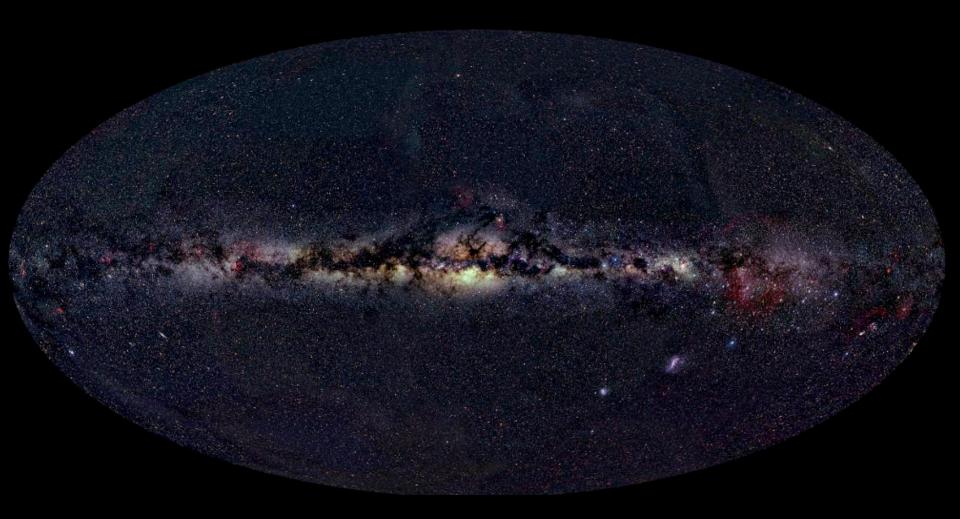
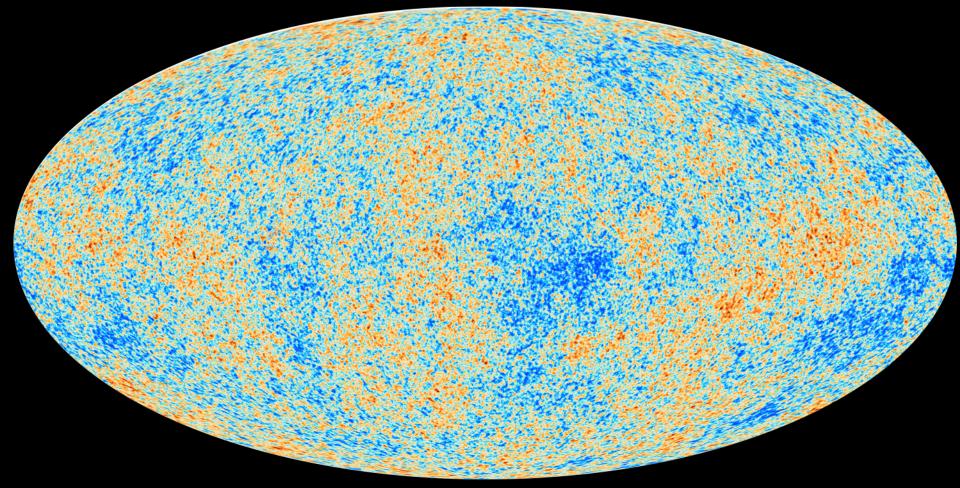
#### High-Energy Cosmic Neutrinos: a Personal Tour francis halzen





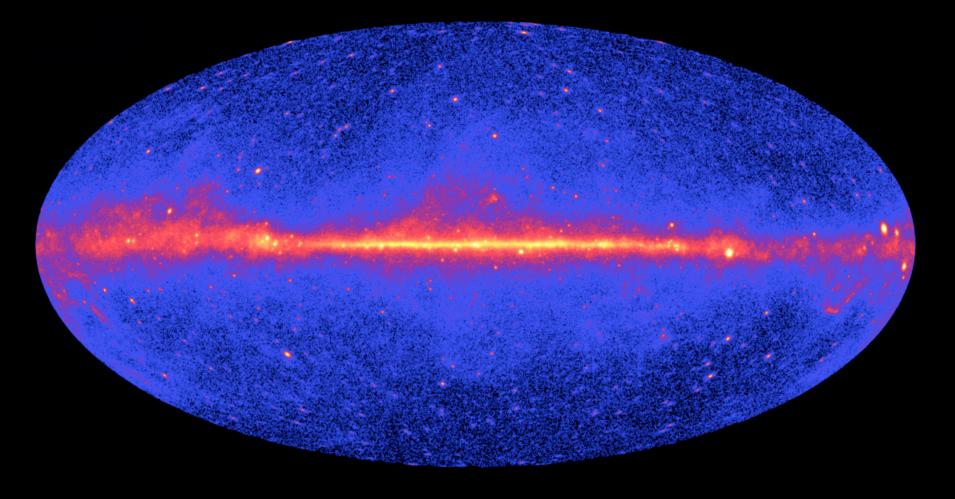

IceCube: a neutrino window on the Universe

- the high-energy neutrino flux from the cosmos
- the first sources
- neutrinos and multimessenger astronomy
- [a PeV beam for neutrino physics]


IceCube.wisc.edu

# Cosmic Horizons – Optical Sky



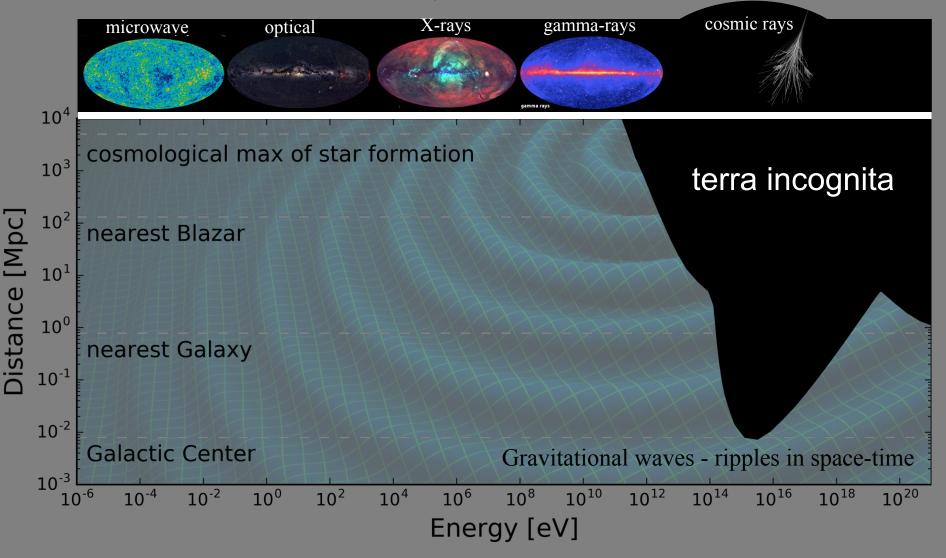

wavelength =  $10^{-6}$  m  $\Leftrightarrow$  energy = 1 eV

# Cosmic Horizons – Microwave Radiation



wavelength = 1 mm  $\Leftrightarrow$  energy = 10<sup>-4</sup> eV

# Cosmic Horizons – Gamma Radiation




wavelength =  $10^{-15}$  m  $\Leftrightarrow$  energy =  $10^9$  eV

# **Cosmic Horizons – Highest Energies**

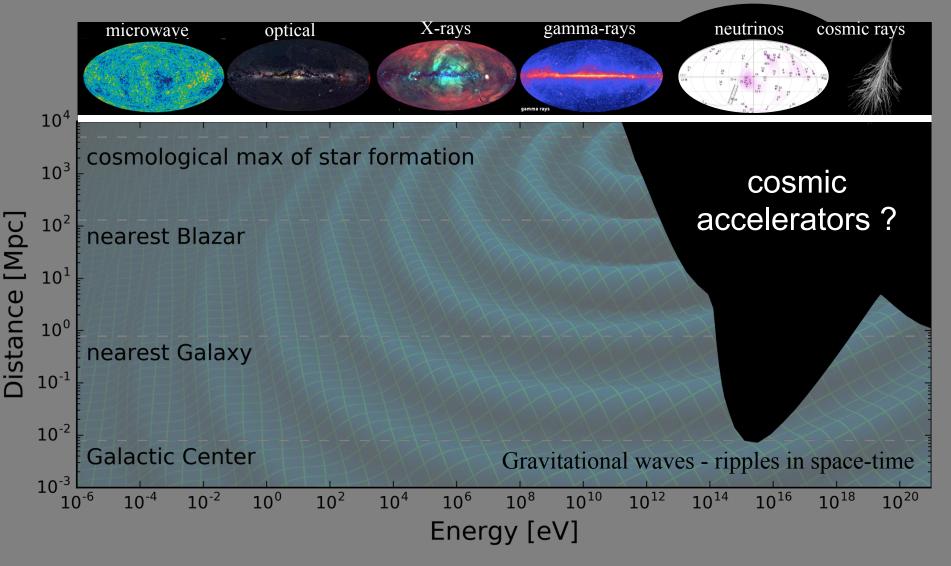
wavelength =  $10^{-21}$  m  $\iff$  energy =  $10^{3}$  TeV

### highest energy "radiation" from the Universe: cosmic rays, not photons



Universe beyond our Galaxy is eventually opaque to gamma rays

## the opaque Universe


# $\gamma + \gamma_{\rm CMB} \rightarrow e^+ + e^-$

PeV photons interact with microwave photons (411/ cm<sup>3</sup>) before reaching our telescopes enter: neutrinos

# **Neutrinos?** Perfect Messengers

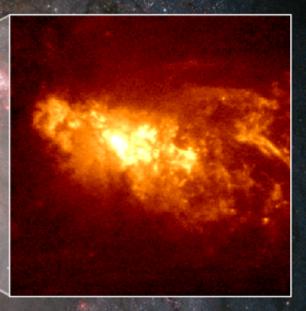
- electrically neutral.
- massless (in this talk)
- unabsorbed
  - unlike γ rays, neutrinos are solely created in processes involving cosmic rays
  - ... but difficult to detect

### highest energy "radiation" from the Universe: cosmic rays and neutrinos



Universe beyond our Galaxy is eventually opaque to gamma rays

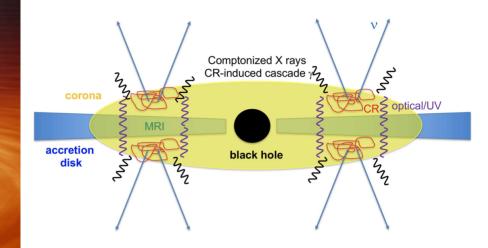
## highest energy radiation from the Universe: not γ-rays !


### high energy high luminosity

LHC accelerator should have circumference of Mercury orbit to reach 10<sup>20</sup> eV!

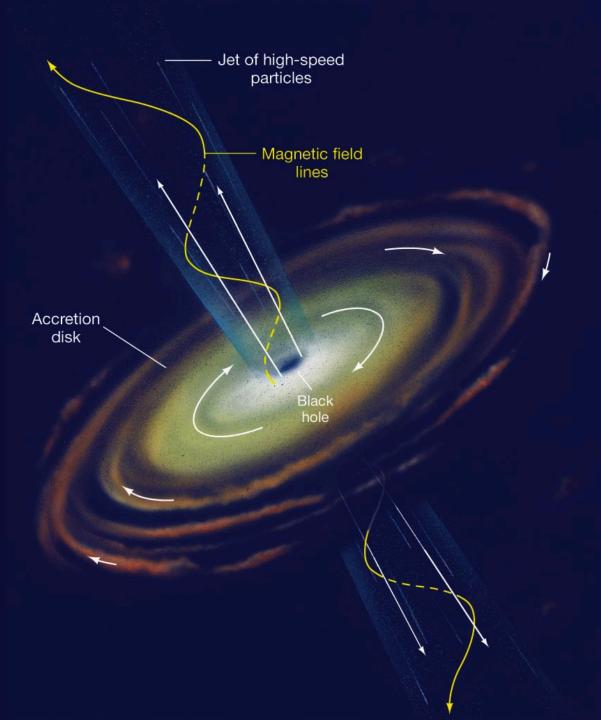
Courtesy M. Unger

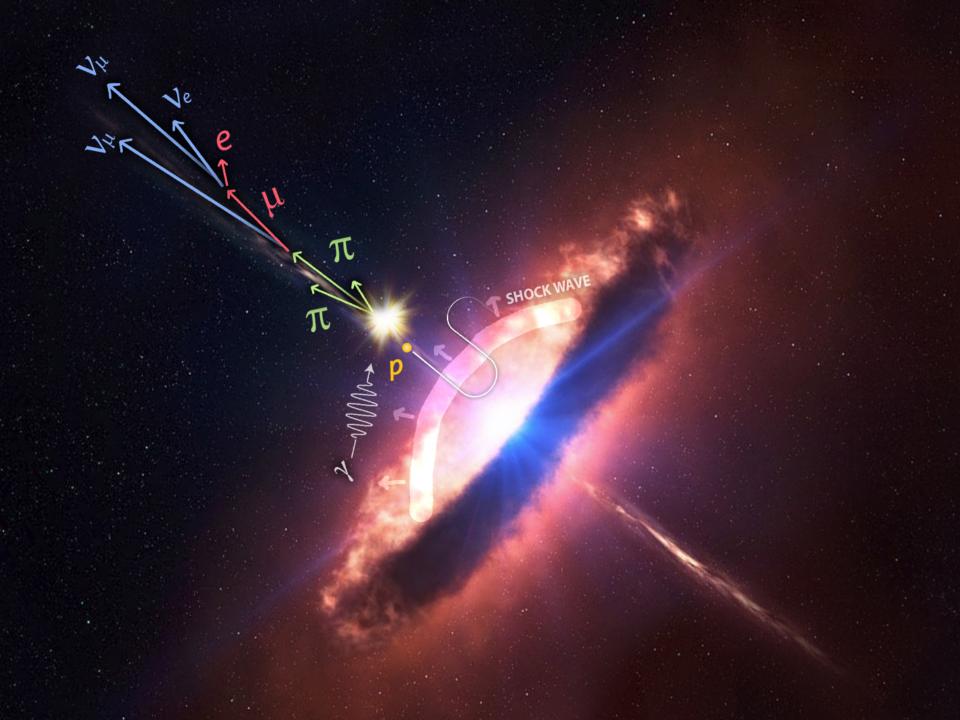
#### Fly's Eye 1991 300,000,000 TeV


active galaxy NGC 1068



#### cores of active galaxies as cosmic accelerators


acceleration of electrons and protons in the high field regions associated with the accretion disk and the optically thick corona of X-rays


the core is gamma-ray obscured



# cores of active galaxies and jets

- some of the matter falling into a supermassive black hole is accelerated in a jet along its rotation axis
- fast spinning infalling matter comes in contact with the rotating black hole
- spacetime around spinning black hole drags on the field winding it into a tight cone around the rotation axes
- plasma from the accretion disk is then flung out along these field lines





accelerator is powered by  $\mathbf{v}$  and  $\mathbf{\gamma}$  beams : heaven and earth large gravitational energy supermassive black hole proton • accelerator • target nearby radiation  $p + \gamma \rightarrow n + \pi^+$ directional ~ cosmic ray + neutrino beam p, e<sup>±</sup> magnetic fields ~ cosmic ray + gamma

- gamma rays are absorbed by background (EBL) photons
- gamma rays accompany neutrinos

SHOCKWAVE

multimessenger astronomy  $p + \gamma \Rightarrow n + \pi^{+}$   $\pi^{+} \Rightarrow [e^{+} + \bar{\nu}_{\mu} + \nu_{e}] + \nu_{\mu}$   $\Rightarrow p + \pi^{0}$   $\pi^{0} \Rightarrow \gamma + \gamma$ 

# 10,000 times too small to do neutrino astronomy...

**UIIB** 

# **M. Markov** 1960

# **B.** Pontecorvo

M.Markov : we propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

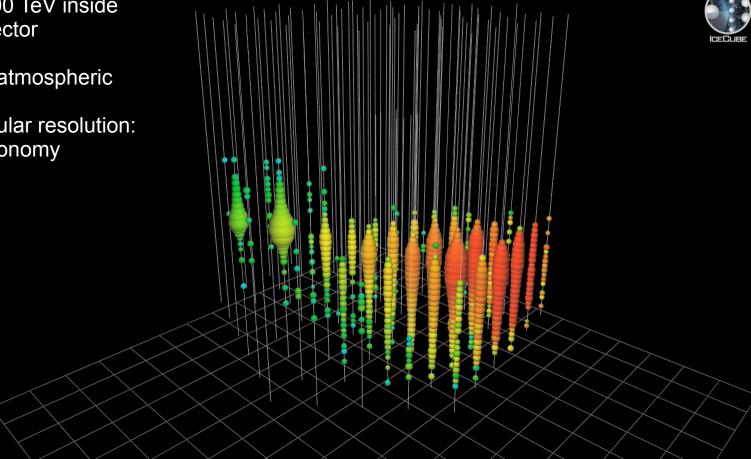
speed of light in water is
~ 3/4 of speed of light
→ shockwave

a muon neutrino produces a muon with a range of kilometers

neutrino

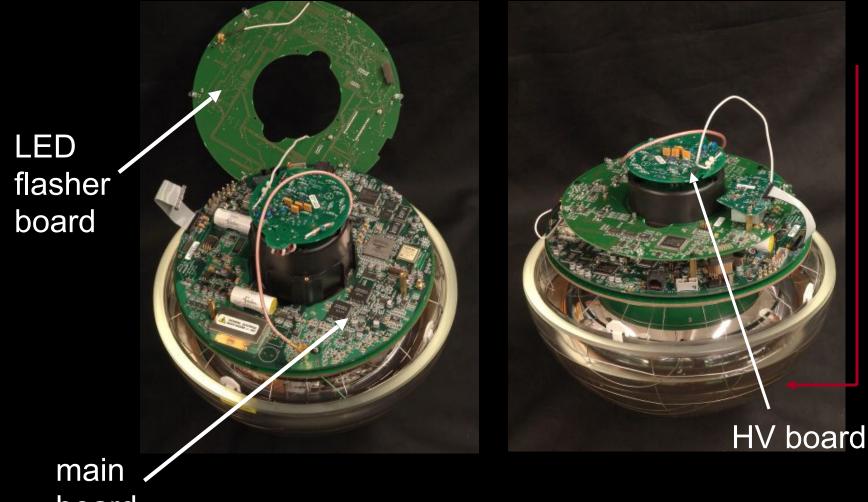
lattice of photomultipliers

• 3 km deep South Pole glacier


ultra-transparent ice below 1.35 km

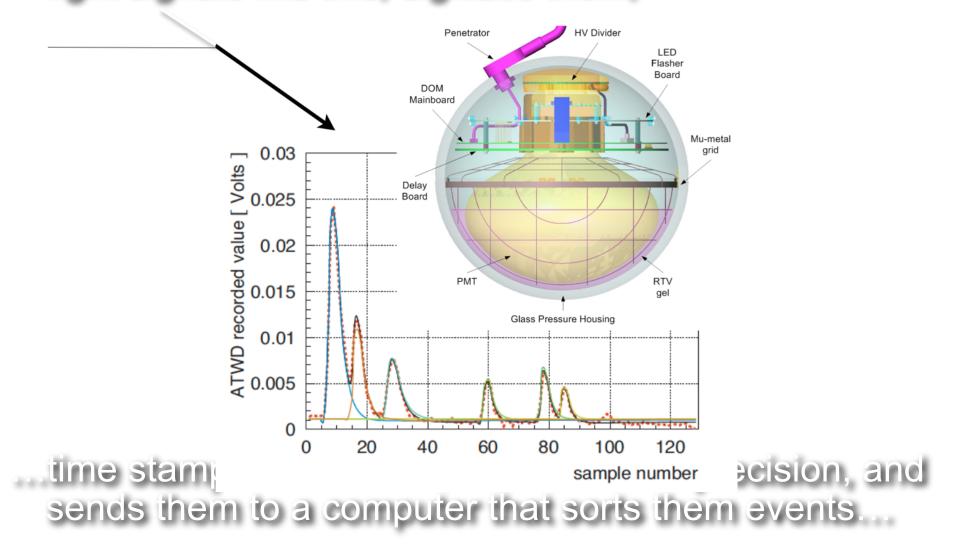
absorption length: 100 ~ 250+ m

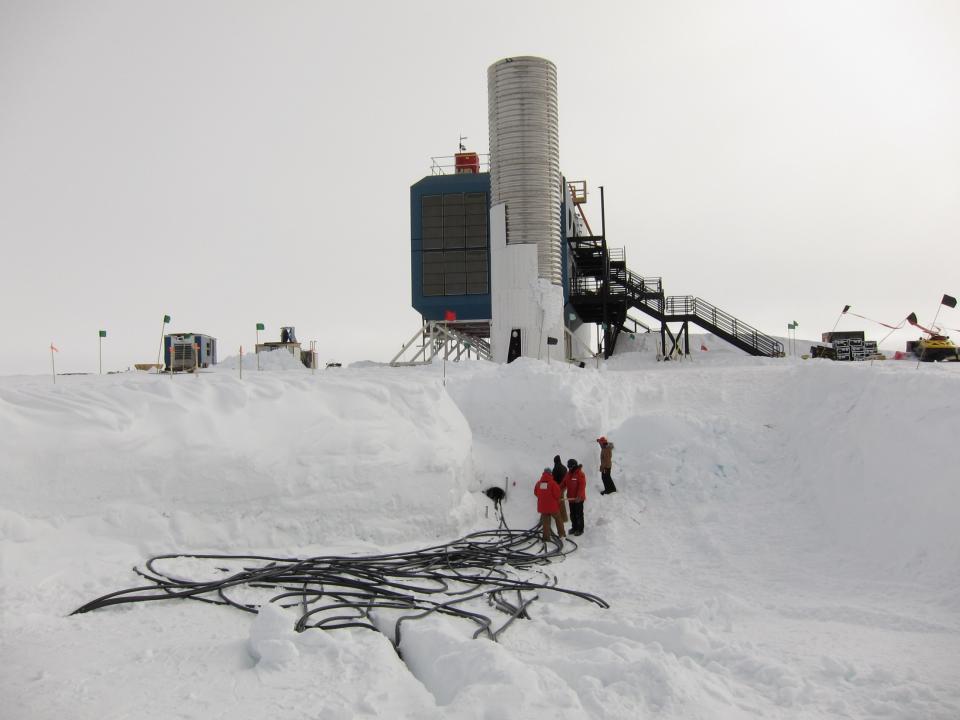
IceCube 5160 photomultipliers instrument one km<sup>3</sup> of Antarctic ice between 1.4 and 2.4 km depth


