An Introduction to Reactor Neutrinos

July 19, 2023

Bryce Littlejohn Illinois Institute of Technology

What Do Nuclear Reactors Do?

Generate electric power:

April 2023, in Georgia, USA: new 3.4GW Vogtle 3 reactor connected to the power grid

Hanford, USA: First-ever atomic test fueled by reactor-bred ²³⁹Pu. North Korea follows this same strategy today.

What Do Nuclear Reactors Do?

Make rare isotopes:

Tennessee, USA: HFIR is USA's only supplier of Cf-252 (assaying mining ores, cancer therapy, etc. etc. etc.), Pu-238 (powering spaceships).

Make neutrons:

Maryland, USA: NIST's NBSR is used to measure the lifetime of free neutrons, and many other things.

What Do Nuclear Reactors Do?

Make... neutrinos!!!

Tennessee, USA: HFIR is also the host for PROSPECT, a DOE-funded reactor neutrino experiment

Reactor facilities host many stakeholders from many fields

How Do Nuclear Reactors Work?

Reactors: Nuclear Fission

- Heavy nuclei fission to make lighter nuclei plus extra energy
 - Roughly 200 MeV of excess rest mass energy per fission

Reactors: Fission Byproducts

Heavy nuclei fission to make lighter nuclei plus extra energy...
 AND neutrons, neutrinos, betas, and gammas!

Reactors: Energy Production

Heavy nuclei fission to make lighter nuclei plus extra energy...
 AND neutrons, neutrinos, betas, and gammas!

Reactors: Neutrino Production

- Heavy nuclei fission to make lighter nuclei plus extra energy...
 AND neutrons, neutrinos, betas, and gammas!
 - Different fission isotopes yield different products, different fluxes of neutrinos.

Why Are Reactor Neutrinos Special?

Neutrinos In One Slide

- 2nd-most-common fundamental particle in universe
 - Most were created a second after the Big Bang (before the CMB existed!)
- Only interact weakly
 - No color, and no charge
- Practically no rest mass
 - << eV, most likely.
- Come in 3 flavors that mix
 - Make a mu-flavor; detect e-flavor: it's called 'oscillation'
- Made where weak interactions (like beta radioactive decays) are occurring
 - Sun, supernovae, accelerator, reactors, <u>bananas</u>, etc. etc.

How Are Reactor Neutrinos Special?

- Energy: MeV-scale, rather than GeV-scale
- Flavor: Pure electron flavor, rather than (mostly) muon flavor
- Operations: terrestrial source operated (paid for) by others

Reactor Nus, Fermilab Nus

I know Fermilab's Vs; what's different about reactor Vs?

Electron Flavor Tastes So Good

- Reactor neutrinos are the purest, highest-intensity source of electron-flavor neutrinos that we have to work with!
 - This is important to consider if you want to closely study the flavor-changing behavior of all neutrino types

How Do Reactor Neutrino Detector Work?

How Do We Taste Reactor Neutrinos?

Most reactor experiments look for inverse beta decays inside their antineutrino detectors

IBD:
$$\overline{\nu}e + p \rightarrow \beta^+ + n$$

How Do We Taste Reactor Neutrinos?

How Do We Taste Reactor Neutrinos?

 Most reactor experiments look for inverse beta decays inside their antineutrino detectors

Reactor IBD: One Flavor Only

Most reactor experiments look for inverse beta decays inside their antineutrino detectors

- We can <u>ONLY</u> taste electron flavor at MeV-scale energies.
- Thus, neutrino flavor oscillations will be reflected at reactor experiments as a deficit in IBD interaction rates.

Reactor IBD: A Beautiful Neutron

• Time-correlated IBD neutron signal enables major reduction in non-neutrino backgrounds.

Reactor IBD Detection Technology

• Detect IBD products with liquid or solid scintillator, PMTs

Example: Daya Bay Detector

Daya Bay Monte Carlo Data

Reactor IBD Detection Technology

Gammas from trace radio-impurities: NOT an IBD!

