutrinos?

"Dirac Mass"

Majorana Mass

$$\nu_R \longrightarrow \overline{\nu_R}$$

One such symmetry could be Lepton Number:

$$L(\nu_L) = L(\nu_R) = +1$$

If conserved, $m_R=0$ and $m_L=0$, and neutrinos are simply Dirac particles.

Mass matrix of ν_L and ν_R :

$$(
u_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$

Interaction (flavor) basis

 $(
u_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$

Mass (physical) states

Diagonalize to mass basis
$$(\nu_1 \quad \nu_2) \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

General 2 neutrino picture:
$$\begin{cases} m_R^2 \pm \sqrt{4m_D^2 + m_R^2} \\ m_{1,2} \sim \frac{m_R^2 \pm \sqrt{4m_D^2 + m_R^2}}{2m_R} \end{cases}$$

Weakly-interacting neutrino (standard)

Sterile neutrino (new physics, not observed)

$$|\nu_L\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$$

$$|\nu_R\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

Let's investigate a few regimes

Interaction (flavor) basis

$$(\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & 0 \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$

Diagonalize to mass basis

Mass (physical) states

$$(\nu_{-} \quad \nu_{+}) \begin{pmatrix} m_{\nu_{-}} & 0 \\ 0 & m_{\nu_{+}} \end{pmatrix} \begin{pmatrix} \nu_{-} \\ \nu_{+} \end{pmatrix}$$

Dirac Neutrinos: degenerate states

$$m_R = 0$$

$$\begin{cases} m_{\nu_+} = m_D \\ m_{\nu_-} = m_D \end{cases}$$

Weakly-interacting neutrino (standard)

$$\langle \nu_L \rangle = \frac{|\nu_+\rangle + |\nu_-\rangle}{\sqrt{2}} \qquad \theta = 0$$

Sterile neutrino (new physics, not observed)

$$\nu_R\rangle = \frac{|\nu_+\rangle - |\nu_-\rangle}{\sqrt{2}}$$

Interaction (flavor) basis

$$(\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$

Diagonalize to mass basis

Mass (physical) states

$$(\nu_{-} \quad \nu_{+}) \begin{pmatrix} m_{\nu_{-}} & 0 \\ 0 & m_{\nu_{+}} \end{pmatrix} \begin{pmatrix} \nu_{-} \\ \nu_{+} \end{pmatrix}$$

$$m_R \ll m_D$$

Weakly-interacting neutrino (standard)

Sterile neutrino (new physics, not observed)

$$|\nu_L\rangle \sim \frac{|\nu_+\rangle + |\nu_-\rangle}{\sqrt{2}}$$

$$\theta \sim \frac{\pi}{4}$$

$$|\nu_R\rangle \sim \frac{|\nu_+\rangle - |\nu_-\rangle}{\sqrt{2}}$$

Neutrino Masses (seesaw)

Interaction (flavor) basis

$$(\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$

Diagonalize to mass basis

Mass (physical) states

$$(\nu \quad N) \begin{pmatrix} m_{\nu} & 0 \\ 0 & m_{N} \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix}$$

Seesaw Mechanism: large Majorana masses

$$m_R \gg m_D$$

Weakly-interacting neutrino (standard)

Sterile neutrino (new physics, not observed)

$$|\nu_L\rangle \sim |\nu\rangle + \theta |N\rangle$$

$$\theta \ll 1$$

$$|\nu_R\rangle \sim |N\rangle - \theta |\nu\rangle$$

Yet another cartoon: the seesaw mechanism

$$\delta t \delta E > rac{\hbar}{2} \implies \delta t \sim rac{1}{m_R}$$
 "The larger m_R is, the less time ν_R has to fluctuate into existence"

Neutrino Masses (seesaw)

Interaction (flavor) basis

$$(\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$

Diagonalize to mass basis

Mass (physical) states

$$(\nu \quad N) \begin{pmatrix} m_{\nu} & 0 \\ 0 & m_{N} \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix}$$

Let's put some numbers in

(assuming "couplings" = 1 so that $m_D \sim v_h$)

What we want: $m_{\nu} \sim 0.1 \, \, \mathrm{eV}$

$$\text{What we get: } m_{\nu} \sim \frac{m_D^2}{m_R} = 0.1 \text{ eV} \left(\frac{v_h}{100 \text{ GeV}} \right)^2 \left(\frac{10^{14} \text{ GeV}}{m_N} \right) \quad \text{and} \quad \theta^2 \sim 10^{-24}$$

Physicists

Neutrino Masses (seesaw)

Interaction (flavor) basis

 $(ec{
u}_L \quad ec{
u}_R) \, \begin{pmatrix} 0 & M_D \ M_D & M_R \end{pmatrix} \, \begin{pmatrix} ec{
u}_L \ ec{
u}_R \end{pmatrix}$

Diagonalize to

Mass (physical) states

$$(\vec{
u} \quad \overrightarrow{N}) \, \begin{pmatrix} M_{
u} & 0 \\ 0 & M_N \end{pmatrix} \, \begin{pmatrix} \vec{
u} \\ \vec{N} \end{pmatrix}$$

In reality, this is a matrix multiplication problem:

(3x3) (3x?) (?x?) (?x3)
$$M_{\nu} \sim M_{D} M_{R}^{-1} M_{D}^{T}$$

We know nothing about the matrix M_N :

How many right-handed neutrinos (how many entries in $\vec{\nu}_R$)? Do they respect new kinds of symmetries? Do they feel new interactions?