- muon produced by
   neutrino near IceCube
- comes through the Earth
- 2,600 TeV inside detector
- not atmospheric

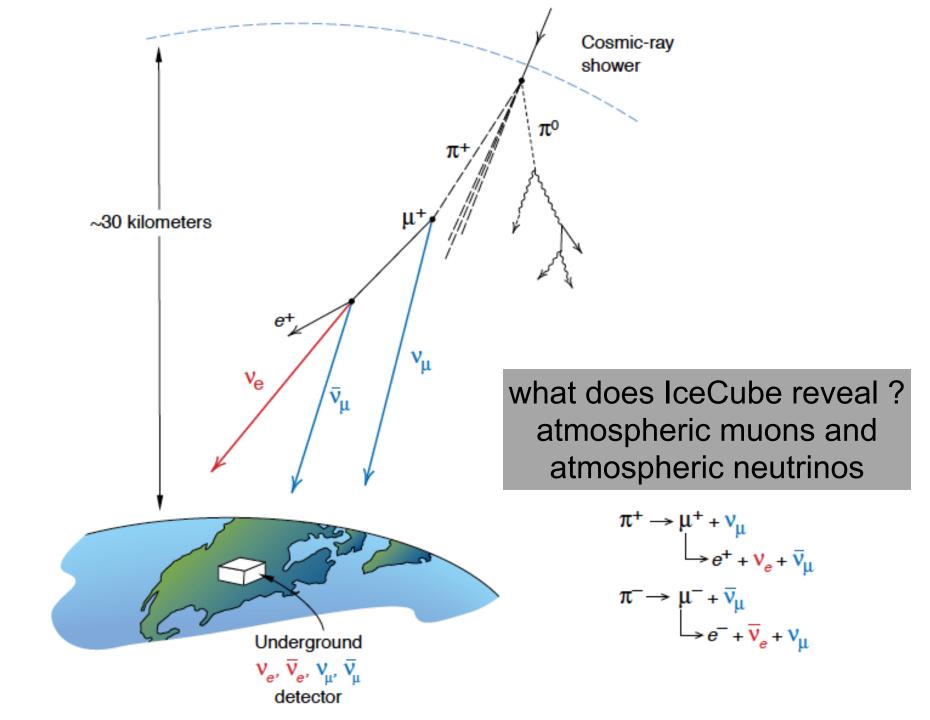
- muon produced by • neutrino near IceCube
- comes through the • Earth
- 2,600 TeV inside  $\bullet$ detector
- not atmospheric •
- angular resolution: • astronomy



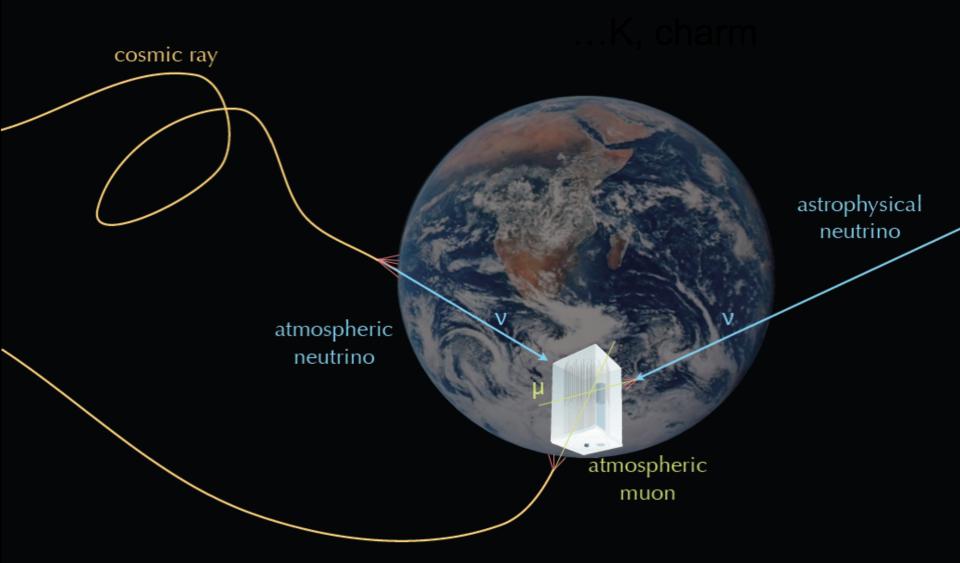

## architecture of independent DOMs

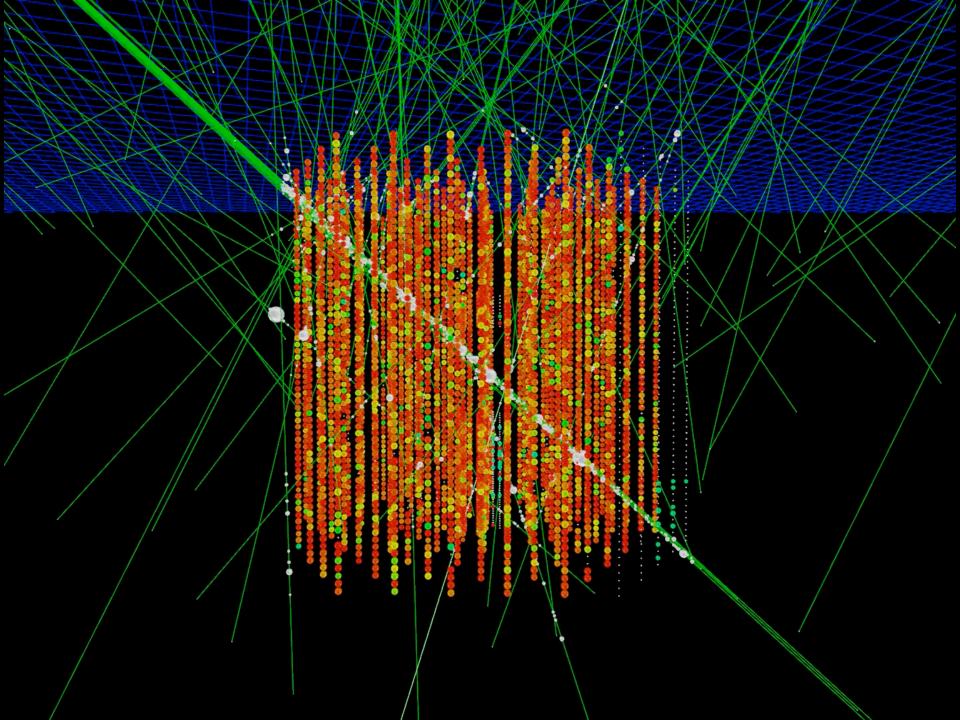

10 inch pmt -----

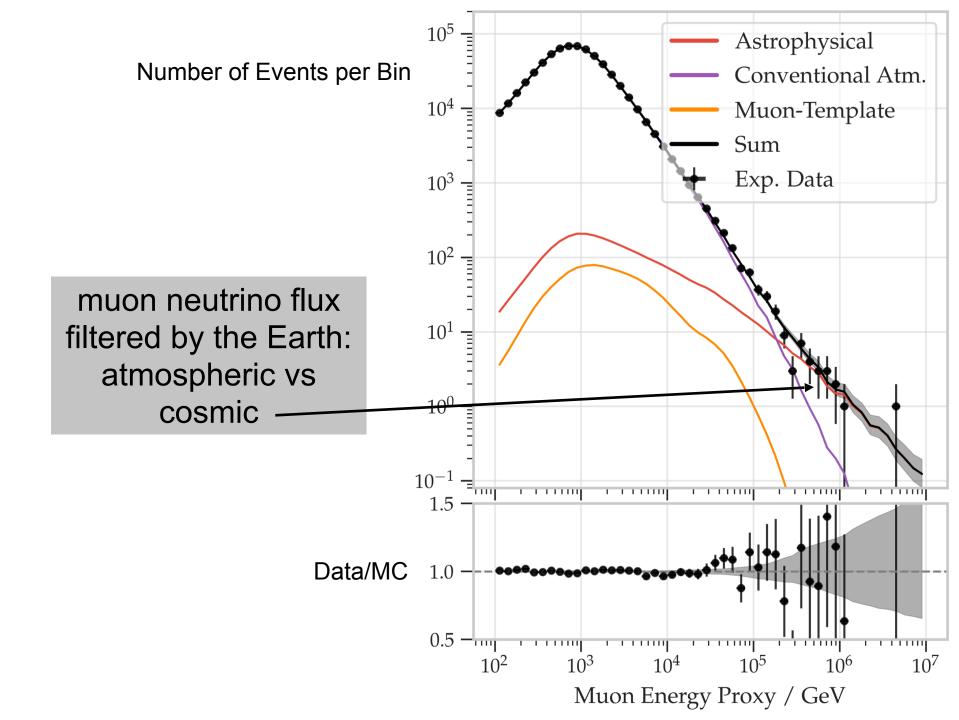



board

# ... each Digital Optical Module independently collects light signals like this, digitizes them,

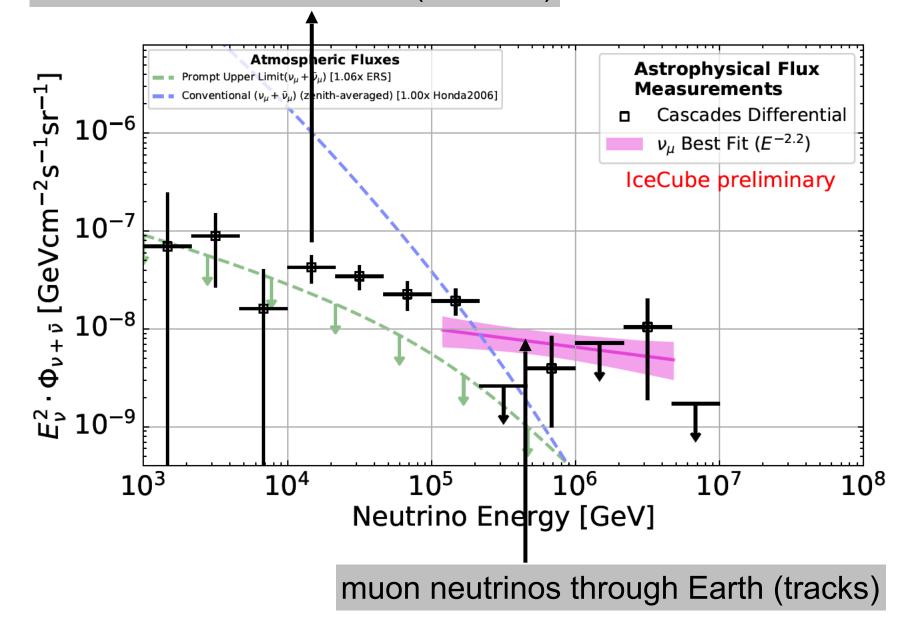


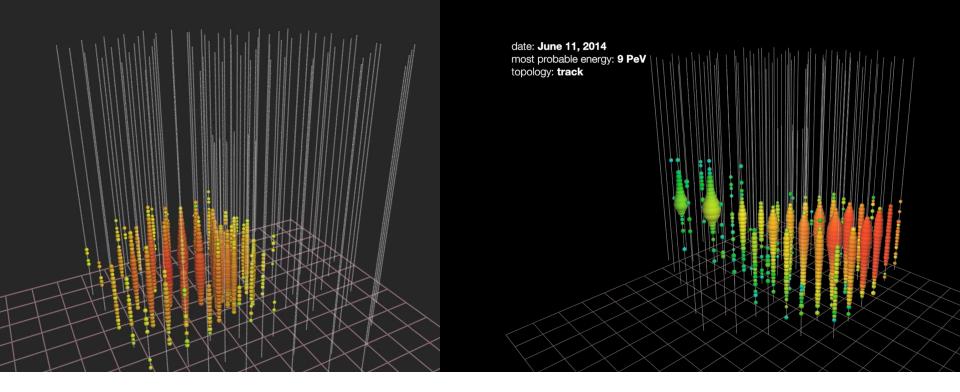



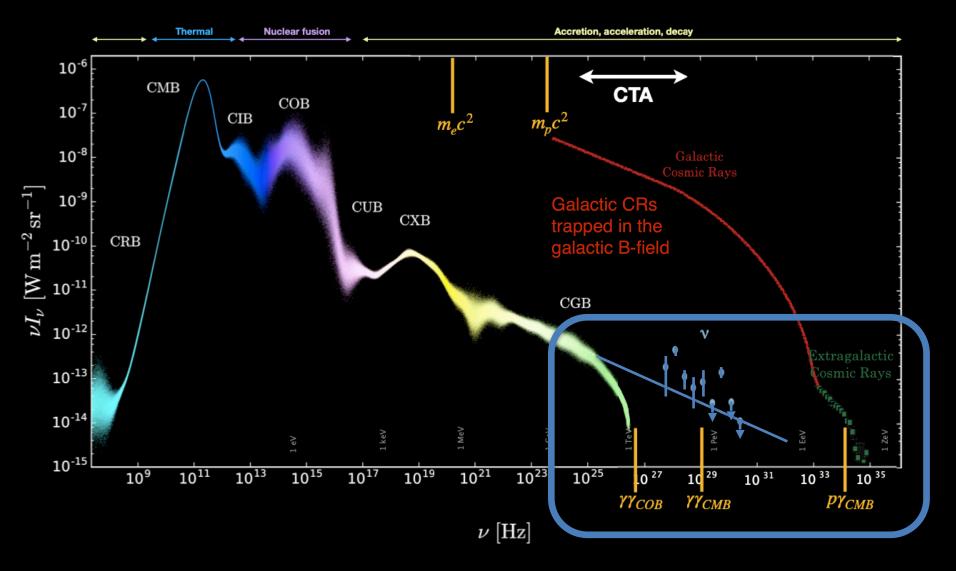



# Signals and Backgrounds







#### electron and tau neutrinos (showers)

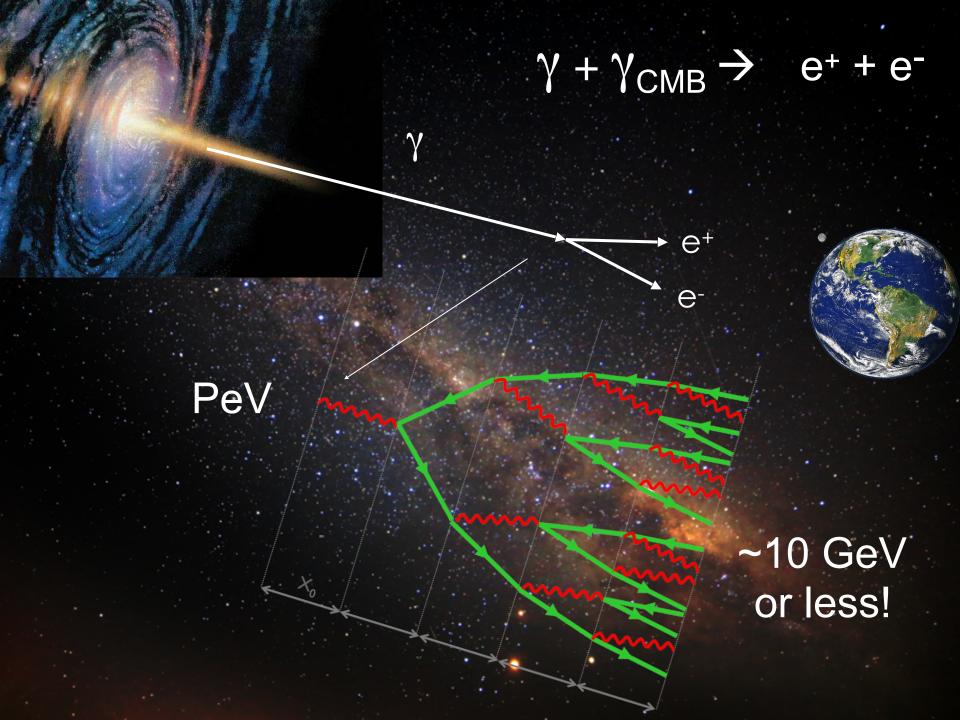
#### flux $\Phi$ = dN/dE ~ E<sup>-2.5</sup>





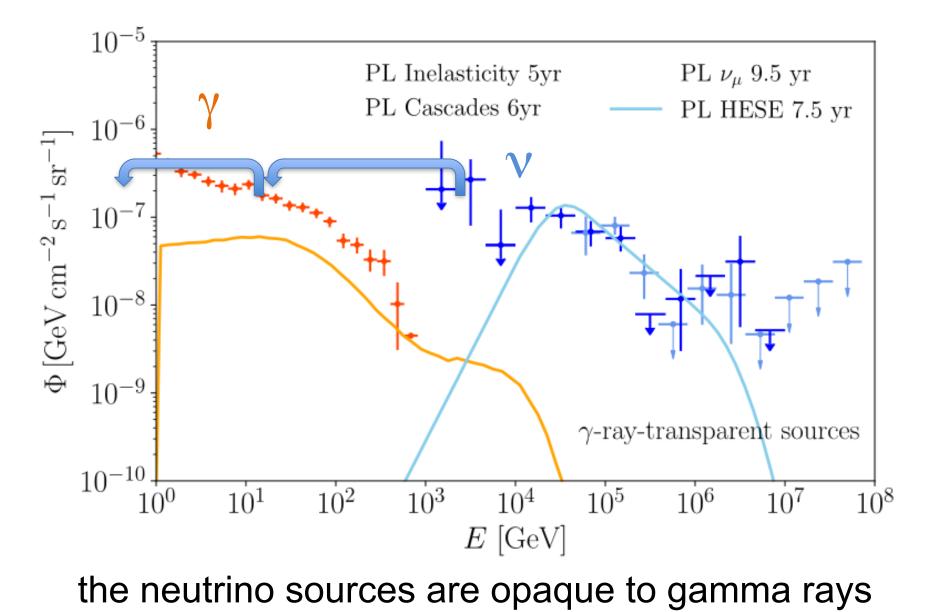
accelerator is powered by  $\mathbf{v}$  and  $\mathbf{\gamma}$  beams : heaven and earth large gravitational energy supermassive black hole proton • accelerator • target nearby radiation  $p + \gamma \rightarrow n + \pi^+$ directional ~ cosmic ray + neutrino beam p, e<sup>±</sup> magnetic fields ~ cosmic ray + gamma




energy in neutrinos similar to the energy in gamma rays and cosmic rays

 gamma rays accompanying IceCube neutrinos interact with the target producing the neutrinos and with interstellar photons on their way to earth

e


e

the gamma rays fragment into multiple lower energy gamma rays that reach Earth



Fermi IGRB

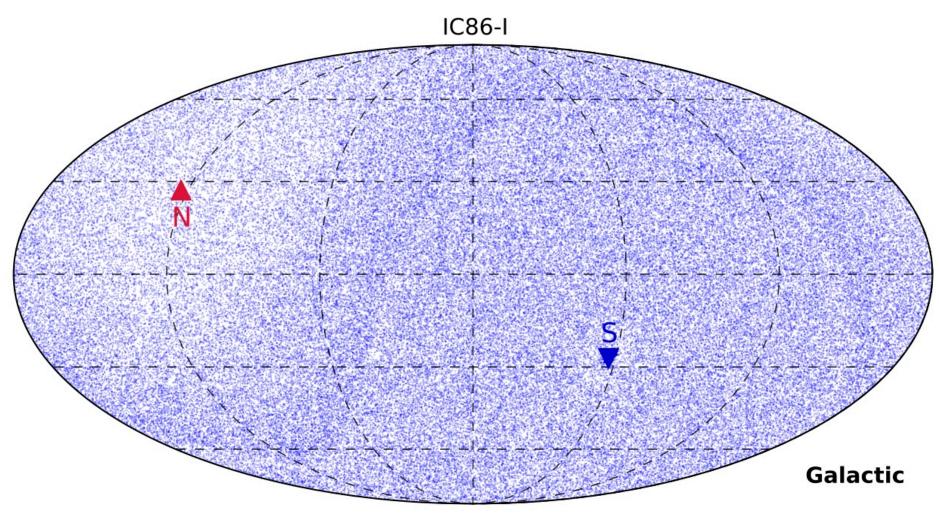
- IceCube Cascade 4yr



 we observe a diffuse flux of neutrinos from extragalactic sources

 energy flux of neutrinos in the non-thermal Universe is similar to that in gamma-rays