Example: Daya Bay Detector

Daya Bay Monte Carlo Data

Reactor IBD Detection Technology

- External neutron created by a cosmic muon: NOT an IBD!
 - EVEN if coincident with a prompt-ish thing!

Example: Daya Bay Detector

Daya Bay Monte Carlo Data

Other Interaction Methods

- Inverse beta decay
 - Product: positron AND neutron

- Neutrino-electron scattering
 - Product: a SINGLE electron

- Coherent neutrino-nucleus scattering
 - Product: a SINGLE recoiling nucleus

Reactor IBD Detector Pix

• Daya Bay (8x20 ton IBD target): 5M IBDs seen in ~8 years

Reactor IBD Detector Pix

• PROSPECT (1x4 ton IBD target): A different scale altogether!

Reactor IBD Detector Pix

- JUNO (1x20000 ton target): A different scale altogether!
 - Super-Kamiokande in scale
 - 45,000 vacuum PMTs: 4x SuperK!

Grad students hard at work!

What Neutrino Physics Do Reactor Experiments Do?

A: Measure Neutrino Oscillations.*

*<u>MANY</u> other things, too many to describe here... plz check <u>https://arxiv.org/abs/2203.07214</u>

Neutrino Flavor Oscillation in One Slide

- Neutrinos can transform from one flavor to another
 - A quantum mechanical outcome of differing neutrino flavor and mass states

- Important quantities:
 - θ: Oscillation amplitude
 - Δm^2 : Oscillation frequency
 - L/E: Experimental parameter

One Quick Illustration: Daya Bay

A simple recipe for measuring neutrino oscillations:

- I. Make reactor V_e , emit them isotropically
- 2. Detect $v_{e}\,at$ 0.5 and 2 km distances

33

One Quick Illustration: Daya Bay

A simple recipe for measuring neutrino oscillations:

4. Look for E-dependent deficit

Standard Model Neutrino Oscillations

 10^{0}

 10^{-3}

Reactor

Solar

Reactor

-Am²atm

Am²sor

Atmospheric Accelerator

- Three angles, three mass differences to describe a 3D neutrino space
- Reactor experiments are key to elucidating this picture

2016 Breakthrough Prize

 10^{2}

Standard Model Neutrino Oscillations

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
 - Three angles, three mass differences to describe a 3D neutrino space
- Reactor experiments are key to elucidating this picture

2016 Breakthrough Prize

Neutrino Oscillations: L and E

- Reactor experiments are key to elucidating 3-neutrino oscillation picture: in the recent past and in the future
- Baselines (L):
 >km-scale

Neutrino Oscillations: JUNO

• JUNO will start physics data-taking at L = 52.5 km in ~2024

Neutrino Oscillations: JUNO Physics

 Odds are good that a reactor experiment, JUNO, will give first ~3sigma indications of the neutrino mass ordering

Neutrino Oscillations: JUNO Physics

- JUNO will almost immediately set new best limits on other fundamental neutrino parameters: θ_{12} and Δm^2_{21}
 - A DUNE solar neutrino measurement would be very interesting to compare to JUNO's very-high-precision measurement!

Neutrino Oscillations: L and E

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
- Reactor experiments are key to elucidating this picture
- Baselines (L):
 >km-scale
- Let's go HERE!
- WHY go here?

Neutrino Anomalies

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of new physics beyond 'SM oscillations'?!

New Neutrino Mass States?

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of new physics beyond 'SM oscillations'?!
 - Additional neutrino mass states: **sterile neutrinos?** Other new physics?

New Neutrino Mass States?

- Other good reasons to look for new mass states, too
 - See-saw mechanism: heavier neutral leptons help explain why SM neutrinos are so light?

PROSPECT: Relative IBD Spectrum Ratios

- Look for variations between energy spectra of full detector versus individual baselines
 - Any wiggles in ratio is evidence of L/E nature of sterile neutrino oscillations

PROSPECT: Relative IBD Spectrum Ratios

- Look for variations between energy spectra of full detector versus individual baselines
 - Any wiggles in ratio is evidence of L/E nature of sterile neutrino oscillations

PROSPECT: Relative IBD Spectrum Ratios

Look for variations between energy spectra of full detector versus individual baselines

- Any wiggles in ratio is evidence of L/E nature of sterile neutrino oscillations
- We have not observed any such effect so far, setting new bounds on oscillation at O(1-10) eV²
- Stay tuned for final PROSPECT-I oscillation results in the next month or two!

