Neutrinos in Cosmology and the Cosmic Microwave Background

Bradford Benson Fermilab/UChicago August 6, 2025

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

13.7 Billion Years

after the Big Bang

1965: Discovery of the Cosmic Microwave Background (CMB)

Received 1978 Nobel Prize

Arno Penzias & Robert Wilson in front of the 20 ft Bell Labs antenna used to discover the microwave background

"Smoking Gun" evidence for the Big Bang

The CMB is really bright!

If you took a census of energy in the form of light in the Universe, more than 90% is from the CMB

The CMB is 10x brighter than every star that's shone in the history of the Universe!

1992: Structure in CMB Discovered by COBE

COBE team leaders
John Mather & George Smoot
Received 2006 Nobel Prize

- 1) Smooth to 1 part in 100,000
- 2) Near-perfect 2.7 K blackbody

1992: The CMB is measured to be the most perfect black body in the Universe

COBE team leaders
John Mather & George Smoot
Received 2006 Nobel Prize

The CMB is a "Baby" Picture of the Universe

Stephen Hawking said of the COBE measurement: "It is the discovery of the century, if not of all time."

The CMB is a "Baby" Picture of the Universe

Cosmic Observables

Human

Equivalent

Ages

Cosmic Microwave Background

Structure Formation

Galaxies and Clusters of Galaxies

First Several Minutes

First Few Years

Near Retirement

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

1992: COBE 1/100,000 fluctuations on 3 Kelvin background

2013: Planck 1/100,000 fluctuations on 3 Kelvin background

Credit: ESA (Planck)

What have we learned?

Encoded within the CMB is information regarding the Universe's initial conditions, its geometry (flat vs curved), and its content (ordinary matter, dark matter, dark energy)

Bass Treble

Like a stereo equalizer characterizes the spectrum of sound, the "angular power spectrum" characterizes the signal in the CMB maps as a function of spatial scale.

What have we learned?

Encoded within the CMB is information regarding the Universe's initial conditions, its geometry (flat vs curved), and its content (ordinary matter,

dark matter, dark energy)

A Cosmic Symphony!

2013: Planck 1/100,000 fluctuations on 3 Kelvin background

Credit: ESA (Planck)

2013: Planck 1/100,000 fluctuations on 3 Kelvin background

Credit: ESA (Planck)

Planck 50 deg²

SPT 50 deg²

6x deeper
6x finer angular resolution

SPT 150 GHz 50 deg²

CMB Anisotropy

Variations in the Matter Distribution in the Early Universe

Hu 2008, arXiv: 0802.3688

The CMB Today: implies a Universe dominated by dark matter and dark energy (ACDM model)

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

The Cosmic Neutrino Background

Cosmic Neutrino Background

1 s (~2 MeV)

- Neutrinos were thermally generated in the very early universe (first ~second), coupled to regular matter via weak interactions.
- After ~1-sec (temperatures <~2MeV),
 neutrinos decoupled from regular matter, and
 these relic neutrinos today are called the
 Cosmic Neutrino Background (or CvB)

The Cosmic Neutrino Background

Cosmic 1s (~2 MeV)
Neutrino Background

• Since neutrinos are in thermal equilibrium with photons, the density of neutrinos in the Universe only depends on the photon density and the number of neutrino species

$$N_{\text{eff}} \equiv \frac{\rho_{\nu}}{\rho_{\gamma}} \left(\frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \right)$$

- Neff is the effective number of relativistic species.
- Standard model prediction is Neff = 3.044
 - 3 from 3 neutrino species. And 0.044 for energy injected by electron/positron annihilation.
- Neff > 3.044 could correspond additional relativistic density, e.g., due to a new relativistic particle species generated thermally during recombination

The Cosmic Neutrino Background

Cosmic Neutrino Background 1 s (~2 MeV)

Number Density of Neutrinos over Cosmic Time

Scale Factor (of Universe) = a

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left(\frac{\Omega_{r}}{a^{4}} + \frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{k}}{a^{2}} + \Omega_{\Lambda}\right)$$

- Universe began in photon dominated state
- Components dilute differently as Universe expands, based on scale factor (a), or the size of Universe, e.g.,
 - Dark Energy is modeled as a "cosmological constant", density independent of scale factor
 - Radiation energy density dilutes faster because wavelength also scales with scale factor
- Radiation component includes photons and relativistic neutrinos
- Matter component includes baryons, dark matter, and non-relativistic neutrinos.