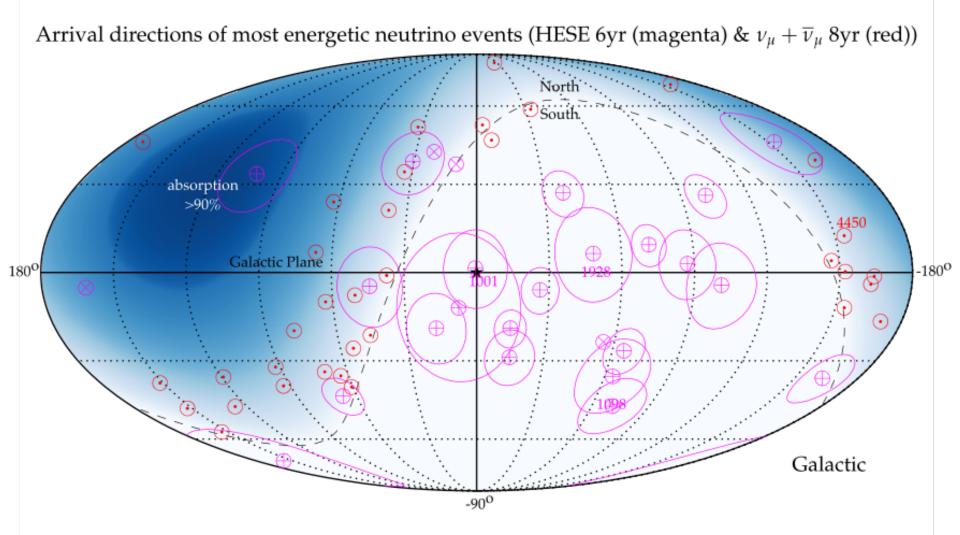
 extragalactic cosmic accelerators outshine nearby neutrino sources in our own Galaxy


## High-Energy Cosmic Neutrinos francis halzen

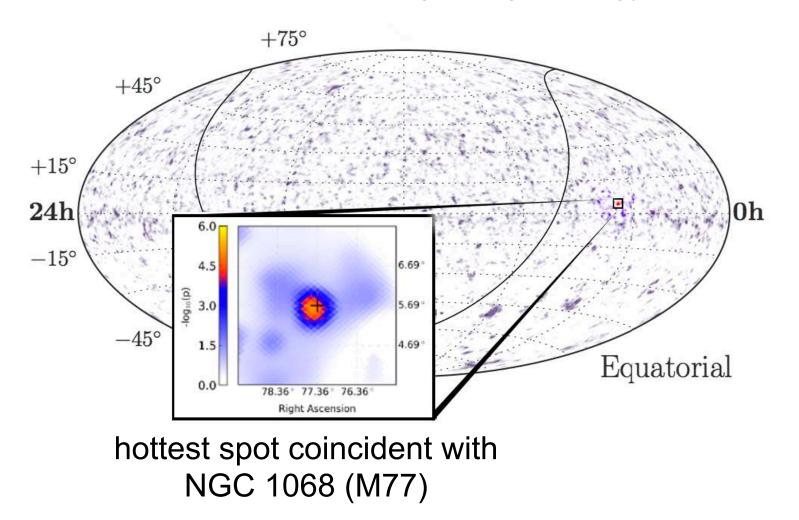




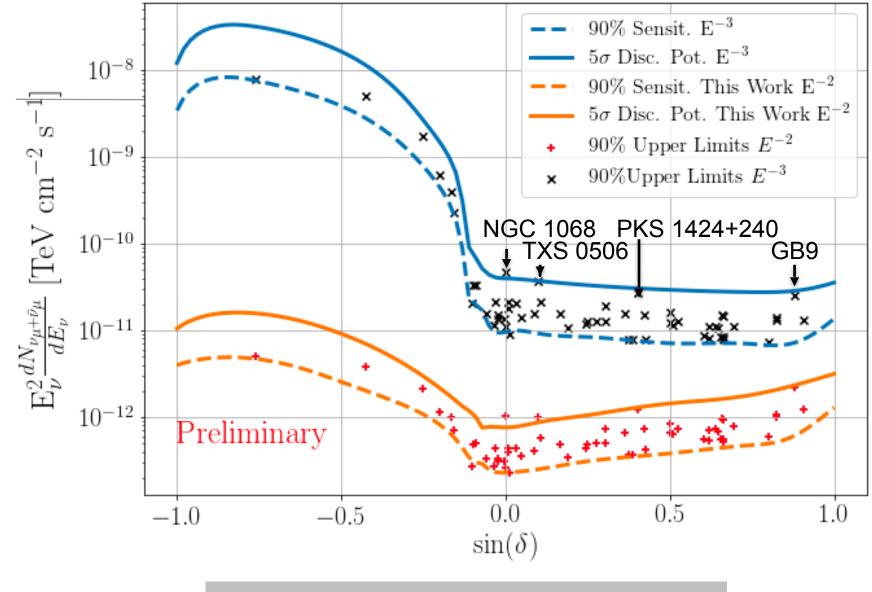
- the diffuse high-energy neutrino flux
- observation of the first sources
- neutrinos and multimessenger astronomy


IceCube.wisc.edu



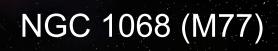

138322 neutrinos in 2011

> 200 cosmic neutrinos (depending on the spectrum)
 ~12 separated from atmospheric background with E>60 TeV


## neutrinos with probable cosmic origin: are they correlated to astronomical sources?

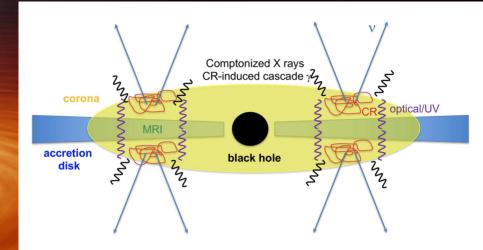


## pre-trial p-value for clustering of high energy neutrinos

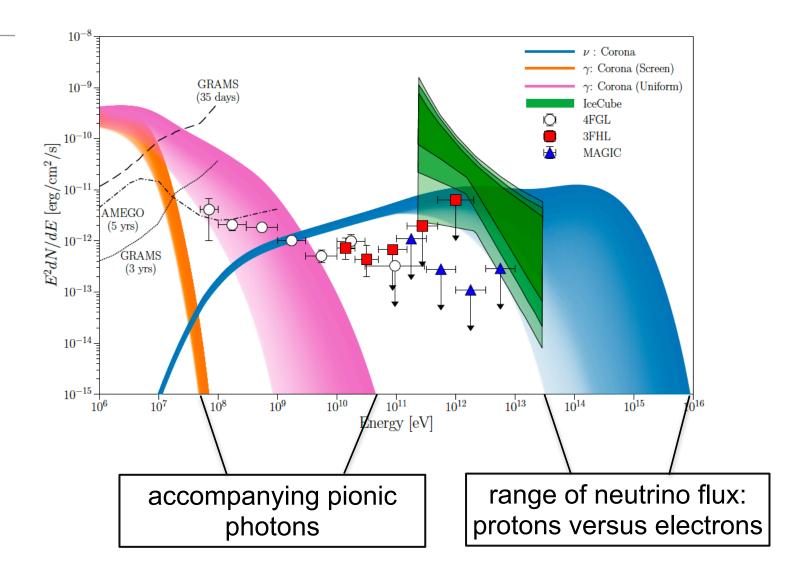



evidence for non-uniform sky map in 10 years of IceCube data : mostly resulting from 4 extragalactic source candidates