Conclusion

- Reactors are the world's most intense and flavor-pure sources of electron antineutrinos.
- Reactors play a major role addressing fundamental outstanding questions about particle physics:
 - How different are neutrinos' masses, and which is the heaviest?
 - How flavor-pure are the different neutrino mass states?
 - Are there other mass states besides the three Standard Model ones?

Thanks!

Backup

Backup

Backup

What's Been Done With Reactor Neutrinos?

- Proved neutrinos' existence (1950s)
- Probed CC/NC cross-sections back when that was new and cool (50s-70s)
- More recently: proving neutrinos have mass, and measuring SM neutrino oscillation parameters
 - Leading or competitive precision for 3 of 6 SM oscillation parameters: θ_{13} , Δm^2_{21} , $|\Delta m^2_{31}|$

2016 Breakthrough Prize

Daya Bay Far Site

Savannah River Neutrino Detector schematic

Reactor Prediction Elements

• Detected neutrinos described as:

• Production rate and interaction cross-section

Comparisons: Solar versus Reactor

• So: how do solar and reactor fluxes compare on Earth?

	Solar	Reactor (DYB case)	
Production	10 ³⁸ /sec	10 ²¹ /sec	
Baseline	I 0 ⁸ km	l km	
Flux	~l0 nu/sec	~l0 ¹⁰ nu/sec	

WHA???

Solar nu flux is higher at Daya Bay than reactor flux? Why doesn't Daya Bay see a bunch of solar neutrinos?

Reactor Antineutrino Interactions

Reactor Antineutrino Detection Methods

- Clearly IBD is easiest and most common choice
 - Only use non-IBD when necessary to probe the physics: neutrino magnetic moments, SM cross-section tests, etc. etc.

Cosmic Neutrons

Cosmic Neutrons

Aside: Everyone Cares About Neutrons!

- NOTE: final-state n from weak GeV-scale μ -A interactions!
- Hmmm... what about weak GeV-scale V_{μ} -A interactions?
- So it's not just reactor nu folks who should care about how we detect neutrons! ArgoNeuT, hep-ex[1810.06502] MINERvA, hep-ex[1901.04892]

NOvA, hep-ex[1906.04907]

	Simulated production vield	Ratio of Simulated Production Yields for		KamLAND, hep-ex[0907.0066]	
	$(\times 10^{-7} \mu^{-1} \mathrm{g}^{-1} \mathrm{cm}^2)$	μ^+/μ^-	Spectrum/monoenergetic	Power-law exp.	Primary process
n	2344 ± 4	0.969 ± 0.002	0.912 ± 0.003	0.779 ± 0.001	$\pi^{-}+{}^{1}\mathrm{H},{}^{12}\mathrm{C}$
¹¹ C	460.8 ± 1.7	0.971 ± 0.005	0.913 ± 0.006	0.703 ± 0.002	$^{12} ext{C}(\gamma,n)$
⁷ Be	116.8 ± 0.9	0.986 ± 0.011	0.945 ± 0.011	0.684 ± 0.004	$^{12}C(\gamma,nlpha)$
¹⁰ Be	44.63 ± 0.53	0.960 ± 0.018	0.891 ± 0.019	0.825 ± 0.007	$^{12}C(n,{}^{3}\text{He})$
^{12}B	30.85 ± 0.44	0.970 ± 0.021	0.936 ± 0.022	0.828 ± 0.009	$^{12}C(n,p)$
⁸ Li	23.42 ± 0.39	0.927 ± 0.026	0.936 ± 0.025	0.821 ± 0.010	$^{12}\mathrm{C}(n,plpha)$
¹⁰ C	21.13 ± 0.37	0.982 ± 0.025	0.915 ± 0.027	0.810 ± 0.010	$^{ m h2}{ m C}(\pi^+,np)$
⁶ He	13.40 ± 0.29	0.916 ± 0.035	0.918 ± 0.035	0.818 ± 0.013	$^{12}{ m C}(n,2p^{3}{ m He})$
⁸ B	6.40 ± 0.20	0.996 ± 0.045	0.915 ± 0.050	0.804 ± 0.019	$^{12}\mathrm{C}(\pi^+,^{2}\mathrm{H}^{2}\mathrm{H})$
⁹ Li	3.51 ± 0.15	0.856 ± 0.074	0.842 ± 0.078	0.801 ± 0.026	$^{12}C(\pi^{-},^{3}He)$
⁹ C	1.49 ± 0.10	0.850 ± 0.114	0.949 ± 0.102	0.772 ± 0.039	$^{12}C(\pi^+, {}^{3}H)$
12 N	0.86 ± 0.07	0.963 ± 0.128	1.006 ± 0.120	0.921 ± 0.045	$^{12}C(p,n)$
¹¹ Be	0.94 ± 0.08	0.842 ± 0.145	0.804 ± 0.161	0.753 ± 0.051	$^{12}\mathrm{C}(n,2p)$