Number Density of Neutrinos over Cosmic Time

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left(\frac{\Omega_{r}}{a^{4}} + \frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{k}}{a^{2}} + \Omega_{\Lambda}\right)$$

When the CMB was emitted 13.7 Billion Years ago, neutrinos made up ~10% of the energy density of the Universe

Scale Factor (of Universe) = a

CMB Angular Scales

 θ_{sound} , is the angular distance a sound wave could have travelled at recombination

CMB Angular Scales

Photons have a mean free path and diffuse in hot plasma, causing exponential damping in CMB power spectrum.

Odamping, CMBphoton diffusion length at recombination

ad Benson I Neutrinos in Cosmology

CMB Angular Scales

A measurement of both the sound and damping scale allows a measurement of the expansion rate (H) at recombination (z ~ 1100).

The expansion rate depends on the density / total number of neutrinos.

ad Benson I Neutrinos in Cosmology

CMB Power Spectrum variation with Neff

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

Neutrino Mass Affects Structure Growth

- Neutrinos affect growth of largescale structure in the Universe
- Sum of the neutrino mass species $(\Sigma m_{\nu}) > 0.06$ eV from oscillation experiments
 - Neutrinos ~> mass of all the stars in the Universe
- Above free-streaming scale, neutrinos act like matter
- Below free-streaming scale, neutrinos act like radiation

Measuring Large Scale Structure P(k) & $\sum_{i=1}^{n} m_{i}$

Observations' Sensitivity to LSS P(k,z)

Baryon Acoustic Oscillations

Peloso et al., arXiv:1505.07477

Baryon Acoustic Oscillations: SDSS Distance Ladder

Outline

- 1) Introduction to Cosmology and the CMB
- 2) How we constrain cosmology from the CMB
- 3) Cosmological constraints on neutrinos:
 - (a) The number of neutrino species and the abundance of neutrinos.
 - (b) The sum of the neutrino masses
- 4) Current and future constraints

Big Bang Nucleosynthesis (BBN): The Abundance of Light Elements

- BBN predicts the abundance of light elements created ~3 minutes after the Big Bang
- We can measure abundance of Helium (Y_P) and Deuterium (Y_{DP}) in old (just forming) galaxies
- Compare to prediction given BBN theory and baryon density measured from Planck

Neff Constraints from the CMB & BBN

- Use Helium, Deuterium abundance measurements, to also constrain "Neff"
- Excellent agreement with CMB measurements
- Connects physics at three very different epochs in Universe:
 - 1) Cosmic neutrino background at ~1 sec
 - 2) Light element production at ~3 min.
 - 3) CMB emitted at ~380,000 years

Neff Constraints from the CMB & BBN

- Use Helium, Deuterium abundance measurements, to also constrain "Neff"
- Excellent agreement with CMB measurements
- Connects physics at three very different epochs in Universe:
 - 1) Cosmic neutrino background at ~1 sec
 - 2) Light element production at ~3 min.
 - 3) CMB emitted at ~380,000 years

Neff: Not just Light Relics

Current $\sum m_{\nu}$ Limits

Neutrino mass is degenerate with other cosmological parameters ($\Omega_{\rm m}$ especially), so all cosmological data useful in improving constraints: $\Sigma m_{\nu} < 0.09 \; {\rm eV} \; (95\% \; {\rm CL})$

CMB + CMB Lensing (Planck 2018)

- + Type Ia SNe (Pantheon)
- + BAO + RSD (SDSS DR12+DR16)

Di Valentino, Gariazzo & Mena, arXiv:2106.15267

Cosmic Complementarity with HEP Neutrino Experiments

	ββ	β	Cosmo		
Scenario	m_{etaeta}	m_{eta}	$\sum m_ u$	$\Delta N_{ m eff}$	Conclusion
Normal hierarchy	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	0	Normal neutrino physics; no evidence for BSM
Dirac Neutrinos	$< 2\sigma$	$< 2\sigma$	$350\mathrm{meV}$	0	Neutrino is a Dirac particle
Sterile Neutrino	$< 2\sigma$	$< 2\sigma$	$350\mathrm{meV}$	> 0	Detection of sterile neutrino consistent with short-baseline
Diluted Neutrinos	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$< 150\mathrm{meV}$	< 0	Modified thermal history (e.g. late decay)
Exotic Neutrinos	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$< 150\mathrm{meV}$	0	e.g. Modified thermal history; (e.g. neutrino decay to new particle)
Excluded	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$500\mathrm{meV}$	0	Already excluded by cosmology
Dark Radiation	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	> 0	Evidence for new light particles; normal hierarchy for neutrinos
Late Decay	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	< 0	Energy-injection into photons at temperature $T \lesssim 1~{\rm MeV}$