Neutrino Masses (the *inverse* seesaw)

Interaction (flavor) basis

$$\left(egin{array}{cccc}
u_L &
u_R &
u_R'
ight) \left(egin{array}{cccc} 0 & m_D & 0 & \ m_D & 0 & M \ 0 & M & m_R \end{array}
ight) \left(egin{array}{cccc}
u_L & \
u_R & \
u_R' & \
u_R'$$

Now there are two kinds of RH neutrinos for a single ν_L

"Left for the reader": Diagonalize this mass matrix assuming $m_D \ll M$ and $m_R \ll M$.

Neutrino Masses (the *inverse* seesaw)

Interaction (flavor) basis

$$\left(egin{array}{cccc}
u_L &
u_R &
u_R'
ight) \left(egin{array}{cccc} 0 & m_D & 0 \ m_D & 0 & M \ 0 & M & m_R \end{array}
ight) \left(egin{array}{c}
u_L \
u_R \
u_R' \end{array}
ight)$$

Now there are two kinds of RH neutrinos for a single u_L

You should find:

$$m_1 = \frac{m_D^2}{M^2} m_R$$
 (Majorana particle) and $m_{2,3} \sim M \pm \frac{m_R}{2}$ (quasi-Dirac pair).

A "seesaw", but the smaller the "Majorana" mass m_R is, the lighter neutrinos are.

Lepton number is almost a good symmetry (it is exact if $m_R = 0$ and "lightest" neutrinos are massless)

Neutrino Masses (the *inverse* seesaw)

Interaction (flavor) basis

$$egin{pmatrix} (
u_L &
u_R &
u_R') \begin{pmatrix} 0 & m_D & 0 \\ m_D & 0 & M \\ 0 & M & m_R \end{pmatrix} \begin{pmatrix}
u_L \\
u_R \\
u_R' \end{pmatrix}$$

Now there are two kinds of RH neutrinos for a single ν_L

Heavy neutrinos can be within experimental reach:

Summary

This Lecture / Talk

1) Neutrinos in the Standard Model — do they fit?

The Higgs and fermion masses: Dirac? Majorana? Both?

A taste of neutrino mass theories.

2) Neutrinos as probes of new fundamental physics

New forces and particles.

Neutrinos as portals to dark matter.

Incompleteness problems:

Dark matter

Neutrino masses and mixing

STANDARD MODEL

Predictivity problems:

No CP violation in strong force?

Fermion mass pattern?

Higgs mass and naturalness?

Matter-antimatter asymmetry?

STANDARD MODEL

DARK SECTOR

New particles carry no SM charge

New fundamental mass scales

New particles can be light

Testable at low energies!

STANDARD MODEL

Heavy Neutrinos

STANDARD MODEL

Weak interaction

$$G_F \sim \frac{1}{m_W^2}$$

DARK SECTOR

Heavy Neutrinos

Weaker-than-Weak interactions ($\theta \ll 1$)

$$\frac{\tau_N}{\tau_{\text{muon}}} \sim \left(\frac{m_\mu}{m_N}\right)^5 \times \frac{1}{\theta^2}$$

Accelerator neutrino experiments

Accelerator neutrino experiments

(the near detector — largest intensity of neutrinos)

Neutrino experiments are, by construction, sensitive to very rare phenomena.

Really good at searching for new effects that compete with the weak force.

Accelerator neutrino experiments

(the near detector — largest intensity of new particles?)

Near Detector and Short-Baseline Experiments

1) as close to the source as possible (high intensity & not interested in standard oscillations) 2) have good particle identification (neutrino vs other BSM phenomena).

Parameter Space of Hypothetical Heavy Neutrinos

Parameter Space of Hypothetical Heavy Neutrinos

STANDARD MODEL

DARK SECTOR

 $\mathscr{L}_{\mathrm{DS}}$

Heavy Neutrinos

STANDARD MODEL

DARK SECTOR N Neutrino portal **Heavy Neutrinos** Weaker-than-Weak force **Dark photons** Weaker-than-EM force Photon portal Weaker-than-Yukawa force **Dark Higgs** Higgs portal Axions

Axions and Axion-like-particles

STANDARD MODEL N ${\cal U}$ Neutrino portal Choose Wiselin Photon portal Higgs portal Axions and Axion-like-particles

DARK SECTOR

Dark photons

Dark Higgs

Axions

STANDARD MODEL N Neutrino portal Chade Misely. Photon portal Higgs portal Axions and Axion-like-particles

DARK SECTOR

Just the "starter" portals.

Many possibilities to be explored.

Dark photons

Dark Higgs

dark matter?

Light dark matter example:

 $lpha_D=1,\ M_\chi/M_{A'}=0.6$ 10^{-6} 10^{-6} 10^{-7} LSND 10^{-8} 10^{-9} 10^{-10} Beam Dump 10^{-11} 10^{-2} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1}

Idea in A. de Gouvea, P. J. Fox, R. Harnik, K. J. Kelly, and Y. Zhang (2018)

Results from MicroBooNE collaboration (2024)

Light dark matter example:

Light Dark Matter

NOvA Experiment

"Dark" heavy neutrino example:

MicroBooNE coll. + theorists! arxiv.org/abs/2502.10900

Neutrino upscattering as a source of heavy neutrinos

Decay $N \to \nu A'$ and $A' \to e^+ e^-$ mimic electron and photon signals at Cherenkov detectors.

MicroBooNE LArTPC

Other examples of beyond-the-Standard Model applications:

New ForcesNon-Standard Interactions (NSIs)

Light Dark Matter

Sterile Neutrino Oscillations

Long-Lived Particles

Take Home

Neutrino masses gives us "reasonable doubt" that the SM is incomplete.

Many explanations: challenge is in testing them. Need data!

Particle physics entered a new era of studying rare phenomena and neutrino experiments can help us navigate it

This is a fertile ground for phenomenology!

Rare muon decays as probes of new physics

Indirect probes of neutrino mass physics

M. Hostert