limits and interesting fluctuations (?)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     | Source 1                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     | .00                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | 1                                                                                                     | PKS B1130+008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLL                                                                                                                                                                                            | 173.20                                                                                                                                                                                                                                                                         | 0.58                                                                                                                                                                                                                                                                                                                                                                                 | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                                      | 0.96                                                                                                                                                                                                                    | 4.4                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Class                                                                                                                                                                               | $\alpha  [ m deg]$                                                                                                                                                                                                                                                       | $\delta  [ m deg]$                                                                                                                                                                                                                                  | $\hat{n}_s$                                                                                                                                                                        | $\hat{\gamma}$                                                                                                                                                                                                                           | $-\log_{10}(p_{local})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\phi_{90\%}$                                                                                                                                                                                                            |                                                                                                       | Mkn 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLL                                                                                                                                                                                            | 175.20<br>166.12                                                                                                                                                                                                                                                               | 38.21                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{4.0}{1.9}$                                                                                                                                                                                                        | 0.38                                                                                                                                                                                                                    | $\frac{4.4}{5.3}$                                                                                                                                                                                                                             |
| PKS 2320-035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{FSRQ}$                                                                                                                                                                     | 350.88                                                                                                                                                                                                                                                                   | -3.29                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                | 3.6                                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3                                                                                                                                                                                                                      |                                                                                                       | 4C + 01.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLL                                                                                                                                                                                            | 164.61                                                                                                                                                                                                                                                                         | 1.56                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                      | 0.26                                                                                                                                                                                                                    | 2.4                                                                                                                                                                                                                                           |
| 3C 454.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{FSRQ}$                                                                                                                                                                     | 343.50                                                                                                                                                                                                                                                                   | 16.15                                                                                                                                                                                                                                               | 5.4                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                      | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1                                                                                                                                                                                                                      |                                                                                                       | $1H\ 1013+498$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLL                                                                                                                                                                                            | 153.77                                                                                                                                                                                                                                                                         | 49.43                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                      | 0.29                                                                                                                                                                                                                    | 4.5                                                                                                                                                                                                                                           |
| TXS 2241+406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{FSRQ}$                                                                                                                                                                     | 341.06                                                                                                                                                                                                                                                                   | 40.96                                                                                                                                                                                                                                               | 3.8                                                                                                                                                                                | 3.8                                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6                                                                                                                                                                                                                      |                                                                                                       | 4C + 55.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FSRQ                                                                                                                                                                                           | 149.42                                                                                                                                                                                                                                                                         | 55.38                                                                                                                                                                                                                                                                                                                                                                                | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                                    | 10.6                                                                                                                                                                                                                                          |
| RGB J2243+203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{BLL}$                                                                                                                                                                | 340.99                                                                                                                                                                                                                                                                   | 20.36                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1                                                                                                                                                                                                                      |                                                                                                       | M 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBG                                                                                                                                                                                            | 148.95                                                                                                                                                                                                                                                                         | 69.67                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                      | 0.36                                                                                                                                                                                                                    | 8.8                                                                                                                                                                                                                                           |
| CTA 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{FSRQ}$                                                                                                                                                                     | 338.15                                                                                                                                                                                                                                                                   | 11.73                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                      |                                                                                                       | PMN J0948+0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGN                                                                                                                                                                                            | 147.24                                                                                                                                                                                                                                                                         | 0.37                                                                                                                                                                                                                                                                                                                                                                                 | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                      | 0.76                                                                                                                                                                                                                    | 3.9                                                                                                                                                                                                                                           |
| BL Lac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\operatorname{BLL}$                                                                                                                                                                | 330.69                                                                                                                                                                                                                                                                   | 42.28                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                      | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9                                                                                                                                                                                                                      |                                                                                                       | OJ 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLL                                                                                                                                                                                            | 133.71                                                                                                                                                                                                                                                                         | 20.12                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                      | 0.32                                                                                                                                                                                                                    | 3.5                                                                                                                                                                                                                                           |
| OX 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{FSRQ}$                                                                                                                                                                     | 325.89                                                                                                                                                                                                                                                                   | 17.73                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                | 1.7                                                                                                                                                                                                                                      | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1                                                                                                                                                                                                                      |                                                                                                       | PKS 0829+046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\operatorname{BLL}$                                                                                                                                                                           | 127.97                                                                                                                                                                                                                                                                         | 4.49                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                      | 0.28                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                           |
| B2 2114+33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{BLL}$                                                                                                                                                                | 319.06                                                                                                                                                                                                                                                                   | 33.66                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                      |                                                                                                       | S4 0814+42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLL                                                                                                                                                                                            | 124.56                                                                                                                                                                                                                                                                         | 42.38                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                    | 4.9                                                                                                                                                                                                                                           |
| PKS 2032+107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{FSRQ}$                                                                                                                                                                     | 308.85                                                                                                                                                                                                                                                                   | 10.94                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.4                                                                                                                                                                                                                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                                                                      |                                                                                                       | OJ 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLL                                                                                                                                                                                            | 122.87                                                                                                                                                                                                                                                                         | 1.78                                                                                                                                                                                                                                                                                                                                                                                 | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                                      | 0.99                                                                                                                                                                                                                    | 4.4                                                                                                                                                                                                                                           |
| 2HWC J2031+415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\operatorname{GAL}$                                                                                                                                                                | 307.93                                                                                                                                                                                                                                                                   | 41.51                                                                                                                                                                                                                                               | 13.4                                                                                                                                                                               | 3.8                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.2                                                                                                                                                                                                                      |                                                                                                       | 1ES 0806+524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLL                                                                                                                                                                                            | 122.46                                                                                                                                                                                                                                                                         | 52.31                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                      | 0.31                                                                                                                                                                                                                    | 4.7                                                                                                                                                                                                                                           |
| Gamma Cygni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\operatorname{GAL}$                                                                                                                                                                | 305.56                                                                                                                                                                                                                                                                   | 40.26                                                                                                                                                                                                                                               | 7.4                                                                                                                                                                                | 3.7                                                                                                                                                                                                                                      | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.9                                                                                                                                                                                                                      |                                                                                                       | PKS 0736+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FSRQ                                                                                                                                                                                           | 114.82                                                                                                                                                                                                                                                                         | 1.62                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                      | 0.26                                                                                                                                                                                                                    | $2.4 \\ 3.5$                                                                                                                                                                                                                                  |
| MGRO J2019+37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{GAL}$                                                                                                                                                                | 304.85                                                                                                                                                                                                                                                                   | 36.80                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                                      |                                                                                                       | $\begin{array}{c} {\rm PKS} \ 0735{+}17 \\ {\rm 4C} \ {+}14.23 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\operatorname{BLL}$ FSRQ                                                                                                                                                                      | $114.54 \\ 111.33$                                                                                                                                                                                                                                                             | $\begin{array}{c} 17.71 \\ 14.42 \end{array}$                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.0 \\ 8.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.8 \\ 2.9$                                                                                                                                                                                                             | $\begin{array}{c} 0.30\\ 0.60\end{array}$                                                                                                                                                                               | 3.5<br>4.8                                                                                                                                                                                                                                    |
| MG2 J201534+3710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FSRQ                                                                                                                                                                                | 303.92                                                                                                                                                                                                                                                                   | 37.19                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6                                                                                                                                                                                                                      |                                                                                                       | 40 + 14.23<br>S5 0716+71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLL                                                                                                                                                                                            | 111.33<br>110.49                                                                                                                                                                                                                                                               | $14.42 \\71.34$                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2.9}{2.5}$                                                                                                                                                                                                        | 0.38                                                                                                                                                                                                                    | 7.4                                                                                                                                                                                                                                           |
| MG4 J200112+4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLL                                                                                                                                                                                 | 300.30                                                                                                                                                                                                                                                                   | 43.89                                                                                                                                                                                                                                               | 6.1                                                                                                                                                                                | 2.3                                                                                                                                                                                                                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.8                                                                                                                                                                                                                      |                                                                                                       | PSR B0656+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAL                                                                                                                                                                                            | 110.49<br>104.95                                                                                                                                                                                                                                                               | 14.24                                                                                                                                                                                                                                                                                                                                                                                | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2.3}{4.0}$                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                    | 4.4                                                                                                                                                                                                                                           |
| 1 ES 1959 + 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\operatorname{BLL}$                                                                                                                                                                | 300.01                                                                                                                                                                                                                                                                   | 65.15                                                                                                                                                                                                                                               | 12.6                                                                                                                                                                               | 3.3                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.3                                                                                                                                                                                                                     |                                                                                                       | 1  ES  0647 + 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLL                                                                                                                                                                                            | 104.55<br>102.70                                                                                                                                                                                                                                                               | 25.06                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                      | 0.31<br>0.27                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                           |
| 1RXS J194246.3+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLL                                                                                                                                                                                 | 295.70                                                                                                                                                                                                                                                                   | 10.56                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6                                                                                                                                                                                                                      |                                                                                                       | $B3\ 0609+413$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLL                                                                                                                                                                                            | 93.22                                                                                                                                                                                                                                                                          | 41.37                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                                    | 5.3                                                                                                                                                                                                                                           |
| RX J1931.1+0937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLL                                                                                                                                                                                 | 292.78                                                                                                                                                                                                                                                                   | 9.63                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                | 2.9                                                                                                                                                                                                                                      | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                      |                                                                                                       | Crab nebula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GAL                                                                                                                                                                                            | 83.63                                                                                                                                                                                                                                                                          | 22.01                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                      | 0.31                                                                                                                                                                                                                    | 3.7                                                                                                                                                                                                                                           |
| NVSS J190836-012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNIDB                                                                                                                                                                               | 287.20                                                                                                                                                                                                                                                                   | -1.53                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.9                                                                                                                                                                                                                                      | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                      |                                                                                                       | OG + 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSRQ                                                                                                                                                                                           | 83.18                                                                                                                                                                                                                                                                          | 7.55                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2                                                                                                                                                                                                                      | 0.28                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                           |
| MGRO J1908+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAL                                                                                                                                                                                 | 287.17                                                                                                                                                                                                                                                                   | 6.18                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                      | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7                                                                                                                                                                                                                      |                                                                                                       | TXS 0518+211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLL                                                                                                                                                                                            | 80.44                                                                                                                                                                                                                                                                          | 21.21                                                                                                                                                                                                                                                                                                                                                                                | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.8                                                                                                                                                                                                                      | 0.92                                                                                                                                                                                                                    | 6.6                                                                                                                                                                                                                                           |
| TXS 1902+556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BLL                                                                                                                                                                                 | 285.80                                                                                                                                                                                                                                                                   | 55.68                                                                                                                                                                                                                                               | 11.7                                                                                                                                                                               | 4.0                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9                                                                                                                                                                                                                      |                                                                                                       | TXS 0506+056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{BLL}$                                                                                                                                                                                 | 77.35                                                                                                                                                                                                                                                                          | 5.70                                                                                                                                                                                                                                                                                                                                                                                 | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>2.1</b>                                                                                                                                                                                                               | 3.72                                                                                                                                                                                                                    | 10.1                                                                                                                                                                                                                                          |
| HESS J1857+026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GAL                                                                                                                                                                                 | 284.30                                                                                                                                                                                                                                                                   | 2.67                                                                                                                                                                                                                                                | 7.4                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                      | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5                                                                                                                                                                                                                      |                                                                                                       | PKS 0502+049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{FSRQ}$                                                                                                                                                                                | 76.34                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                 | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                      | 0.66                                                                                                                                                                                                                    | 4.1                                                                                                                                                                                                                                           |
| GRS 1285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNIDB                                                                                                                                                                               | 283.15                                                                                                                                                                                                                                                                   | 0.69                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                | 3.8                                                                                                                                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                      |                                                                                                       | S3 0458-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{FSRQ}$                                                                                                                                                                                | 75.30                                                                                                                                                                                                                                                                          | -1.97                                                                                                                                                                                                                                                                                                                                                                                | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                      | 0.33                                                                                                                                                                                                                    | 2.7                                                                                                                                                                                                                                           |
| HESS J1852-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GAL                                                                                                                                                                                 | 283.00                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                | 3.3                                                                                                                                                                                | 3.0<br>3.7                                                                                                                                                                                                                               | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.0 \\ 2.6$                                                                                                                                                                                                             |                                                                                                       | PKS 0440-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{FSRQ}$                                                                                                                                                                                | 70.66                                                                                                                                                                                                                                                                          | -0.29                                                                                                                                                                                                                                                                                                                                                                                | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9                                                                                                                                                                                                                      | 0.46                                                                                                                                                                                                                    | 3.1                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     | 283.00<br>282.26                                                                                                                                                                                                                                                         | -0.02                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.0                                                                                                                                                                                                                     |                                                                                                       | MG2 J043337+2905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLL                                                                                                                                                                                            | 68.41                                                                                                                                                                                                                                                                          | 29.10                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                                                                                                                      | 0.28                                                                                                                                                                                                                    | 4.5                                                                                                                                                                                                                                           |
| HESS 51849-000<br>HESS 11849 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAL                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          | -0.02                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | <u>^</u>                                                                                              | PKS 0422+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLL                                                                                                                                                                                            | 66.19                                                                                                                                                                                                                                                                          | 0.60                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                      | 0.27                                                                                                                                                                                                                    | 2.3                                                                                                                                                                                                                                           |
| 11200 01040-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     | -20U.II.J.M                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     | $\frown$ 0.0                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | $\boldsymbol{h}$ $\boldsymbol{h}$ $\boldsymbol{h}$ $\boldsymbol{h}$ $\boldsymbol{h}$ $\boldsymbol{h}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A Har                                                                                                                                                                                          | $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                      | $\mathbf{O}$                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | 0.52                                                                                                                                                                                                                    | 3.4                                                                                                                                                                                                                                           |
| OT 081 <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOIU                                                                                                                                                                                | -26T U                                                                                                                                                                                                                                                                   | ' <b>L</b> l d                                                                                                                                                                                                                                      | 3221                                                                                                                                                                               | 22                                                                                                                                                                                                                                       | Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                       | U DIES                                                                                                | selected s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>OUI</b>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                | <b>DIID</b>                                                                                                                                                                                                                                                                                                                                                                          | <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| HESS J1849-000<br>HESS J1843-033<br>OT 081<br>S4 1749 $\pm$ 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     | $>_{267.15}^{281.05}$                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                          | search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                          | o pres                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                | and                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                         | 4.4                                                                                                                                                                                                                                           |
| S4 1749+70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{BLL}$                                                                                                                                                                | 267.15                                                                                                                                                                                                                                                                   | 70.10                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                      | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                      | o pres                                                                                                | NGC 1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGN                                                                                                                                                                                            | 49.96                                                                                                                                                                                                                                                                          | 41.51                                                                                                                                                                                                                                                                                                                                                                                | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                                                                                                                                                                                                      | 0.41                                                                                                                                                                                                                    | $\begin{array}{c} 4.4 \\ 5.5 \end{array}$                                                                                                                                                                                                     |