Table 3-2. Relation between neutrino experiments and cosmology. We include the measurement of the Majorona mass via NLDBD $(m_{\beta\beta})$ or a kinematic endpoint (m_{β}) compared to the cosmological measurement of the sum of the masses $\sum m_{\nu}$ and the CMB measurement of $N_{\rm eff}$. Here $< 2\sigma$ indicates an upper limit from future observations. For Section 3.4, one can use $\sigma(m_{\beta\beta}) \approx 0.075 \, {\rm eV}$ and $\sigma(m_{\beta}) \approx 0.1 \, {\rm eV}$ for observations on the timescale of CMB-Stage IV. For $\Delta N_{\rm eff}$ the use of ≥ 0 indicates a significant deviation from the Standard Model value.

CMB-S4 Science Book (arXiv:1610.02743)

Cosmological Tensions: CMB & BAO

- Cosmology data are nearing the sensitivity to require an additional model parameter to fit the data: Neutrino mass
- Current CMB & BAO
 measurements currently give best
 constraints, however they are in
 weak (~3-sigma) tension, giving a
 possibly artificially low lower limit.
- Could also be an exciting indication of other new physics in early Universe (e.g., early Dark energy)

Cosmological Tensions: Hubble Constant

- Tension between Hubble constant measured from local probes and CMB could also be an indication of new early Universe physics, e.g.,
- Additional relativistic energy density (i.e., Neff > 3.04) could help relive this.
 - Standard model predicts Neff = 3.044, defined to be roughly equal to number of neutrinos species

Summary: Neutrinos in Cosmology

- Near a cosmological detection of neutrino mass
- Significant detection of cosmic neutrino background (CvB), soon will make precision test standard model prediction of relativistic particles
- Amazing consistency between physics at 1 sec (CNB) 3 min (BBN) 380,000 years (CMB) after the Big Bang

• Next-generation cosmology experiments will further hone in on neutrino properties, i.e., the sum of the neutrino masses, sterile neutrinos, and other relativistic light relic particles

Extras

CMB Sensitivity to Neutrino Density

• The neutrino density increases the expansion rate during this early radiation-dominated era

$$\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2} \propto (\rho_{\gamma} + \rho_{\nu} + \rho_{\text{matter}} + ...)$$

$$\frac{\theta_{d}}{\theta_{s}} \propto (\rho_{\gamma} + \rho_{\nu} + \rho_{m} + ...)^{0.25}$$

More neutrinos -> higher density -> faster expansion

- The ratio $\frac{\theta_d}{\theta_s}$ is measured well using the CMB.
- The photon density ρ_{γ} is well known from 3K temperature of CMB.
- The ratio $\frac{
 ho_m}{
 ho_\gamma +
 ho_
 u} = 1 + z_{\rm EQ}$ is also well measured using CMB.
 - -> We can solve for the neutrino density $ho_
 u$

Cosmic Complementarity with HEP Neutrino Experiments

Lower limits for $\beta\beta$ Exp.

Normal Hierarchy 10^{-1} 10^{-2} 10^{-3} 10^{-4} $\Sigma m_{\nu} \ (eV)$

Synergy with DUNE

FIG. 3: If the mass hierarchy is normal but the sum of the masses is still relatively large, for example at the value indicated by the star, then there will be a lower limit on $m_{\beta\beta}$, a target for ambitious future double beta decay experiments.

Dodelson & Lykken (arXiv:1403.5173) CMB-S4 Science Book (arXiv:1610.02743) "In the case of a normal neutrino mass ordering with an example case marked as diamond on the lower curve, CMB-S4 would detect the lowest $^{?}\Sigma m_{\nu}$ at $^{?}>3\sigma$. Also shown is the sensitivity from the long baseline neutrino experiment (DUNE) as the pink shaded band, which should be sensitive to the neutrino hierarchy."

The Next Frontier: CMB Polarization

The Next Frontier: CMB Polarization

The Next Frontier: CMB Polarization

Probing Cosmic Inflation: Testing physics at energies 1-trillion times beyond the Large Hadron Collider (LHC)

Observatory SPT-3G

CMB measurements of the Bmode polarization constrain "r", the tensor-to-scalar ratio. Testing physics at 10¹⁶ GeV!

energy =
$$10^{16} \left(\frac{r}{0.01}\right)^{\frac{1}{4}} \text{GeV}$$

BICEP/ Keck (BK) and **South Pole Observatory** (SPO) program is providing world leading constraints on Inflation

CMB Science Thresholds