- Reactors make LOTS of neutrons it's their job!
 - Practically all are below 10MeV fairly easy to stop or slow them down
 - Once slow, they just capture on stuff just a single (non-IBD-like) signal
- So even for short-baseline Rx experiments, reactor neutrons produce few direct IBD-like signals in a detector
 - Rx neutrons <u>can</u> produce CRAZY high gamma fluxes, though!

https://bit.ly/2Zxm0pm

Neutron Background Possibilities

- How to make IBD signal from a neutron?
 - Fast neutrons
 - Inelastic scattering
 - Thermal neutron capture
 - Need something else in coincidence here: gammas!
 - Natural emission of neutrons with other stuff (cosmo isotopes, (α,n) interactions)

Reactor Antineutrino Production

• Reactor \overline{V}_e : produced in decay of product beta branches

• Each isotope: different branches, so different neutrino energies (slightly)

Predicting $S_i(E)$, Neutrinos Per Fission

- Two main methods:
- Ab Initio approach:
 - Calculate spectrum branch-by-branch w/ databases: fission yields, decay schemes, ...
 - **Problem:** rare isotopes / beta branches: missing, possibly incorrect info...
- Conversion approach
 - Measure beta spectra directly
 - Convert to V_e using 'virtual beta branches'
 - Problem: 'Virtual' spectra not well-defined: what forbiddenness, charge, etc. should they have?
 - 'Preferred' method: smaller error bars

Reactor Flux Predictions

- Three isotopes' \overline{V}_e flux predictions re-formulated in 2011
 - Note: 'flux' often cited as IBD per fission, or 'IBD yield': flux * cross-section

Mueller, et al, Phys. Rev. C83 (2011) Mention, et al, Phys. Rev. D83 (2011) Huber, Phys. Rev. C84 (2011)

Bad Flux Predictions

- Hypothesis: Something is wrong with the flux predictions
 - Theorists have come up with lots of reasons predictions could be bad
 - Could be just <u>one</u> isotope; or could be <u>all</u> isotopes.

Testing Fluxes: Daya Bay Evolution

- Measure IBD yields during periods with differing fuel content.
- Flux anomaly's size depends on how much ²³⁵U is burning
- Sterile neutrinos cannot explain this result
- Points towards flux problems

Testing Fluxes: Daya Bay Evolution

- Measure IBD yields during periods with differing fuel content.
- Instead: measure ²³⁵U all by itself!
- New STEREO preliminary result: see modest flux deficit
 - Error bars are quite large; still investigating; not published yet...

Reactor Spectrum Anomaly

- Bad news: these spectrum predictions don't match the data.
 - Eye is first drawn to the 'bump' in the 4-6 MeV range.
 - Zooming out: kinda just looks bad generally across the entire spectrum...
- HOW is spectrum incorrectly predicted???
 - Like with flux: is <u>one</u> particular isotope to blame (like ²³⁵U)? Or <u>all</u>?
 - Looks like short-baseline ²³⁵U measurements can also give new info here!