| S4 1749+70<br>1H 1720+117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $_{ m BLL}^{ m BLL}$                                                                                                                                                                | $267.15 \\ 261.27$                                                                                                                                                                                                                                                       | $\begin{array}{c} 70.10 \\ 11.88 \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} 0.0 \\ 0.0 \end{array}$                                                                                                                                          | $2.5 \\ 2.7$                                                                                                                                                                                                                             | $\begin{array}{c} 0.37 \\ 0.30 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 8.0\\ 3.2\end{array}$                                                                                                                                                                                  | o pres                                                                                                | NGC 1275<br>NGC 1068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\operatorname{AGN}$ <b>SBG</b>                                                                                                                                                                | 49.96<br><b>40.67</b>                                                                                                                                                                                                                                                          | 41.51<br><b>-0.01</b>                                                                                                                                                                                                                                                                                                                                                                | 3.6<br><b>50.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1<br><b>3.2</b>                                                                                                                                                                                                        | 0.41<br><b>4.74</b>                                                                                                                                                                                                     | 4.4<br>5.5<br><b>10.5</b>                                                                                                                                                                                                                     |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLL<br>BLL<br>BLL                                                                                                                                                                   | $267.15 \\ 261.27 \\ 259.81$                                                                                                                                                                                                                                             | $70.10 \\ 11.88 \\ 17.75$                                                                                                                                                                                                                           | $0.0 \\ 0.0 \\ 19.8$                                                                                                                                                               | $2.5 \\ 2.7 \\ 3.6$                                                                                                                                                                                                                      | $0.37 \\ 0.30 \\ 1.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8.0 \\ 3.2 \\ 7.3$                                                                                                                                                                                                      | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGN<br>SBG<br>BLL                                                                                                                                                                              | 49.96<br><b>40.67</b><br>39.67                                                                                                                                                                                                                                                 | 41.51<br><b>-0.01</b><br>16.62                                                                                                                                                                                                                                                                                                                                                       | 3.6<br><b>50.4</b><br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1<br><b>3.2</b><br>3.0                                                                                                                                                                                                 | 0.41                                                                                                                                                                                                                    | 4.4<br>5.5<br><b>10.5</b><br>3.1                                                                                                                                                                                                              |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLL<br>BLL<br>BLL<br>BLL                                                                                                                                                            | $267.15 \\ 261.27 \\ 259.81 \\ 253.47$                                                                                                                                                                                                                                   | 70.10<br>11.88<br>17.75<br>39.76                                                                                                                                                                                                                    | $0.0 \\ 0.0 \\ 19.8 \\ 10.3$                                                                                                                                                       | $2.5 \\ 2.7 \\ 3.6 \\ 4.0$                                                                                                                                                                                                               | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $8.0 \\ 3.2 \\ 7.3 \\ 7.3$                                                                                                                                                                                               | o pres                                                                                                | NGC 1275<br>NGC 1068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\operatorname{AGN}$ <b>SBG</b>                                                                                                                                                                | 49.96<br><b>40.67</b>                                                                                                                                                                                                                                                          | 41.51<br><b>-0.01</b>                                                                                                                                                                                                                                                                                                                                                                | 3.6<br><b>50.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1<br><b>3.2</b>                                                                                                                                                                                                        | 0.41<br><b>4.74</b><br>0.28                                                                                                                                                                                             | 4.4<br>5.5<br><b>10.5</b>                                                                                                                                                                                                                     |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLL<br>BLL<br>BLL<br>FSRQ                                                                                                                                                           | $\begin{array}{r} 267.15 \\ 261.27 \\ 259.81 \\ 253.47 \\ 248.82 \end{array}$                                                                                                                                                                                            | $70.10 \\ 11.88 \\ 17.75 \\ 39.76 \\ 38.14$                                                                                                                                                                                                         | $0.0 \\ 0.0 \\ 19.8 \\ 10.3 \\ 4.2$                                                                                                                                                | $2.5 \\ 2.7 \\ 3.6 \\ 4.0 \\ 2.3$                                                                                                                                                                                                        | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ 0.60 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>3.2<br>7.3<br>7.3<br>7.0                                                                                                                                                                                          | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164<br>4C +28.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGN<br><b>SBG</b><br>BLL<br>FSRQ                                                                                                                                                               | 49.96<br><b>40.67</b><br>39.67<br>39.48                                                                                                                                                                                                                                        | 41.51<br>- <b>0.01</b><br>16.62<br>28.80                                                                                                                                                                                                                                                                                                                                             | 3.6<br><b>50.4</b><br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.1<br><b>3.2</b><br>3.0<br>2.8                                                                                                                                                                                          | $0.41 \\ 4.74 \\ 0.28 \\ 0.30$                                                                                                                                                                                          | 4.4<br>5.5<br><b>10.5</b><br>3.1<br>3.6                                                                                                                                                                                                       |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL                                                                                                                                                    | $\begin{array}{c} 267.15\\ 261.27\\ 259.81\\ 253.47\\ 248.82\\ 238.93 \end{array}$                                                                                                                                                                                       | $70.10 \\ 11.88 \\ 17.75 \\ 39.76 \\ 38.14 \\ 11.19$                                                                                                                                                                                                | $0.0 \\ 0.0 \\ 19.8 \\ 10.3 \\ 4.2 \\ 0.0$                                                                                                                                         | $2.5 \\ 2.7 \\ 3.6 \\ 4.0 \\ 2.3 \\ 2.8$                                                                                                                                                                                                 | 0.37<br>0.30<br>1.32<br>0.61<br>0.60<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2                                                                                                                                                                                   | o pres                                                                                                | NGC 1275<br>NGC 1068<br>PKS 0235+164<br>4C +28.07<br>3C 66A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL                                                                                                                                                               | 49.96<br><b>40.67</b><br>39.67<br>39.48<br>35.67                                                                                                                                                                                                                               | 41.51<br>- <b>0.01</b><br>16.62<br>28.80<br>43.04                                                                                                                                                                                                                                                                                                                                    | 3.6<br><b>50.4</b><br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1<br><b>3.2</b><br>3.0<br>2.8<br>2.8                                                                                                                                                                                   | 0.41<br>4.74<br>0.28<br>0.30<br>0.30                                                                                                                                                                                    | 4.4<br>5.5<br><b>10.5</b><br>3.1<br>3.6<br>3.9                                                                                                                                                                                                |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br><b>BLL</b>                                                                                                                                      | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b>                                                                                                                                                                                                | 70.10<br>11.88<br>17.75<br>39.76<br>38.14<br>11.19<br><b>61.50</b>                                                                                                                                                                                  | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b>                                                                                                                            | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b>                                                                                                                                                                                     | $0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ \hline 0.00 \\ 0.32 \\ 2.74 \\ \hline 0.37 \\ 0.32 \\ 0.74 \\ \hline 0.37 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b>                                                                                                                                                                    | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>BLL                                                                                                                                        | 49.96<br><b>40.67</b><br>39.67<br>39.48<br>35.67<br>35.28<br>34.46<br>32.81                                                                                                                                                                                                    | 41.51<br>-0.01<br>16.62<br>28.80<br>43.04<br>35.94<br>1.74<br>10.86                                                                                                                                                                                                                                                                                                                  | 3.6<br><b>50.4</b><br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.1<br>3.2<br>3.0<br>2.8<br>2.8<br>3.1<br>3.2<br>1.7                                                                                                                                                                     | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \end{pmatrix}$                                                                                                                            | 4.4<br>5.5<br>10.5<br>3.1<br>3.6<br>3.9<br>4.3<br>2.3<br>3.5                                                                                                                                                                                  |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>BLL<br>FSRQ                                                                                                                                     | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55                                                                                                                                                                                      | 70.10<br>11.88<br>17.75<br>39.76<br>38.14<br>11.19<br><b>61.50</b><br>31.74                                                                                                                                                                         | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1                                                                                                                     | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4                                                                                                                                                                              | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ \hline 0.60 \\ 0.32 \\ 2.74 \\ 0.83 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3                                                                                                                                                             | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>BLL<br>BLL                                                                                                                          | 49.96<br>40.67<br>39.67<br>39.48<br>35.67<br>35.28<br>34.46<br>32.81<br>26.15                                                                                                                                                                                                  | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \end{array}$                                                                                                                                                                                                                                                                 | $\begin{array}{c} 3.6 \\ \textbf{50.4} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.6 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1<br>3.2<br>3.0<br>2.8<br>2.8<br>3.1<br>3.2<br>1.7<br>2.5                                                                                                                                                              | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \end{pmatrix}$                                                                                                                    | 4.4<br>5.5<br><b>10.5</b><br>3.1<br>3.6<br>3.9<br>4.3<br>2.3<br>3.5<br>3.5                                                                                                                                                                    |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>AGN                                                                                                                             | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26                                                                                                                                                                            | 70.10<br>11.88<br>17.75<br>39.76<br>38.14<br>11.19<br><b>61.50</b><br>31.74<br>3.44                                                                                                                                                                 | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1<br>0.0                                                                                                              | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7                                                                                                                                                                       | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ \hline 0.60 \\ 0.32 \\ 2.74 \\ 0.83 \\ 0.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9                                                                                                                                                      | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>BLL                                                                                                                   | $\begin{array}{c} 49.96 \\ \textbf{40.67} \\ 39.67 \\ 39.48 \\ 35.67 \\ 35.28 \\ 34.46 \\ 32.81 \\ 26.15 \\ 24.14 \end{array}$                                                                                                                                                 | 41.51<br>-0.01<br>16.62<br>28.80<br>43.04<br>35.94<br>1.74<br>10.86<br>27.09<br>39.10                                                                                                                                                                                                                                                                                                | 3.6 50.4 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.1 \\ 3.2 \\ 3.0 \\ 2.8 \\ 2.8 \\ 3.1 \\ 3.2 \\ 1.7 \\ 2.5 \\ 2.6 $                                                                                                                                                    | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \end{pmatrix}$                                                                                                                    | 4.4<br>5.5<br>10.5<br>3.1<br>3.6<br>3.9<br>4.3<br>2.3<br>3.5<br>3.5<br>4.1                                                                                                                                                                    |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ                                                                                                                             | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10                                                                                                                                                                  | $\begin{array}{c} 70.10 \\ 11.88 \\ 17.75 \\ 39.76 \\ 38.14 \\ 11.19 \\ \textbf{61.50} \\ 31.74 \\ 3.44 \\ 10.50 \end{array}$                                                                                                                       | $\begin{array}{c} 0.0 \\ 0.0 \\ 19.8 \\ 10.3 \\ 4.2 \\ 0.0 \\ \textbf{29.7} \\ 7.1 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                   | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0                                                                                                                                                                | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ \hline 0.60 \\ 0.32 \\ 2.74 \\ 0.83 \\ 0.28 \\ 0.33 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6                                                                                                                                               | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG                                                                                                                   | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ \end{array}$                                                                                                                                                | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \\ 39.10 \\ 30.62 \end{array}$                                                                                                                                                                                                                                               | $\begin{array}{c} 3.6 \\ \textbf{50.4} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.6 \\ 0.0 \\ 0.0 \\ 11.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 3.1 \\ \textbf{3.2} \\ 3.0 \\ 2.8 \\ 2.8 \\ 3.1 \\ 3.2 \\ 1.7 \\ 2.5 \\ 2.6 \\ 4.0 \end{array}$                                                                                                        | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \end{pmatrix}$                                                                                                            | $\begin{array}{c} 4.4 \\ 5.5 \\ 10.5 \\ 3.1 \\ 3.6 \\ 3.9 \\ 4.3 \\ 2.3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 4.1 \\ 6.3 \end{array}$                                                                                                                       |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                   | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ                                                                                                                     | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99                                                                                                                                                        | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03 \end{array}$                                                                                                                        | $\begin{array}{c} 0.0 \\ 0.0 \\ 19.8 \\ 10.3 \\ 4.2 \\ 0.0 \\ \textbf{29.7} \\ 7.1 \\ 0.0 \\ 0.0 \\ 7.5 \end{array}$                                                               | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4                                                                                                                                                         | $\begin{array}{c} 0.37 \\ 0.30 \\ 1.32 \\ 0.61 \\ \hline 0.60 \\ 0.32 \\ 2.74 \\ 0.83 \\ 0.28 \\ \hline 0.33 \\ 0.94 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3                                                                                                                                        | o pres                                                                                                | NGC 1275<br><b>NGC 1068</b><br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598<br>S2 0109+22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL                                                                                                            | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ \end{array}$                                                                                                                                        | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \\ 39.10 \\ 30.62 \\ 22.75 \end{array}$                                                                                                                                                                                                                                      | $\begin{array}{c} 3.6 \\ \textbf{50.4} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.6 \\ 0.0 \\ 0.0 \\ 11.4 \\ 2.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.1 \\ \textbf{3.2} \\ 3.0 \\ 2.8 \\ 2.8 \\ 3.1 \\ 3.2 \\ 1.7 \\ 2.5 \\ 2.6 \\ 4.0 \\ 3.1 \end{array}$                                                                                                 | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \end{pmatrix}$                                                                                                    | $\begin{array}{c} 4.4 \\ 5.5 \\ 10.5 \\ 3.1 \\ 3.6 \\ 3.9 \\ 4.3 \\ 2.3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 4.1 \\ 6.3 \\ 3.7 \end{array}$                                                                                                                |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106<br>PKS 1441+25<br><b>PKS 1424+240</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL                                                                                                              | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b>                                                                                                                                       | 70.10<br>11.88<br>17.75<br>39.76<br>38.14<br>11.19<br><b>61.50</b><br>31.74<br>3.44<br>10.50<br>25.03<br><b>23.80</b>                                                                                                                               | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1<br>0.0<br>0.0<br>7.5<br><b>41.5</b>                                                                                 | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b>                                                                                                                                           | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b>                                                                                                                         | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ                                                                                                            | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16 \end{array}$                                                                                                                                  | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \\ 39.10 \\ 30.62 \\ 22.75 \\ 1.59 \end{array}$                                                                                                                                                                                                                              | 3.6<br><b>50.4</b><br>0.0<br>0.0<br>0.0<br>0.0<br>1.6<br>0.0<br>1.6<br>0.0<br>11.4<br>2.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 3.1 \\ \textbf{3.2} \\ 3.0 \\ 2.8 \\ 2.8 \\ 3.1 \\ 3.2 \\ 1.7 \\ 2.5 \\ 2.6 \\ 4.0 \\ 3.1 \\ 3.0 \end{array}$                                                                                          | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \end{pmatrix}$                                                                                    | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\end{array}$                                                                                                                              |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106<br>PKS 1441+25<br><b>PKS 1424+240</b><br>NVSS J141826-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL                                                                                                       | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61                                                                                                                             | 70.10<br>11.88<br>17.75<br>39.76<br>38.14<br>11.19<br><b>61.50</b><br>31.74<br>3.44<br>10.50<br>25.03<br><b>23.80</b><br>-2.56                                                                                                                      | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1<br>0.0<br>0.0<br>7.5<br><b>41.5</b><br>0.0                                                                          | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b><br>3.0                                                                                                                                    | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0                                                                                                                  | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG                                                                                                     | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82 \end{array}$                                                                                                                          | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \\ 39.10 \\ 30.62 \\ 22.75 \\ 1.59 \\ 41.24 \end{array}$                                                                                                                                                                                                                     | 3.6<br><b>50.4</b><br>0.0<br>0.0<br>0.0<br>0.0<br>1.6<br>0.0<br>11.4<br>2.0<br>0.0<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1<br>3.2<br>3.0<br>2.8<br>3.1<br>3.2<br>1.7<br>2.5<br>2.6<br>4.0<br>3.1<br>3.0<br>4.0                                                                                                                                  | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \end{pmatrix}$                                                                            | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\end{array}$                                                                                                                  |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106<br>PKS 1441+25<br><b>PKS 1424+240</b><br>NVSS J141826-023<br>B3 1343+451                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ                                                                                               | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40                                                                                                                   | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88 \end{array}$                                                                                       | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1<br>0.0<br>0.0<br>7.5<br><b>41.5</b><br>0.0<br>0.0                                                                   | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b><br>3.0<br>2.8                                                                                                                             | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.32\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.32\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.32\\ \hline 0.33\\ \hline 0.94\\ \hline 0.94\\$ | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0                                                                                                           | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL                                                                                       | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64 \end{array}$                                                                                                                   | $\begin{array}{c} 41.51 \\ \textbf{-0.01} \\ 16.62 \\ 28.80 \\ 43.04 \\ 35.94 \\ 1.74 \\ 10.86 \\ 27.09 \\ 39.10 \\ 30.62 \\ 22.75 \\ 1.59 \\ 41.24 \\ 6.14 \end{array}$                                                                                                                                                                                                             | 3.6<br><b>50.4</b><br>0.0<br>0.0<br>0.0<br>0.0<br>1.6<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\end{array}$                                                                                           | $\begin{pmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \end{pmatrix}$                                                                    | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\end{array}$                                                                                                                  |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \end{array}$                                                                                                                                                                                                                           | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL                                                                                        | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31                                                                                                         | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02 \end{array}$                                                                               | 0.0<br>0.0<br>19.8<br>10.3<br>4.2<br>0.0<br><b>29.7</b><br>7.1<br>0.0<br>0.0<br>7.5<br><b>41.5</b><br>0.0<br>0.0<br>2.2                                                            | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b><br>3.0<br>2.8<br>2.5                                                                                                                      | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.39\\ \hline 0.39\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0<br>5.9                                                                                                    | o pres                                                                                                | NGC 1275<br>NGC 1068<br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598<br>S2 0109+22<br>4C +01.02<br>M 31<br>PKS 0019+058<br>PKS 2233-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>BLL<br>BLL                                                                                | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14 \end{array}$                                                                                                   | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\end{array}$                                                                                                                                                                                                   | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 5.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8 \end{array}$                                                                             | $ \begin{bmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \end{bmatrix} $                                                   | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \end{array}$                                                                                                               |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \end{array}$                                                                                                                                                                                                 | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>BLL                                                                                 | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08                                                                                               | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ \end{array}$                                                                     | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ \end{array}$                               | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b><br>3.0<br>2.8<br>2.5<br>2.8                                                                                                               | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0<br>5.9<br>6.4                                                                                             | o pres                                                                                                | NGC 1275<br>NGC 1068<br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598<br>S2 0109+22<br>4C +01.02<br>M 31<br>PKS 0019+058<br>PKS 2233-148<br>HESS J1841-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>BLL<br>GAL                                                                                | $\begin{array}{c} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14\\ 280.23\\ \end{array}$                                                                                        | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55} \end{array}$                                                                                                                                                                                 | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 3.6\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ \end{array}$                                                                     | $ \begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ \end{array} $                                | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline 21.4\\ 4.8\\ \end{array}$                                                                                           |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106<br>PKS 1441+25<br><b>PKS 1424+240</b><br>NVSS J141826-023<br>B3 1343+451<br>S4 1250+53<br>PG 1246+586<br>MG1 J123931+0443                                                                                                                                                                                                                                                                                                                                                                                                                 | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>BLL<br>FSRQ                                                                         | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89                                                                                     | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ \end{array}$                                                              | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$                   | 2.5<br>2.7<br>3.6<br>4.0<br>2.3<br>2.8<br><b>3.0</b><br>2.4<br>2.7<br>3.0<br>2.4<br><b>3.9</b><br>3.0<br>2.8<br>2.5<br>2.8<br>2.5<br>2.8<br>2.6                                                                                          | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0<br>5.9<br>6.4<br>2.4                                                                                      | o pres                                                                                                | NGC 1275<br>NGC 1068<br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598<br>S2 0109+22<br>4C +01.02<br>M 31<br>PKS 0019+058<br>PKS 2233-148<br>HESS J1841-055<br>HESS J1837-069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>BLL<br>GAL<br>GAL                                                                         | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14\\ 280.23\\ 279.43\\ 279.43\\ \end{array}$                                                                      | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-6.93}\end{array}$                                                                                                                                                | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ \hline 5.3\\ 3.6\\ 0.0\\ 0.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ 2.8\\ 4.0\\ 2.8\\ \hline \end{array}$                                            | $ \begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.30 \\ \hline \end{array} $         | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline 21.4\\ 4.8\\ 4.0\\ - \end{array}$                                                                                   |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \end{array}$                                                                                                                       | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>AGN                                                                  | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89<br>187.71                                                                           | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ \end{array}$                                                      | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$                     | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\end{array}$                                                                 | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.29\\ \hline 0.39\\ 0.35\\ 0.28\\ 0.29\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0<br>5.9<br>6.4<br>2.4<br>3.1                                                                               | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ \hline \\ {\rm PKS\ 0233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1510-089}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>GAL<br>GAL<br>FSRQ                                                                 | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14\\ 280.23\\ 279.43\\ 228.21\\ \end{array}$                                                                      | $\begin{array}{c} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10} \end{array}$                                                                                                                                               | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 5.3\\ 3.6\\ 0.0\\ 0.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ 2.8\\ 1.7\\ \end{array}$                                                         | $ \begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.41 \\ \end{array} $                        | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \end{array}$                                                                                                               |
| S4 1749+70<br>1H 1720+117<br>PKS 1717+177<br>Mkn 501<br>4C +38.41<br>PG 1553+113<br><b>GB6 J1542+6129</b><br>B2 1520+31<br>PKS 1502+036<br>PKS 1502+106<br>PKS 1441+25<br><b>PKS 1424+240</b><br>NVSS J141826-023<br>B3 1343+451<br>S4 1250+53<br>PG 1246+586<br>MG1 J123931+0443<br>M 87<br>ON 246                                                                                                                                                                                                                                                                                                                                                                                               | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL                                                                  | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89<br>187.71<br>187.56                                                                 | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ \end{array}$                                              | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.9\\ \end{array}$       | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ \end{array}$                                                        | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>3.2<br>7.3<br>7.3<br>7.0<br>3.2<br><b>22.0</b><br>7.3<br>2.9<br>2.6<br>7.3<br><b>12.3</b><br>2.0<br>5.0<br>5.9<br>6.4<br>2.4<br>3.1<br>4.2                                                                        | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ \begin{array}{c} {\rm PKS\ 0233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1510-089}\\ {\rm PKS\ 1329-049}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>BLL<br>GAL<br>GAL<br>FSRQ<br>FSRQ<br>FSRQ                                          | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ \end{array}$                                                          | $\begin{array}{c} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16} \end{array}$                                                                                                                              | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 0.1\\ 6.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 1.7\\ 2.7\\ \hline \end{array}$                                                        | $ \begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.41 \\ 0.77 \\ \end{array} $                | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline \\ 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ \hline \end{array}$                                                         |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \end{array}$                                                                                 | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ                                                          | $\begin{array}{c} 267.15\\ 261.27\\ 259.81\\ 253.47\\ 248.82\\ 238.93\\ \textbf{235.75}\\ 230.55\\ 226.26\\ 226.10\\ 220.99\\ \textbf{216.76}\\ 214.61\\ 206.40\\ 193.31\\ 192.08\\ 189.89\\ 187.71\\ 187.56\\ 187.27\\ \end{array}$                                     | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ \end{array}$                                       | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.9\\ 0.0\\ \end{array}$ | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ \end{array}$                                                  | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 8.0 \\ 3.2 \\ 7.3 \\ 7.3 \\ 7.0 \\ 3.2 \\ \textbf{22.0} \\ 7.3 \\ 2.9 \\ 2.6 \\ 7.3 \\ \textbf{12.3} \\ 2.0 \\ 5.0 \\ 5.9 \\ 6.4 \\ 2.4 \\ 3.1 \\ 4.2 \\ 1.9 \end{array}$                              | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ \begin{array}{c} {\rm PKS\ 2233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1329-049}\\ {\rm NGC\ 4945}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>FSRQ<br>FSRQ<br>SBG                                                          | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ \end{array}$                                                 | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47} \end{array}$                                                                                                            | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 1.0\\ 0.0\\ 0.1\\ 6.1\\ 0.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.7\\ 2.6\\ \end{array}$                                                    | $\begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.41 \\ 0.77 \\ 0.31 \\ \hline \end{array}$   | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ \hline \end{array}$                                                           |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542{+}6129}\\ \mathrm{B2}\ 1520{+31}\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \mathrm{4C}\ {+}21.35\\ \end{array}$                                                         | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>FSRQ                            | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89<br>187.71<br>187.56<br>187.27<br>186.23                                             | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ \end{array}$                               | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                      | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\end{array}$                                               | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 8.0 \\ 3.2 \\ 7.3 \\ 7.3 \\ 7.0 \\ 3.2 \\ \textbf{22.0} \\ 7.3 \\ 2.9 \\ 2.6 \\ 7.3 \\ \textbf{12.3} \\ 2.0 \\ 5.0 \\ 5.9 \\ 6.4 \\ 2.4 \\ 3.1 \\ 4.2 \\ 1.9 \\ 3.5 \end{array}$                       | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 2233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1329-049}\\ {\rm NGC\ 4945}\\ {\rm 3C\ 279}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>GAL<br>GAL<br>FSRQ<br>SBG<br>FSRQ<br>SBG<br>FSRQ                                    | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ 194.04\\ \end{array}$                                        | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47}\\ \textbf{-5.79} \end{array}$                                                                                           | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 0$                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.6\\ 2.4\\ \end{array}$                                                    | $ \begin{bmatrix} 0.41 \\ 4.74 \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.41 \\ 0.77 \\ 0.31 \\ 0.20 \\ \hline \end{bmatrix} $ | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ 2.7\\ \hline \end{array}$                                                     |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542}{+}6129\\ \mathrm{B2}\ 1520{+}31\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \mathrm{4C}\ {+}21.35\\ \mathrm{W}\ \mathrm{Comae}\\ \end{array}$                                                      | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>BLL                             | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89<br>187.71<br>187.56<br>187.27<br>186.23<br>185.38                                   | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ 28.24\\ \end{array}$                       | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 2.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.9\\ 0.0\\ \end{array}$ | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\\ 3.0\\ \end{array}$                                      | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ 0.32\\ 0.32\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 8.0 \\ 3.2 \\ 7.3 \\ 7.3 \\ 7.0 \\ 3.2 \\ \textbf{22.0} \\ 7.3 \\ 2.9 \\ 2.6 \\ 7.3 \\ \textbf{12.3} \\ 2.0 \\ 5.0 \\ 5.9 \\ 6.4 \\ 2.4 \\ 3.1 \\ 4.2 \\ 1.9 \\ 3.5 \\ 3.7 \end{array}$                | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ \begin{array}{c} {\rm PKS\ 2233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1329-049}\\ {\rm NGC\ 4945}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>FSRQ<br>FSRQ<br>SBG                                                          | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ \end{array}$                                                 | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47} \end{array}$                                                                                                            | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 5.3\\ 3.6\\ 0.0\\ 0.1\\ 6.1\\ 0.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.7\\ 2.6\\ \end{array}$                                                    | $\begin{array}{c} 0.41 \\ \textbf{4.74} \\ 0.28 \\ 0.30 \\ 0.33 \\ 0.27 \\ 0.43 \\ 0.31 \\ 0.28 \\ 0.63 \\ 0.30 \\ 0.26 \\ 1.09 \\ 0.29 \\ \hline 1.26 \\ 0.55 \\ 0.30 \\ 0.41 \\ 0.77 \\ 0.31 \\ \hline \end{array}$   | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ \hline \end{array}$                                                           |
| $\begin{array}{c} \mathrm{S4}\ 1749{+70}\\ \mathrm{1H}\ 1720{+117}\\ \mathrm{PKS}\ 1717{+177}\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+113}\\ \mathbf{GB6}\ \mathbf{J1542}{+}6129\\ \mathrm{B2}\ 1520{+}31\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \mathrm{4C}\ {+}21.35\\ \mathrm{W}\ \mathrm{Comae}\\ \mathrm{PG}\ 1218{+}304\\ \end{array}$                                                      | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL       | 267.15<br>261.27<br>259.81<br>253.47<br>248.82<br>238.93<br><b>235.75</b><br>230.55<br>226.26<br>226.10<br>220.99<br><b>216.76</b><br>214.61<br>206.40<br>193.31<br>192.08<br>189.89<br>187.71<br>187.56<br>187.27<br>186.23                                             | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ \end{array}$                               | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                      | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\end{array}$                                               | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 8.0 \\ 3.2 \\ 7.3 \\ 7.3 \\ 7.0 \\ 3.2 \\ \textbf{22.0} \\ 7.3 \\ 2.9 \\ 2.6 \\ 7.3 \\ \textbf{12.3} \\ 2.0 \\ 5.0 \\ 5.9 \\ 6.4 \\ 2.4 \\ 3.1 \\ 4.2 \\ 1.9 \\ 3.5 \end{array}$                       | o pres                                                                                                | NGC 1275<br>NGC 1068<br>PKS 0235+164<br>4C +28.07<br>3C 66A<br>B2 0218+357<br>PKS 0215+015<br>MG1 J021114+1051<br>TXS 0141+268<br>B3 0133+388<br>NGC 598<br>S2 0109+22<br>4C +01.02<br>M 31<br>PKS 0019+058<br>PKS 2233-148<br>HESS J1837-069<br>PKS 1510-089<br>PKS 1520-049<br>NGC 4945<br>3C 279<br>PKS 0805-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ                                | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ 194.04\\ 122.07\\ \end{array}$                               | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47}\\ \textbf{-5.79}\\ \textbf{-7.86}\\ \end{array}$                                                                        | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 0$                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.7\\ 2.6\\ 2.4\\ 2.7\\ \hline 2.6\\ 2.4\\ 2.7\\ \hline \end{array}$ |                                                                                                                                                                                                                         | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline \\ 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ 2.7\\ 4.7\\ \hline \end{array}$                                      |
| $\begin{array}{c} \mathrm{S4}\ 1749{+}70\\ \mathrm{1H}\ 1720{+}117\\ \mathrm{PKS}\ 1717{+}177\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+}113\\ \mathbf{GB6}\ \mathbf{J1542}{+}6129\\ \mathrm{B2}\ 1520{+}31\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \mathrm{4C}\ {+}21.35\\ \mathrm{W}\ \mathrm{Comae}\\ \mathrm{PG}\ 1218{+}304\\ \mathrm{PKS}\ 1216{-}010\\ \end{array}$ | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL | $\begin{array}{c} 267.15\\ 261.27\\ 259.81\\ 253.47\\ 248.82\\ 238.93\\ \textbf{235.75}\\ 230.55\\ 226.26\\ 226.10\\ 220.99\\ \textbf{216.76}\\ 214.61\\ 206.40\\ 193.31\\ 192.08\\ 189.89\\ 187.71\\ 187.56\\ 187.27\\ 186.23\\ 185.38\\ 185.34\\ 184.64\\ \end{array}$ | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ 28.24\\ 30.17\\ -1.33\\ \end{array}$       | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                      | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\\ 3.0\\ 3.9\\ 4.0\\ \end{array}$                          | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ 0.32\\ 0.32\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 8.0\\ 3.2\\ 7.3\\ 7.3\\ 7.0\\ 3.2\\ \textbf{22.0}\\ 7.3\\ 2.9\\ 2.6\\ 7.3\\ \textbf{12.3}\\ 2.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 6.4\\ 2.4\\ 3.1\\ 4.2\\ 1.9\\ 3.5\\ 3.7\\ 6.7\\ 3.1 \end{array}$             | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 2233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HS\ J1841-055}\\ {\rm HS\$ | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>GAL<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ                                       | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline \\ 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ 194.04\\ 122.07\\ 112.58\\ \end{array}$                      | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47}\\ \textbf{-5.79}\\ \textbf{-7.86}\\ \textbf{-11.69}\\ \end{array}$                                                      | $\begin{array}{c} 3.6\\ \textbf{50.4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.4\\ 2.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 11.0\\ 0.0\\ 1.9\\ \end{array}$                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.7\\ 2.6\\ 2.4\\ 2.7\\ 3.5\\ \end{array}$                           |                                                                                                                                                                                                                         | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline \\ 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ 2.7\\ 4.7\\ 11.4\\ \hline \end{array}$                               |
| $\begin{array}{c} {\rm S4}\ 1749{+}70\\ 1{\rm H}\ 1720{+}117\\ {\rm PKS}\ 1717{+}177\\ {\rm Mkn}\ 501\\ 4{\rm C}\ +38.41\\ {\rm PG}\ 1553{+}113\\ {\rm GB6}\ J1542{+}6129\\ {\rm B2}\ 1520{+}31\\ {\rm PKS}\ 1502{+}036\\ {\rm PKS}\ 1502{+}106\\ {\rm PKS}\ 1502{+}106\\ {\rm PKS}\ 1441{+}25\\ {\rm PKS}\ 1424{+}240\\ {\rm NVSS}\ J141826{-}023\\ {\rm B3}\ 1343{+}451\\ {\rm S4}\ 1250{+}53\\ {\rm PG}\ 1246{+}586\\ {\rm MG1}\ J123931{+}0443\\ {\rm M}\ 87\\ {\rm ON}\ 246\\ {\rm 3C}\ 273\\ {\rm 4C}\ {+}21.35\\ {\rm W}\ {\rm Comae}\\ {\rm PG}\ 1218{+}304\\ {\rm PKS}\ 1216{-}010\\ {\rm B2}\ 1215{+}30\\ \end{array}$                                                                  | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>BLL<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL<br>BLL  | $\begin{array}{c} 267.15\\ 261.27\\ 259.81\\ 253.47\\ 248.82\\ 238.93\\ \textbf{235.75}\\ 230.55\\ 226.26\\ 226.10\\ 220.99\\ \textbf{216.76}\\ 214.61\\ 206.40\\ 193.31\\ 192.08\\ 189.89\\ 187.71\\ 187.56\\ 187.27\\ 186.23\\ 185.38\\ 185.34\\ \end{array}$          | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ 28.24\\ 30.17\\ -1.33\\ 30.12 \end{array}$ | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ \textbf{0.0}\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$             | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\\ 3.0\\ 3.9\\ 4.0\\ 3.4 \end{array}$ | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.29\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ 0.32\\ 0.32\\ 0.70\\ 0.45\\ 1.09\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 8.0\\ 3.2\\ 7.3\\ 7.3\\ 7.0\\ 3.2\\ \textbf{22.0}\\ 7.3\\ 2.9\\ 2.6\\ 7.3\\ \textbf{12.3}\\ 2.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.9\\ 6.4\\ 2.4\\ 3.1\\ 4.2\\ 1.9\\ 3.5\\ 3.7\\ 6.7\\ 3.1\\ 8.5 \end{array}$ | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 013+055}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1510-089}\\ {\rm PKS\ 032-049}\\ {\rm NGC\ 4945}\\ {\rm 3C\ 279}\\ {\rm PKS\ 085-07}\\ {\rm PKS\ 0727-11}\\ {\rm LMC}\\ {\rm SMC}\\ {\rm PKS\ 0048-09}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGN<br><b>SBG</b><br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>BLL<br>GAL<br>GAL<br>GAL<br>GAL<br>GAL<br>GAL<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>SBG<br>SBG<br>SBG<br>BLL | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ 194.04\\ 122.07\\ 112.58\\ 80.00\\ 14.50\\ 12.68\\ \end{array}$ | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47}\\ \textbf{-5.79}\\ \textbf{-7.86}\\ \textbf{-11.69}\\ \textbf{-68.75}\\ \textbf{-72.75}\\ \textbf{-9.49}\\ \end{array}$ | 3.6<br>50.4<br>0.0<br>0.0<br>0.0<br>0.0<br>1.6<br>0.0<br>1.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.0<br>0.0<br>0.1<br>6.1<br>0.3<br>0.3<br>0.0<br>1.9<br>0.0<br>0.0<br>3.9                                                                                                                                                                                                 | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ 2.8\\ 1.7\\ 2.6\\ 2.8\\ 1.7\\ 2.6\\ 2.4\\ 2.7\\ 3.5\\ 3.1\\ 2.4\\ 3.3\\ \end{array}$                |                                                                                                                                                                                                                         | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline \\ 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ 2.7\\ 4.7\\ 11.4\\ 41.1\\ 44.1\\ 10.0\\ \hline \end{array}$          |
| $\begin{array}{c} \mathrm{S4}\ 1749{+}70\\ \mathrm{1H}\ 1720{+}117\\ \mathrm{PKS}\ 1717{+}177\\ \mathrm{Mkn}\ 501\\ \mathrm{4C}\ +38.41\\ \mathrm{PG}\ 1553{+}113\\ \mathbf{GB6}\ \mathbf{J1542}{+}6129\\ \mathrm{B2}\ 1520{+}31\\ \mathrm{PKS}\ 1502{+}036\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1502{+}106\\ \mathrm{PKS}\ 1441{+}25\\ \mathbf{PKS}\ 1424{+}240\\ \mathrm{NVSS}\ J141826{-}023\\ \mathrm{B3}\ 1343{+}451\\ \mathrm{S4}\ 1250{+}53\\ \mathrm{PG}\ 1246{+}586\\ \mathrm{MG1}\ J123931{+}0443\\ \mathrm{M}\ 87\\ \mathrm{ON}\ 246\\ \mathrm{3C}\ 273\\ \mathrm{4C}\ {+}21.35\\ \mathrm{W}\ \mathrm{Comae}\\ \mathrm{PG}\ 1218{+}304\\ \mathrm{PKS}\ 1216{-}010\\ \end{array}$ | BLL<br>BLL<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>AGN<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>BLL | $\begin{array}{c} 267.15\\ 261.27\\ 259.81\\ 253.47\\ 248.82\\ 238.93\\ \textbf{235.75}\\ 230.55\\ 226.26\\ 226.10\\ 220.99\\ \textbf{216.76}\\ 214.61\\ 206.40\\ 193.31\\ 192.08\\ 189.89\\ 187.71\\ 187.56\\ 187.27\\ 186.23\\ 185.38\\ 185.34\\ 184.64\\ \end{array}$ | $\begin{array}{c} 70.10\\ 11.88\\ 17.75\\ 39.76\\ 38.14\\ 11.19\\ \textbf{61.50}\\ 31.74\\ 3.44\\ 10.50\\ 25.03\\ \textbf{23.80}\\ -2.56\\ 44.88\\ 53.02\\ 58.34\\ 4.73\\ 12.39\\ 25.30\\ 2.04\\ 21.38\\ 28.24\\ 30.17\\ -1.33\\ \end{array}$       | $\begin{array}{c} 0.0\\ 0.0\\ 19.8\\ 10.3\\ 4.2\\ 0.0\\ \textbf{29.7}\\ 7.1\\ 0.0\\ 0.0\\ 7.5\\ \textbf{41.5}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                      | $\begin{array}{c} 2.5\\ 2.7\\ 3.6\\ 4.0\\ 2.3\\ 2.8\\ \textbf{3.0}\\ 2.4\\ 2.7\\ 3.0\\ 2.4\\ \textbf{3.0}\\ 2.4\\ \textbf{3.0}\\ 2.8\\ 2.5\\ 2.8\\ 2.6\\ 2.8\\ 1.7\\ 3.0\\ 2.6\\ 3.0\\ 3.9\\ 4.0\\ \end{array}$                          | $\begin{array}{c} 0.37\\ 0.30\\ 1.32\\ 0.61\\ \hline 0.60\\ 0.32\\ \textbf{2.74}\\ 0.83\\ 0.28\\ \hline 0.33\\ 0.94\\ \textbf{2.80}\\ 0.25\\ 0.25\\ 0.39\\ 0.35\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.29\\ 0.37\\ 0.28\\ 0.32\\ 0.32\\ 0.32\\ 0.70\\ 0.45\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 8.0\\ 3.2\\ 7.3\\ 7.3\\ 7.0\\ 3.2\\ \textbf{22.0}\\ 7.3\\ 2.9\\ 2.6\\ 7.3\\ \textbf{12.3}\\ 2.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 6.4\\ 2.4\\ 3.1\\ 4.2\\ 1.9\\ 3.5\\ 3.7\\ 6.7\\ 3.1 \end{array}$             | o pres                                                                                                | $\begin{array}{c} {\rm NGC\ 1275}\\ {\rm NGC\ 1068}\\ {\rm PKS\ 0235+164}\\ {\rm 4C\ +28.07}\\ {\rm 3C\ 66A}\\ {\rm B2\ 0218+357}\\ {\rm PKS\ 0215+015}\\ {\rm MG1\ J021114+1051}\\ {\rm TXS\ 0141+268}\\ {\rm B3\ 0133+388}\\ {\rm NGC\ 598}\\ {\rm S2\ 0109+22}\\ {\rm 4C\ +01.02}\\ {\rm M\ 31}\\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 0019+058}\\ \hline \\ {\rm PKS\ 0233-148}\\ {\rm HESS\ J1841-055}\\ {\rm HESS\ J1837-069}\\ {\rm PKS\ 1510-089}\\ {\rm PKS\ 1510-089}\\ {\rm PKS\ 1510-089}\\ {\rm PKS\ 1329-049}\\ {\rm NGC\ 4945}\\ {\rm 3C\ 279}\\ {\rm PKS\ 0805-07}\\ {\rm PKS\ 0727-11}\\ {\rm LMC}\\ {\rm SMC}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGN<br>SBG<br>BLL<br>FSRQ<br>BLL<br>FSRQ<br>BLL<br>BLL<br>BLL<br>SBG<br>BLL<br>FSRQ<br>SBG<br>BLL<br>GAL<br>GAL<br>GAL<br>GAL<br>FSRQ<br>SBG<br>FSRQ<br>FSRQ<br>FSRQ<br>FSRQ<br>SBG<br>SBG     | $\begin{array}{r} 49.96\\ \textbf{40.67}\\ 39.67\\ 39.48\\ 35.67\\ 35.28\\ 34.46\\ 32.81\\ 26.15\\ 24.14\\ 23.52\\ 18.03\\ 17.16\\ 10.82\\ 5.64\\ \hline 339.14\\ 280.23\\ 279.43\\ 228.21\\ 203.02\\ 196.36\\ 194.04\\ 122.07\\ 112.58\\ 80.00\\ 14.50\\ \hline \end{array}$  | $\begin{array}{r} 41.51\\ \textbf{-0.01}\\ 16.62\\ 28.80\\ 43.04\\ 35.94\\ 1.74\\ 10.86\\ 27.09\\ 39.10\\ 30.62\\ 22.75\\ 1.59\\ 41.24\\ 6.14\\ \hline \textbf{-14.56}\\ \textbf{-5.55}\\ \textbf{-6.93}\\ \textbf{-9.10}\\ \textbf{-5.16}\\ \textbf{-49.47}\\ \textbf{-5.79}\\ \textbf{-7.86}\\ \textbf{-11.69}\\ \textbf{-68.75}\\ \textbf{-72.75}\\ \end{array}$                  | 3.6<br>50.4<br>0.0<br>0.0<br>0.0<br>0.0<br>1.6<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.4<br>2.0<br>0.0<br>11.0<br>0.0<br>0.1<br>6.1<br>0.3<br>0.0<br>1.9<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 3.1\\ \textbf{3.2}\\ 3.0\\ 2.8\\ 2.8\\ 3.1\\ 3.2\\ 1.7\\ 2.5\\ 2.6\\ 4.0\\ 3.1\\ 3.0\\ 4.0\\ 2.9\\ \hline 2.8\\ 4.0\\ 2.8\\ 1.7\\ 2.7\\ 2.6\\ 2.4\\ 2.7\\ 3.5\\ 3.1\\ 2.4\\ \end{array}$               |                                                                                                                                                                                                                         | $\begin{array}{c} 4.4\\ 5.5\\ 10.5\\ 3.1\\ 3.6\\ 3.9\\ 4.3\\ 2.3\\ 3.5\\ 3.5\\ 4.1\\ 6.3\\ 3.7\\ 2.4\\ 9.6\\ 2.4\\ \hline \\ 9.6\\ 2.4\\ \hline \\ 21.4\\ 4.8\\ 4.0\\ 7.1\\ 5.1\\ 50.2\\ 2.7\\ 4.7\\ 11.4\\ 41.1\\ 44.1\\ \hline \end{array}$ |




# gamma-ray obscured cores of active galaxies as cosmic accelerators

acceleration of electrons and protons in the high field regions associated with the accretion disk, the optically thick corona of X-rays, and the base of the jet.

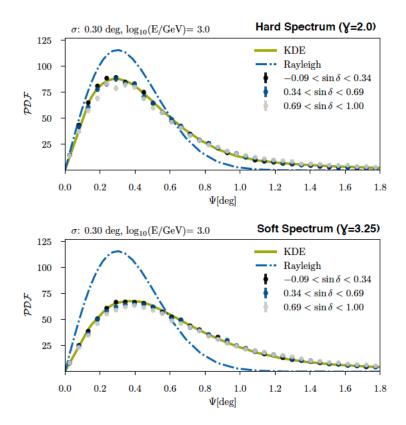


## neutrinos produced in the gamma-ray obscured core of NGC 1068



## interesting fluctuations or neutrino sources?

- $\rightarrow$  ongoing program to upgrade the performance of IceCube
  - improved detector calibration and ice model (pass 2)


## $\rightarrow$ improved muon track reconstruction

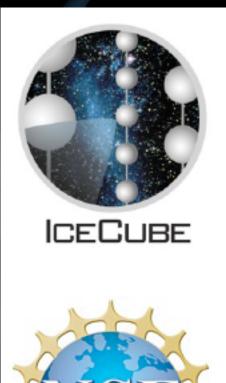
- DNN (energy) and BDT (pointing) reconstruction
- point spread function consistent with simulation
- insensitive to systematics

• improved modeling of the optics of the ice

### answer soon...

point spread function consistent with simulationinsensitive to systematics



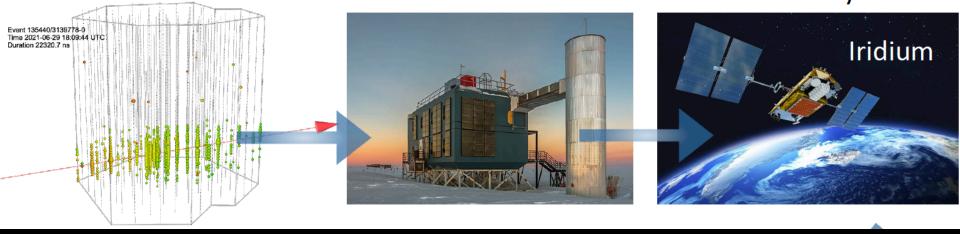

- ▶ Rayleigh (1D-projection of 2D Gauss) doesn't describe our Monte Carlo accurately → Tails are suppressed
- The distribution depends on the spectral index!
- Effect mainly visible at < 10 TeV energies where the kinematic angle between neutrino and muon matters
- Solution: Obtain a numerical representation of the V-dependent spatial term from MC simulation (for example using KDEs)

$$\frac{1}{2\pi\sigma^2}e^{-\frac{\psi^2}{2\sigma^2}} \to \mathcal{S}\left(\psi \,|\, \sigma, \, E_{\mu}, \, \gamma\right)$$

Virtual Collaboration Meeting, 2020-09-22

## very soon!

## High-Energy Cosmic Neutrinos: a Personal Tour francis halzen




IceCube: a neutrino window on the Universe

- the high-energy neutrino flux from the cosmos
  - the first sources

neutrinos and multimessenger astronomy

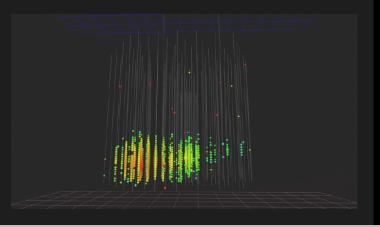
IceCube.wisc.edu



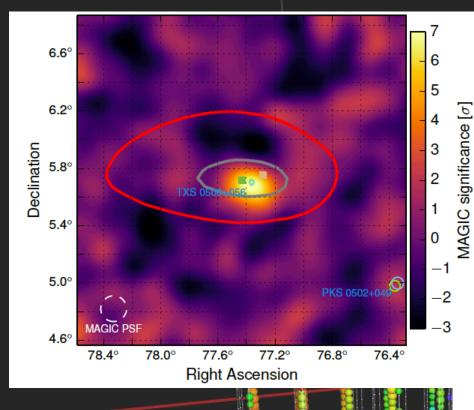
## v

## **HIGH-ENERGY EVENTS NOW PUBLIC ALERTS!**

We send our high-energy events in real-time as public GCN alerts now!

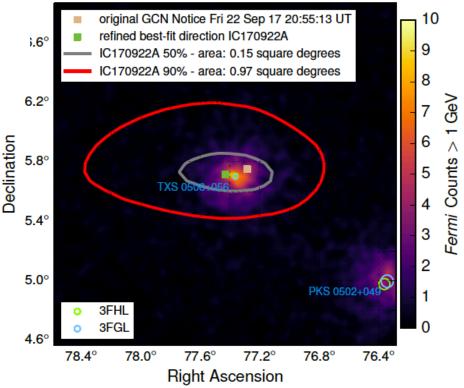

t]

|                   | GCN/AMON NOTICE<br>Wed 27 Apr 16 23:24:24 UT<br>AMON ICECUBE HESE<br>127853 | GCN       |
|-------------------|-----------------------------------------------------------------------------|-----------|
| EVENT_NUM:        | 67093193                                                                    |           |
| SRC_RA:           | 240.5683d {+16h 02m 16s} (J2000),                                           |           |
|                   | 240.7644d {+16h 03m 03s} (current),                                         |           |
|                   | 239.9678d {+15h 59m 52s} (1950)                                             |           |
| SRC_DEC:          | +9.3417d {+09d 20' 30"} (J2000),                                            |           |
|                   | +9.2972d {+09d 17' 50"} (current),                                          |           |
|                   | +9.4798d {+09d 28' 47"} (1950)                                              |           |
| SRC_ERROR:        | 35.99 [arcmin radius, stat+sys, 90% c                                       | ontainmen |
| SRC_ERROR50:      | 0.00 [arcmin radius, stat+sys, 50% co                                       | ntainment |
| DISCOVERY_DATE:   | 17505 TJD; 118 DOY; 16/04/27 (yy/                                           | mm/dd)    |
| DISCOVERY_TIME:   | 21152 SOD {05:52:32.00} UT                                                  |           |
| REVISION:         | 2                                                                           |           |
| N_EVENTS:         | 1 [number of neutrinos]                                                     |           |
| STREAM:           | 1                                                                           |           |
| DELTA_T:          |                                                                             |           |
| SIGMA_T:          |                                                                             |           |
| FALSE_POS:        |                                                                             |           |
| PVALUE:           |                                                                             |           |
| CHARGE :          |                                                                             |           |
| SIGNAL_TRACKNESS: |                                                                             |           |
| SUN_POSTN:        | 35.75d {+02h 23m 00s} +14.21d {+14d                                         | 12' 45"}  |


### **GCN notice for starting track sent Apr 27**

### We send **rough reconstructions first** and then **update them**.

47




from light in the ice to astronomer in less than one minute



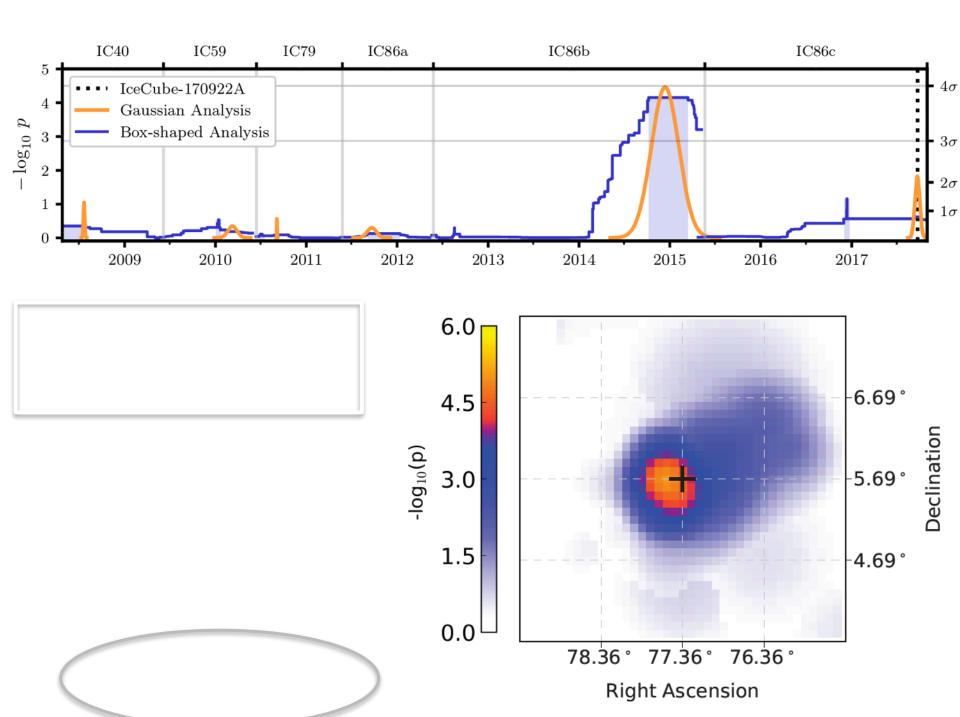
## MAGIC detects emission of > 100 GeV gammas

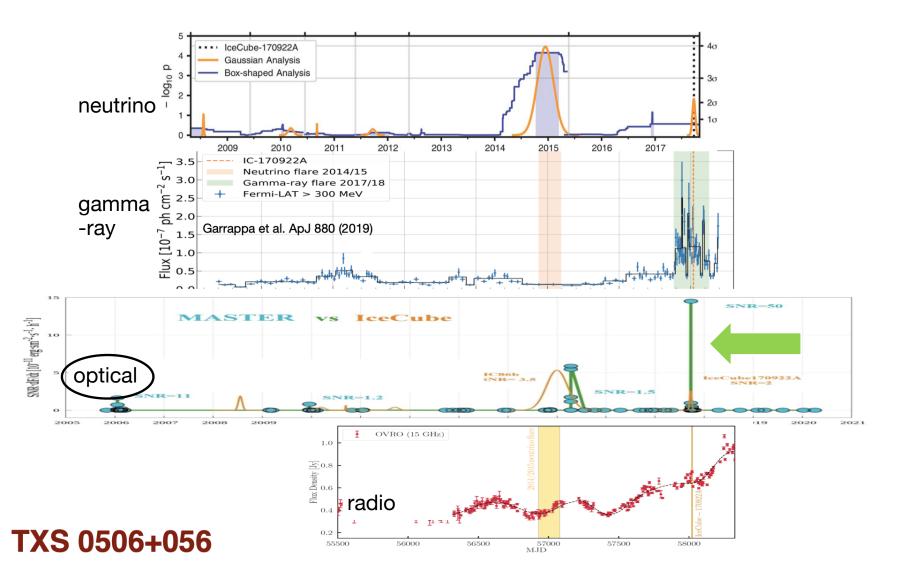
## IceCube 170922 290 TeV Fermi detects a flaring blazar within 0.06°



### **NEUTRINO ASTROPHYSICS**

## Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A


The IceCube Collaboration, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S, *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams\*†


**RESEARCH ARTICLE** 

**NEUTRINO ASTROPHYSICS** 

## Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

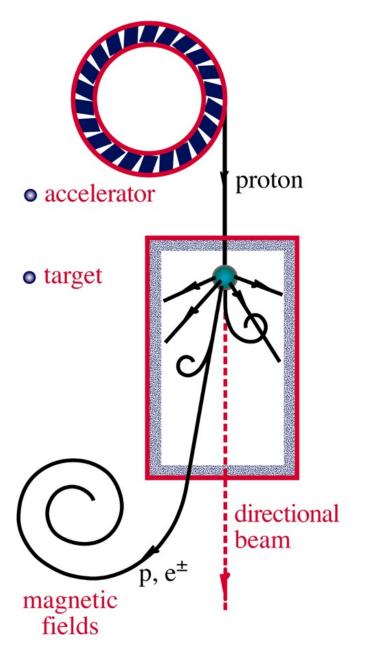
IceCube Collaboration\*†





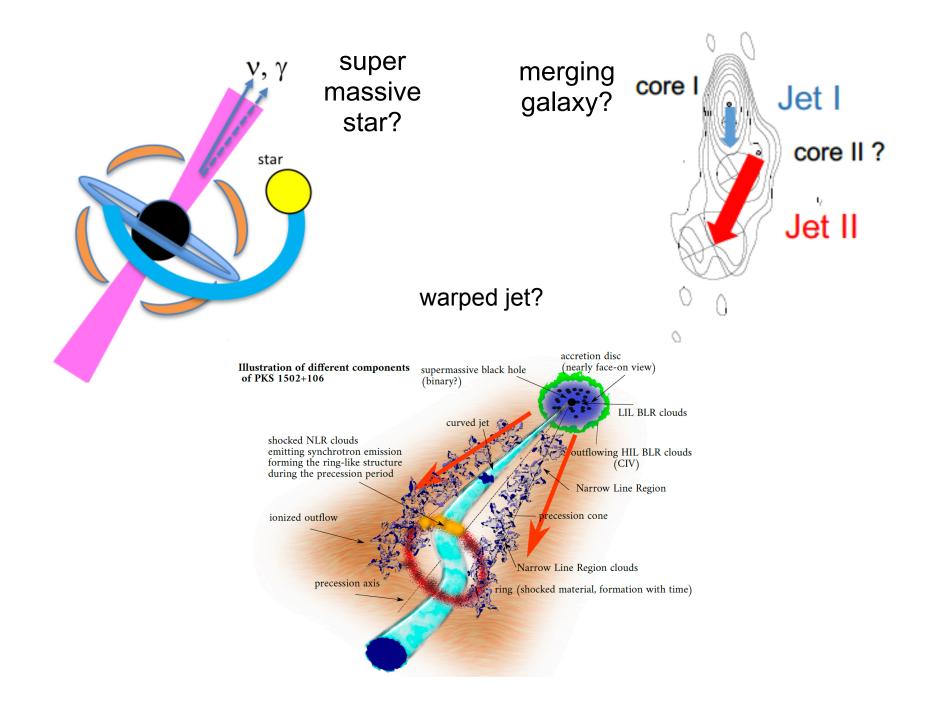
- multimessenger observations in the time domain
- change of flux 2 hours after 170922 neutrino
- source is quiet 10 previous and 3 following years

global robotic network of optical telescopes connects TXS 0506+056 to IC170922A in the time domain

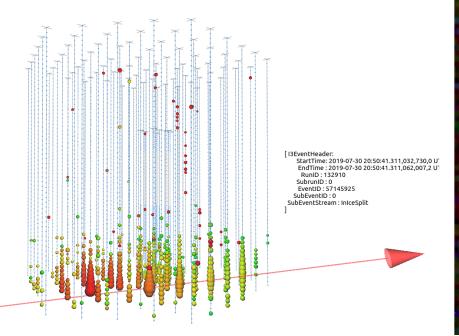


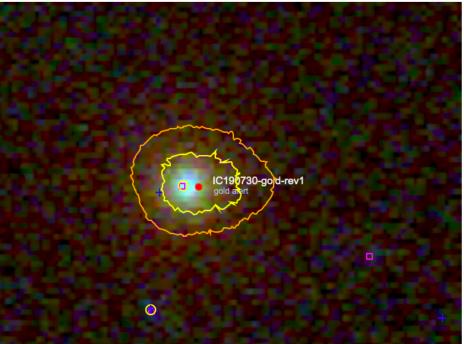

"MASTER found the blazar in the off-state *after one minute* and then switched to on-state two hours after the event. The effect is observed at a 50-sigma significance level"

**Optical Observations Reveal Strong Evidence for High Energy Neutrino Progenitor** 


V.M. Lipunov<sup>1,2</sup>, V.G. Kornilov<sup>1,2</sup>, K.Zhirkov<sup>1</sup>, E. Gorbovskoy<sup>2</sup>, N.M. Budnev<sup>4</sup>, D.A.H.Buckley<sup>3</sup>, R. Rebolo<sup>5</sup>, M. Serra-Ricart<sup>5</sup>, R. Podesta<sup>9,10</sup>, N. Tyurina<sup>2</sup>, O. Gress<sup>4,2</sup>, Yu.Sergienko<sup>8</sup>, V. Yurkov<sup>8</sup>, A. Gabovich<sup>8</sup>, P.Balanutsa<sup>2</sup>, I.Gorbunov<sup>2</sup>, D.Vlasenko<sup>1,2</sup>, F.Balakin<sup>1,2</sup>, V.Topolev<sup>1</sup>, A.Pozdnyakov<sup>1</sup>, A.Kuznetsov<sup>2</sup>, V.Vladimirov<sup>2</sup>, A. Chasovnikov<sup>1</sup>, D. Kuvshinov<sup>1,2</sup>, V.Grinshpun<sup>1,2</sup>, E.Minkina<sup>1,2</sup>, V.B.Petkov<sup>7</sup>, S.I.Svertilov<sup>2,6</sup>, C. Lopez<sup>9</sup>, F. Podesta<sup>9</sup>, H.Levato<sup>10</sup>, A. Tlatov<sup>11</sup> B. Van Soelen<sup>12</sup>, S. Razzaque<sup>13</sup>, M. Böttcher<sup>14</sup>

## **NEUTRINO BEAMS**





## multimessenger astronomy

- → a target efficient at converting protons into neutrinos is unlikely to be transparent to high energy photons.
- → examples: diffuse flux below 100 TeV, TXS 2014-15 burst, NGC 1068 and even IC170922
- → the energy in pionic photons is absorbed in the target and likely to appear at MeV energies or below.
- $\rightarrow$  one more example



## highest energy alert so far





#### [Previous | Next]

#### Neutrino candidate source FSRQ PKS 1502+106 at highest flux density at 15 GHz

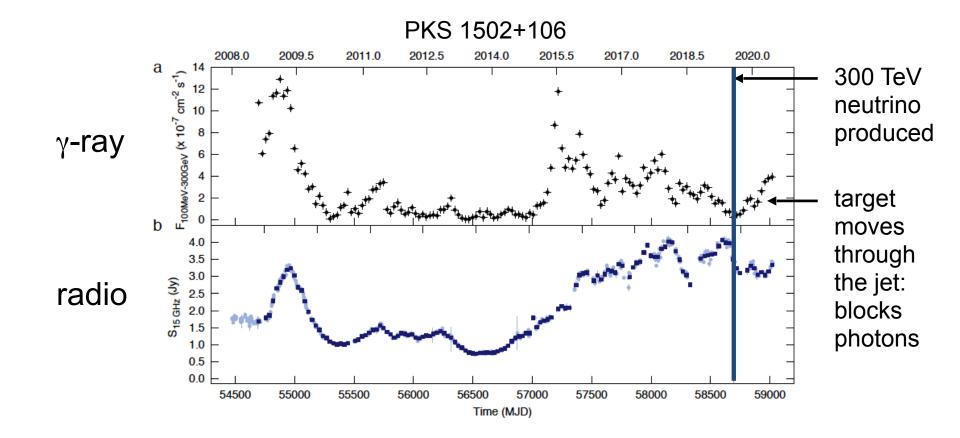
ATel #12996; S. Kiehlmann (IoA FORTH, OVRO), T. Hovatta (FINCA), M. Kadler (Univ. WA4rzburg), W. Max-Moerbeck (Univ. de Chile), A. C.S. Readhead (OVRO) on 7 Aug 2019; 12:31 UT Credential Certification: Sebastian Kiehlmann (skiehlmann@mail.de)

Subjects: Radio, Neutrinos, AGN, Blazar, Quasar

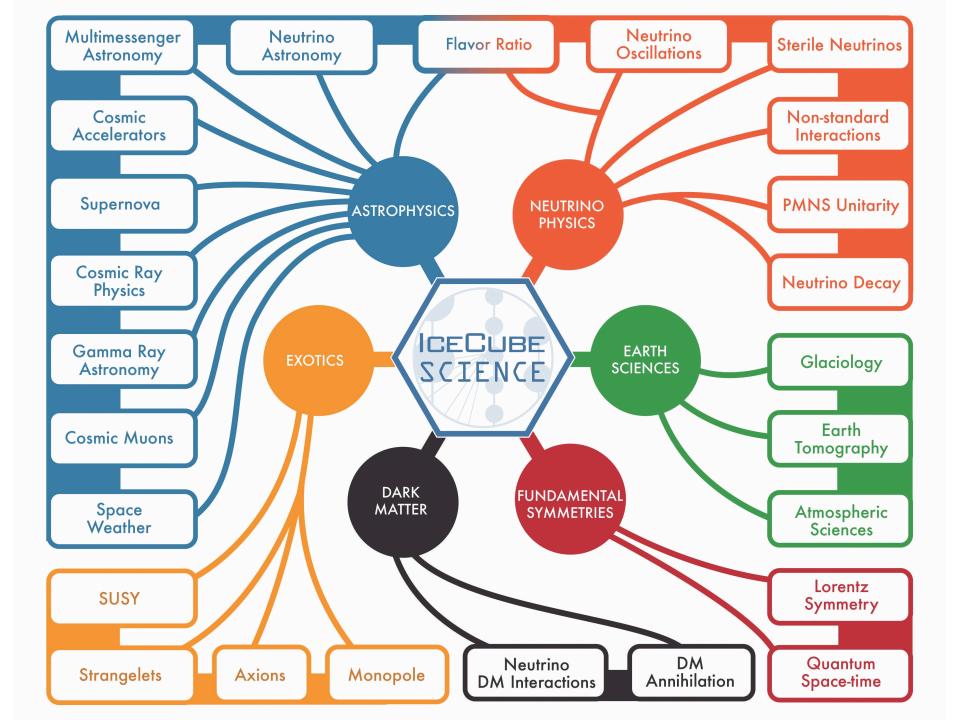
#### 🎔 Tweet

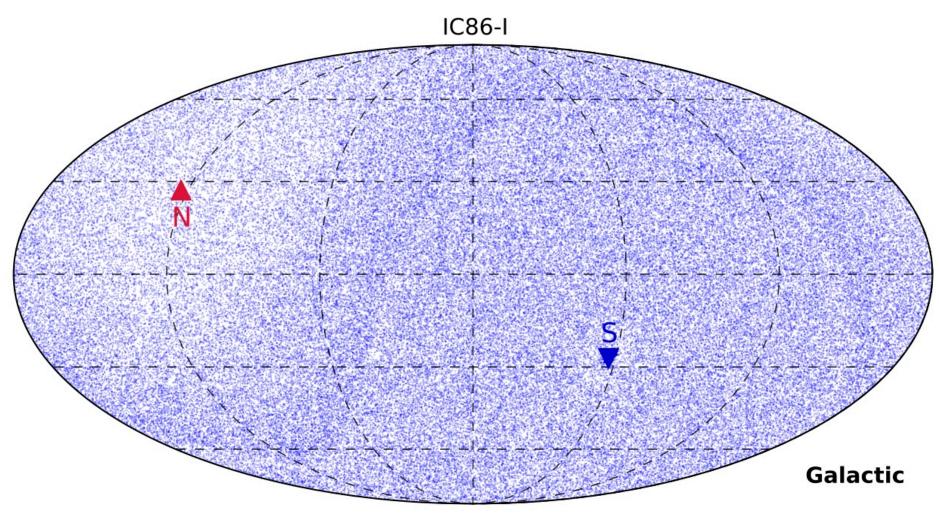
On 2019/07/30.86853 UT IceCube detected a high-energy astrophysical neutrino candidate (Atel #12967). The FSRQ PKS 1502+106 is located within the 50% uncertainty region of the event. We report that the flux density at 15 GHz measured with the OVRO 40m Telescope shows a longterm outburst that started in 2014, which is currently reaching an all-time high of about 4 Jy, since the beginning of the OVRO measurements in 2008. A similar 15 GHz long-term outburst was seen in TXS 0506+056 during the neutrino event IceCube-170922A.

#### trino candidate source SRQ PKS 1502+106 at est flux density at 15 12985 IceCube-190730A: Swift XRT


Related

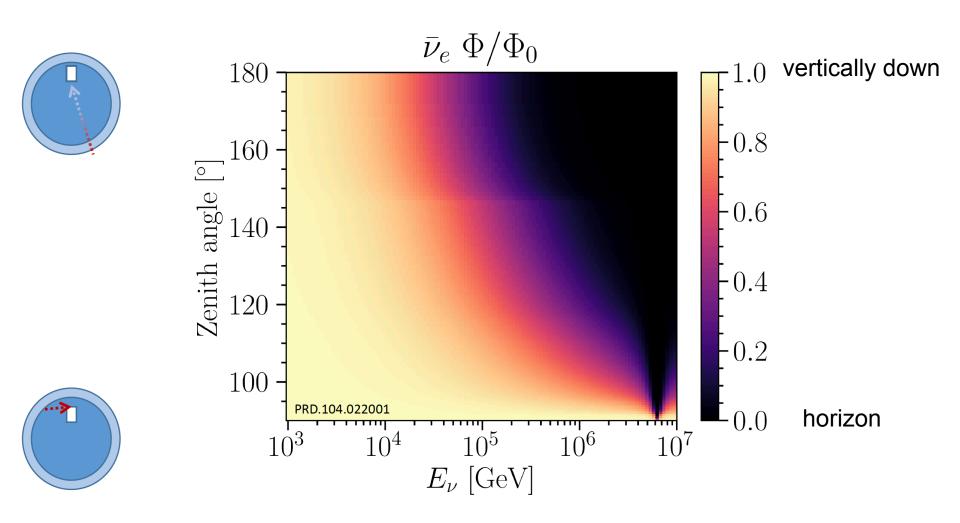
12996


- and UVOT Follow-up and prompt BAT Observations
- 12983 Optical fluxes of candidate neutrino blazar PKS 1502+106
- 12981 ASKAP observations of blazars possibly associated with neutrino events IC190730A and IC190704A
- 12974 Optical follow-up of IceCube 190730A with ZTF
- 12971 IceCube-190730A: MASTER alert observations and analysis
- 12967 IceCube-190730A an astrophysical neutrino candidate in spatial coincidence with FSRQ PKS 1502+106
- 12926 VLA observations reveal increasing brightness of 1WHSP J104516.2+275133, a potential source of C190704A

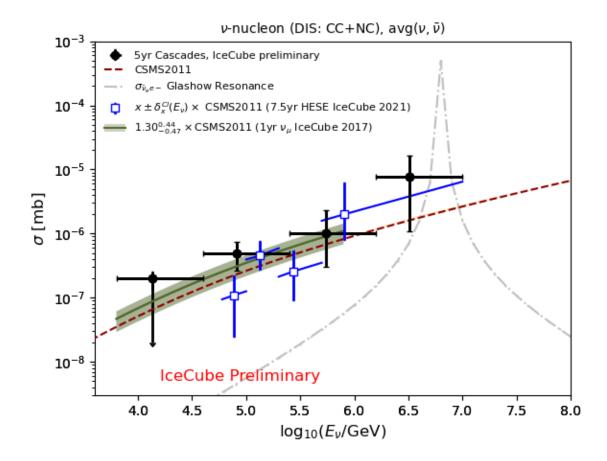

## IC 190730: 300 TeV

- coincident with PKS 1502+106
- radio burst

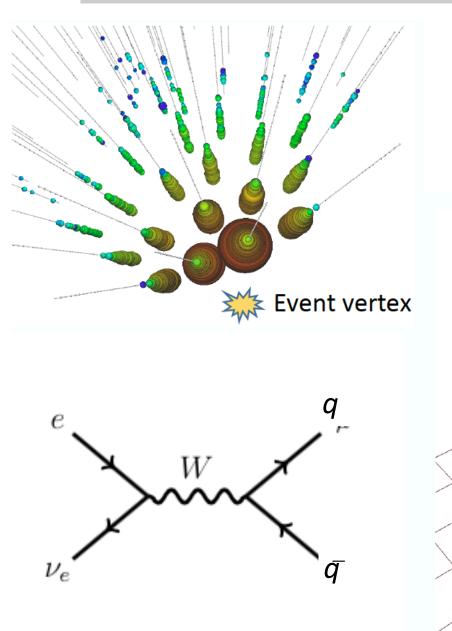



2009.09792 [astro-ph.HE]





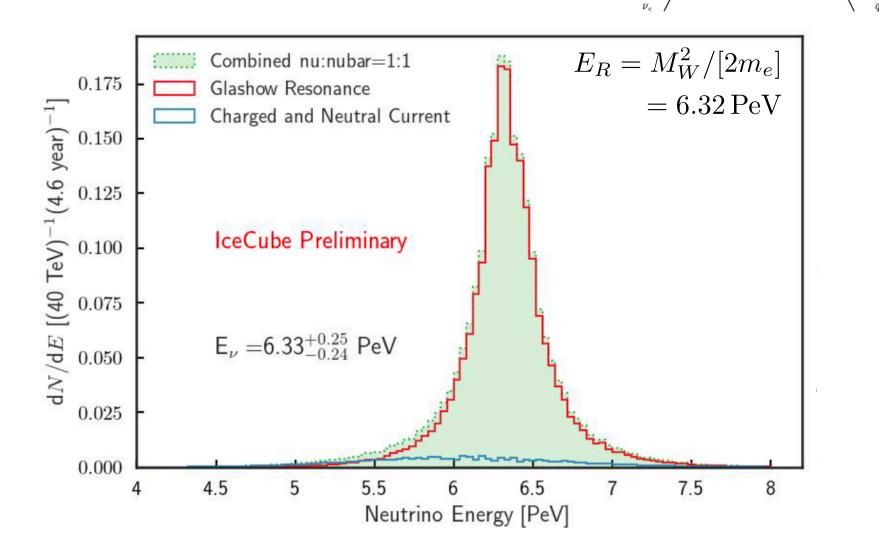

138322 neutrinos in 2011


> 200 cosmic neutrinos (depending on the spectrum)
 ~12 separated from atmospheric background with E>60 TeV



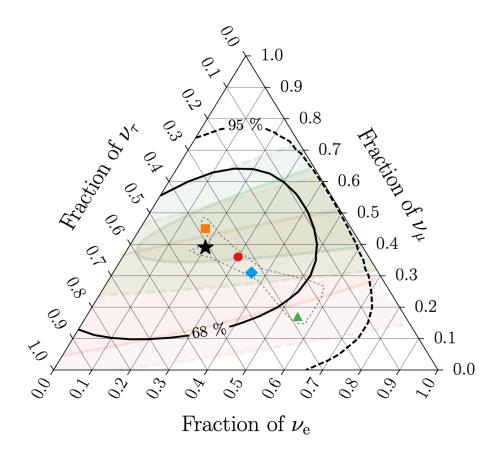
## the earth diameter is 1 absorption length at 70 TeV




## partially contained event with energy 6.3 PeV



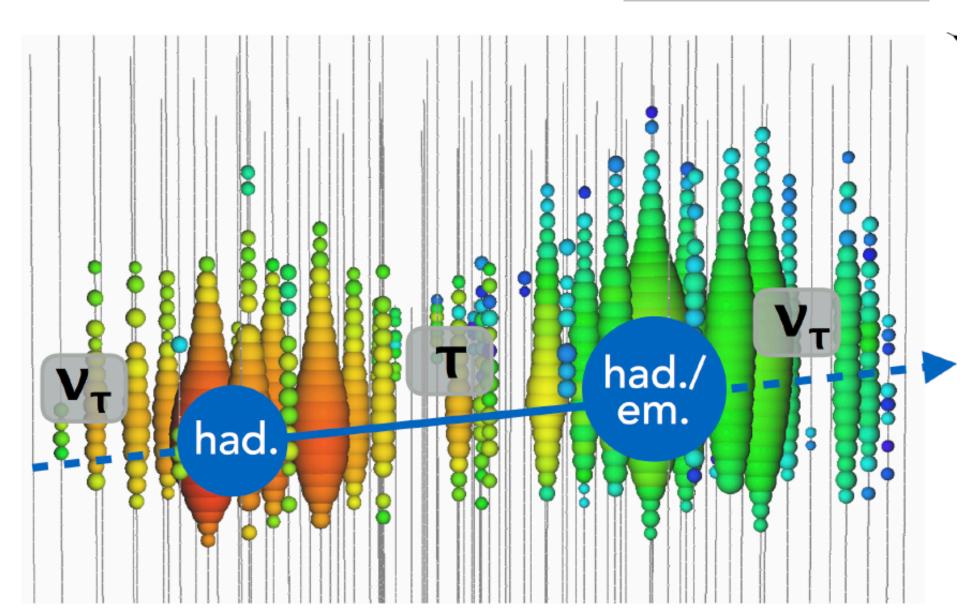
resonant production of a weak intermediate boson by an antielectron neutrino interacting with an atomic electron


۲

- energy measurement understood
- shower consistent with the hadronic decay of a weak intermediate boson W
- identification of anti-electron neutrino

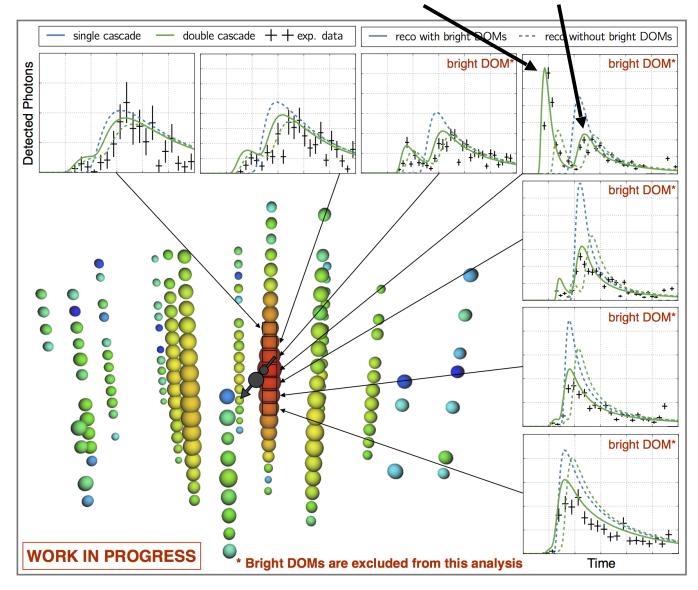


~~~~~~

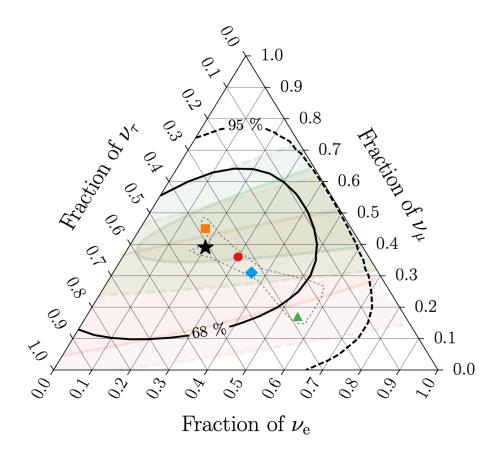

# oscillations of PeV neutrinos over cosmic distances to 1:1:1



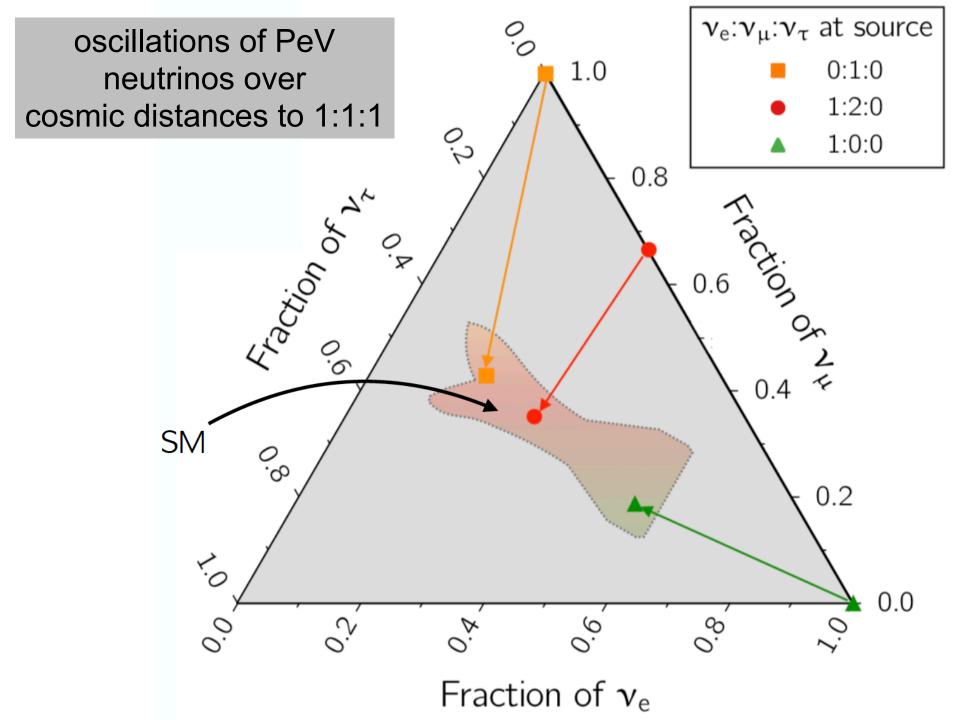
oscillating PeV neutrinos [7.5 years starting events]


## tau neutrino production and decay

tau decay length:  $\gamma c\tau = 50m \text{ per PeV}$ 




## a cosmic tau neutrino with 17m lifetime

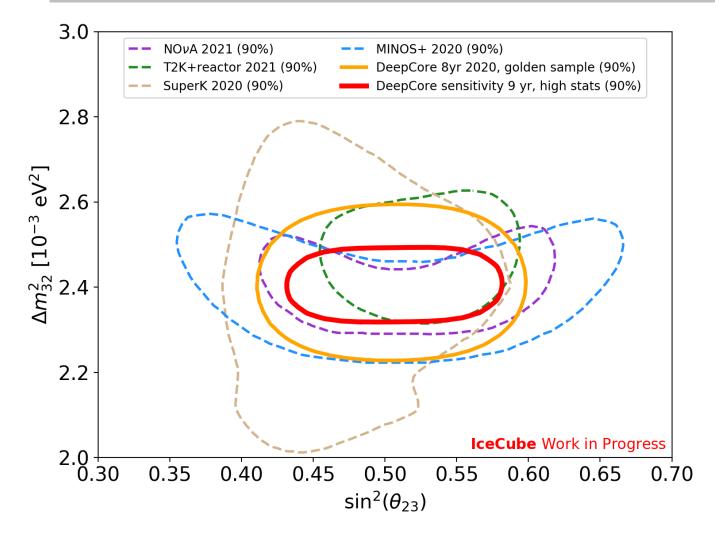

light from nutau interaction and tau decay

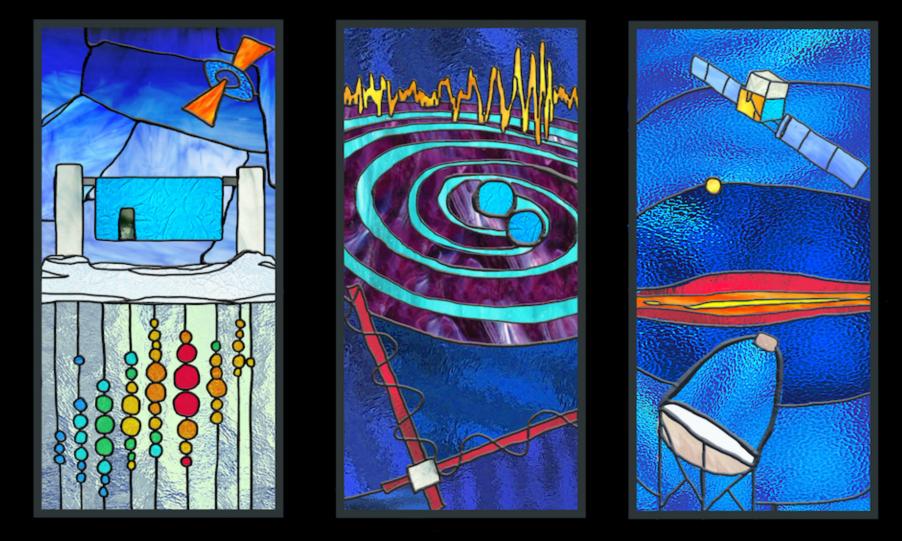


# oscillations of PeV neutrinos over cosmic distances to 1:1:1



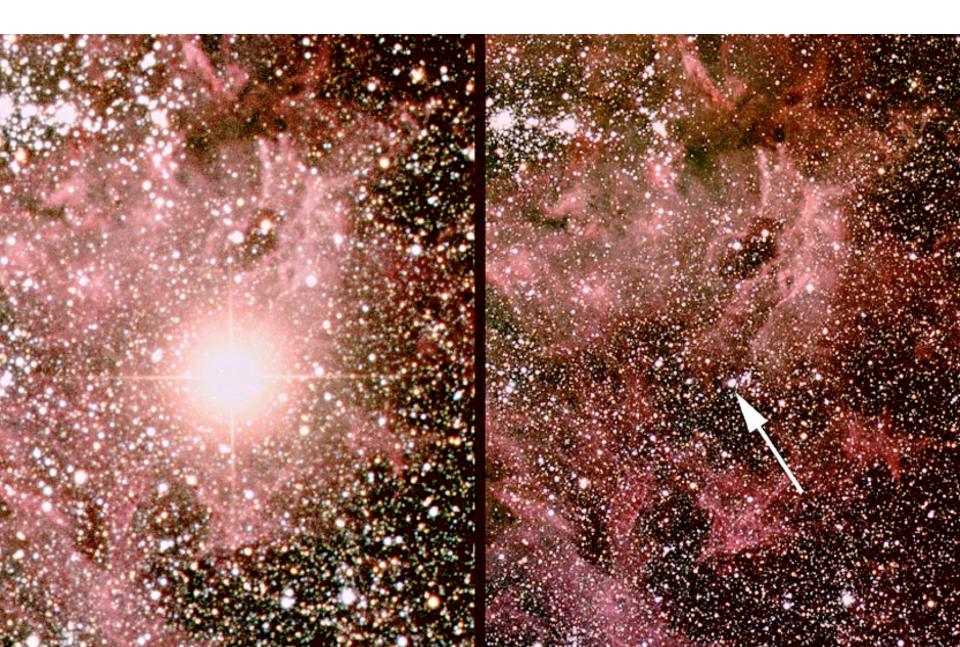
oscillating PeV neutrinos (7.5 years starting events)

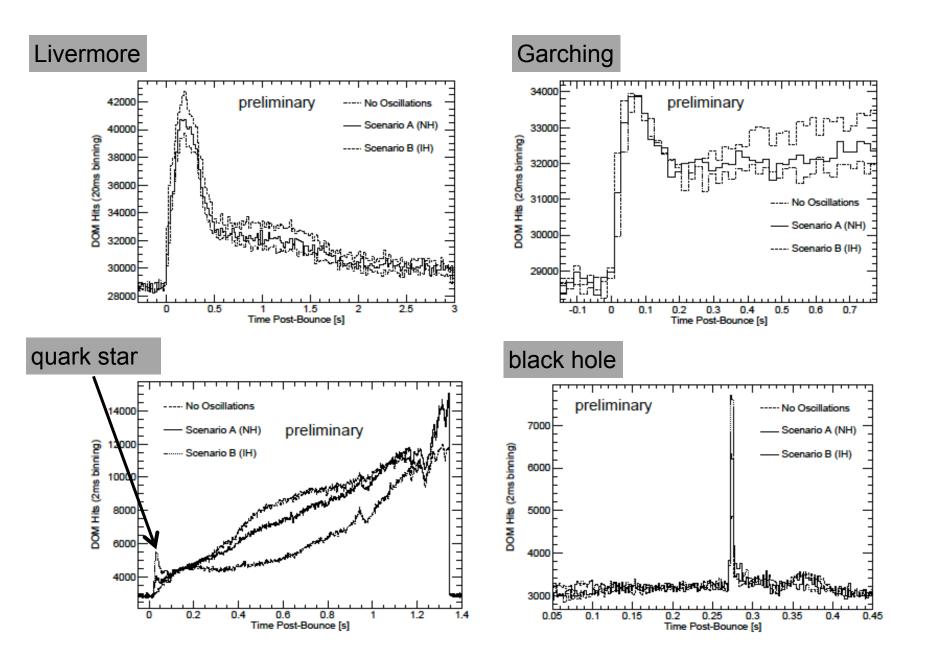


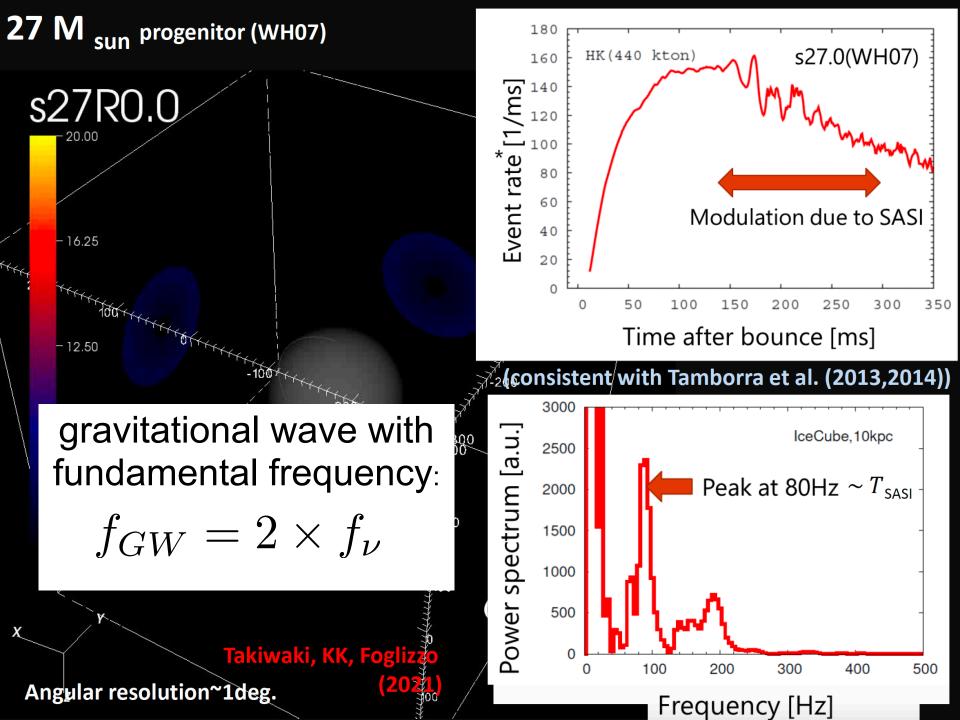


# DeepCore

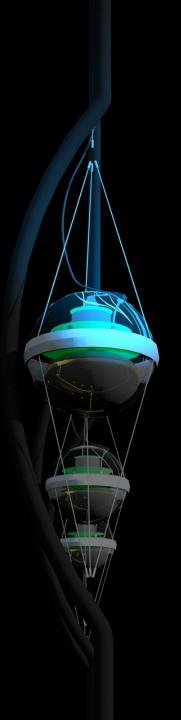
imminent unblinding:

- analysis with a sample of 210,000 atmospheric neutrinos
- 9,600 tau neutrinos


[9.3 years and 97.3% purity with energies of 5~55 GeV]





next attraction: gravitational waves + neutrinos?

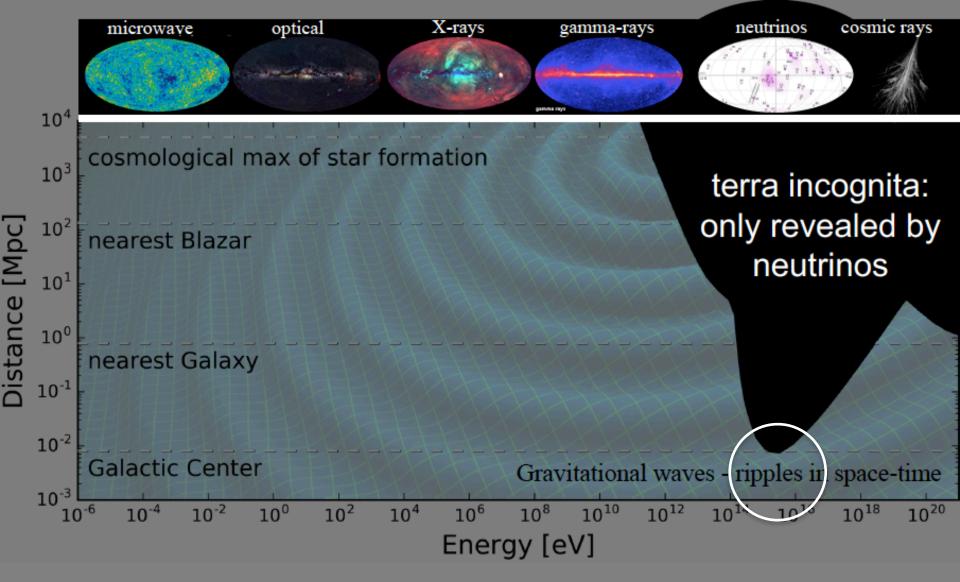
(August 17, 2017 neutron star merger: jet not aligned ⊗)










# neutrino astronomy 2022

- it exists
- more neutrinos, better neutrinos, more telescopes
- closing in on cosmic ray sources
- [are active galaxies with obscured cores the sources of cosmic rays?]

icecube.wisc.edu

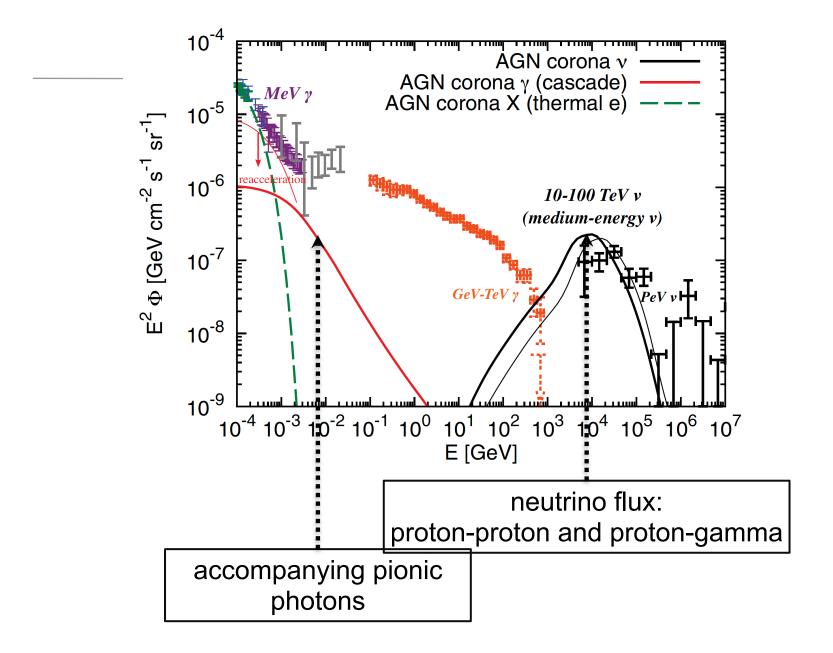
# THE ICECUBE COLLABORATION

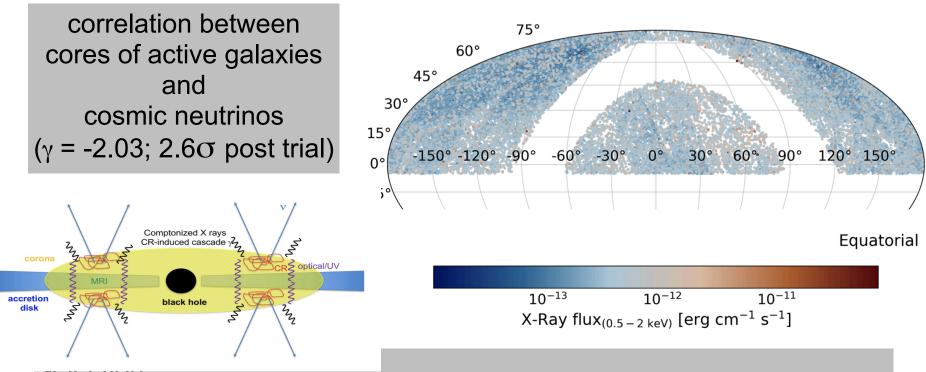




- the extreme Universe is opaque to the EM spectrum
- non-thermal Universe powered by cosmic accelerators
- probed by gravitational waves and neutrinos

# standing on the shoulder of giants


1987: DUMAND test string






.. success with Baikal and Antares

### neutrinos produced in the gamma-ray obscured core of NGC 1068

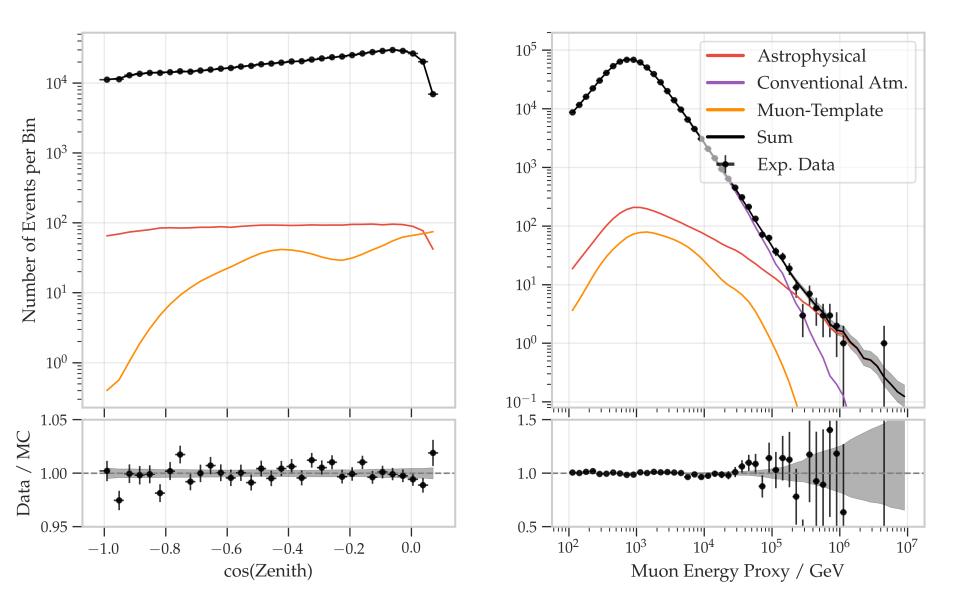




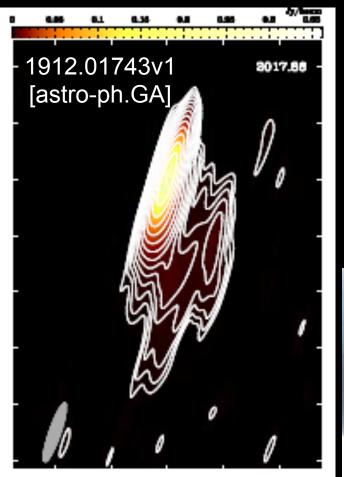
- 3010011011.
- X-ray catalogues 2RXS + XMMSL2
- IR WISE catalogue: X-rays associated with the core produce infrared light on dust at the center of the galaxy

TABLE I. Properties of the AGN samples created for the analysis. The surveys used for the cross-match to derive each sample, the final number of selected sources, cumulative X-ray flux in the 0.5-2 keV energy range from the selected sources and the completeness (fraction of total X-ray flux from all AGN in the universe contained in the sample) are listed.

| $ \begin{array}{c c} \mbox{Matched catalogues NVSS} + 2 \mbox{RXS} + 2 \mbox{RXS} + X \mbox{MMSL2} \\ \mbox{Nr. of sources} & 9749 & 32249 & 15887 \\ \mbox{Cumulative X-ray flux [erg cm^{-2} s^{-1}]} & 7.71 \times 10^{-9} & 1.43 \times 10^{-8} & 7.26 \times 10^{-9} \\ \mbox{Matched catalogues NVSS} + 2 \mbox{RXS} + 2 \mbox{RX} $ | Radio–selected AGN  | IR–selected AGN | LLAGN |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-------|
| Completeness $5^{+3}_{-3}\%$ $11^{+12}_{-7}\%$ $6^{+7}_{-4}\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nr. of sources 9749 | 32249           | 15887 |


# multimessenger astronomy $p + \gamma \rightarrow n + \pi^{+}$ $\pi^{+} \rightarrow [e^{+} + \bar{\nu}_{\mu} + \nu_{e}] + \nu_{\mu}$ $\rightarrow p + \pi^{0}$ $\pi^{0} \rightarrow \gamma + \gamma$ $\gamma + \gamma_{EBL} \rightarrow \text{cascade}$

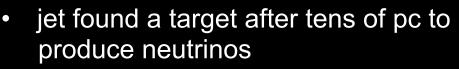
efficient neutrino production sites are likely to be optically thick to gamma rays


HOCKWAVE

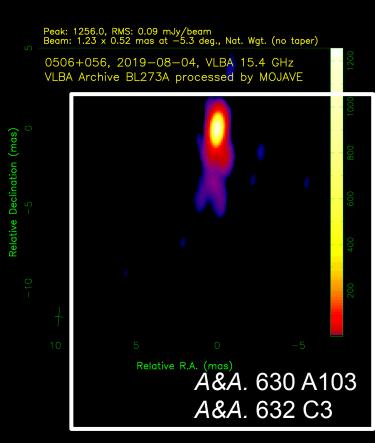
•

- expect no correlation between gamma-ray and neutrino activity
- gamma rays lose energy on the target that produces neutrinos even before reaching the EBL

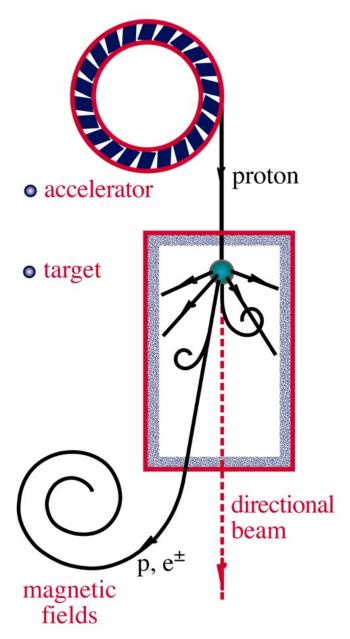



muon neutrino flux filtered by the Earth: atmos. vs astrophysical




# RADIO INTERFEROMETRY

- core brightening observed in a radio burst that started 5 years ago
- beyond 5 milliarcseconds the jet loses its tight collimation






- obscures the gamma rays
- obscured core: accretion disk, X-ray cocoon, base of the jet, BLR clouds..., we need higher resolution ...



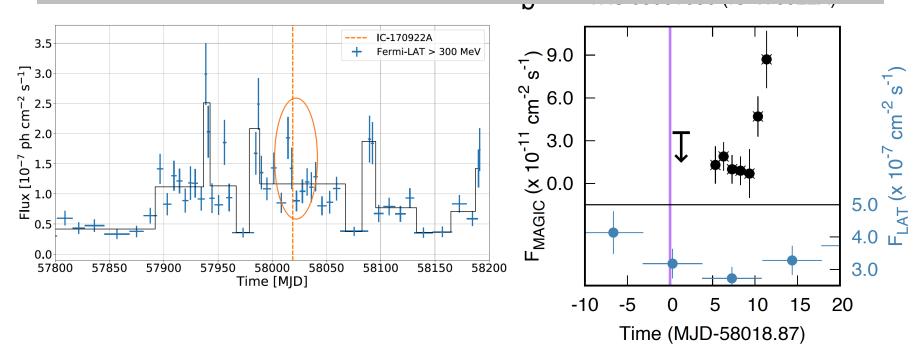
# **NEUTRINO BEAMS**



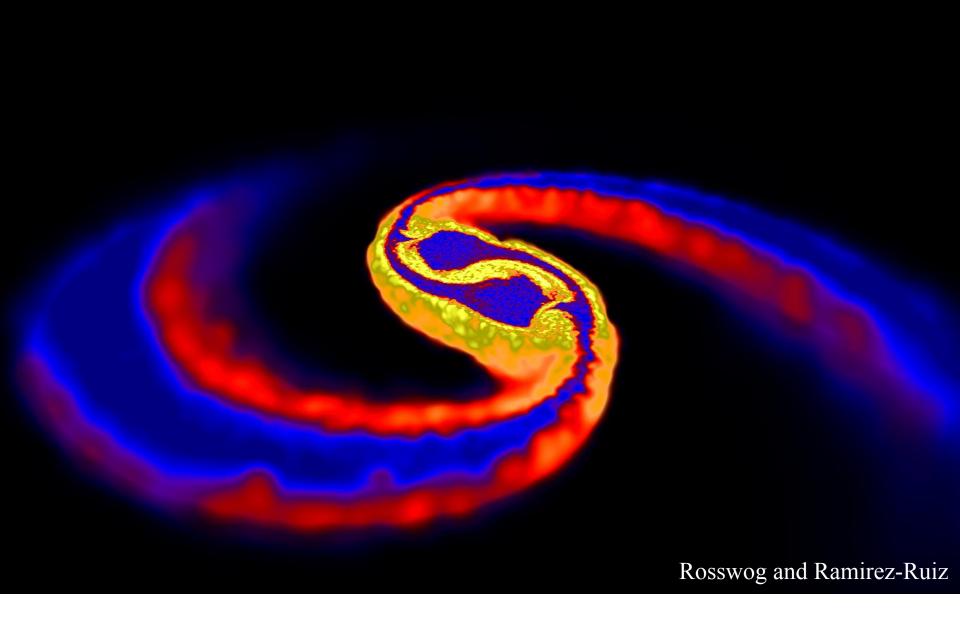
# the py efficiency dilemma

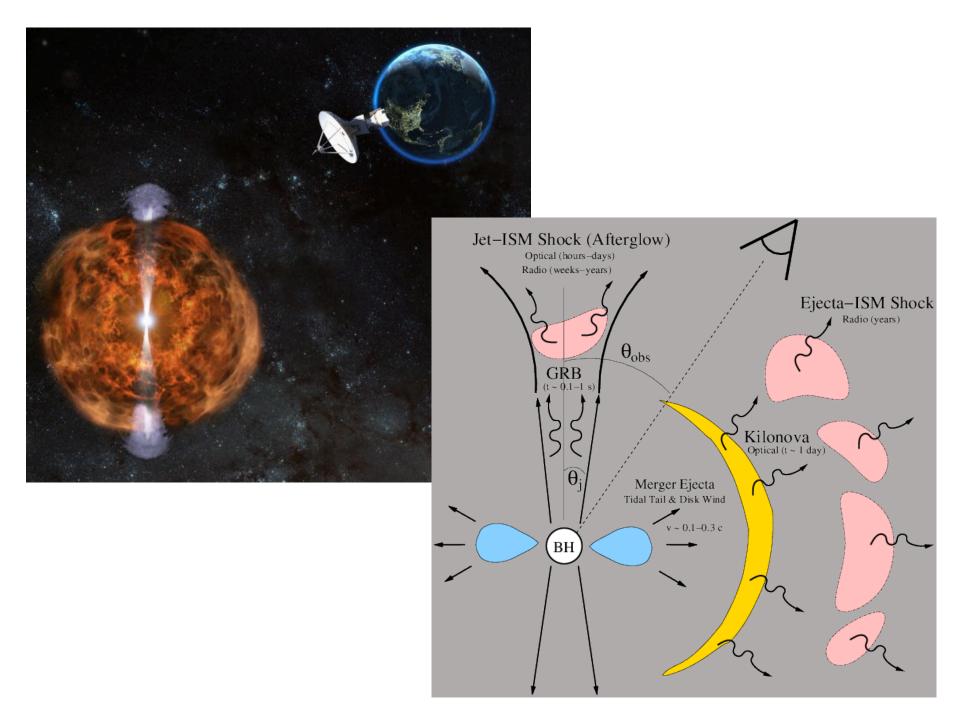
• efficiency for producing the neutrinos in the photon target:

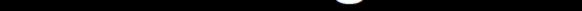
 $\tau_{p\gamma} = \operatorname{R}_{\text{escape}} \sigma_{p\gamma} \operatorname{n}_{\text{photons}}$ 

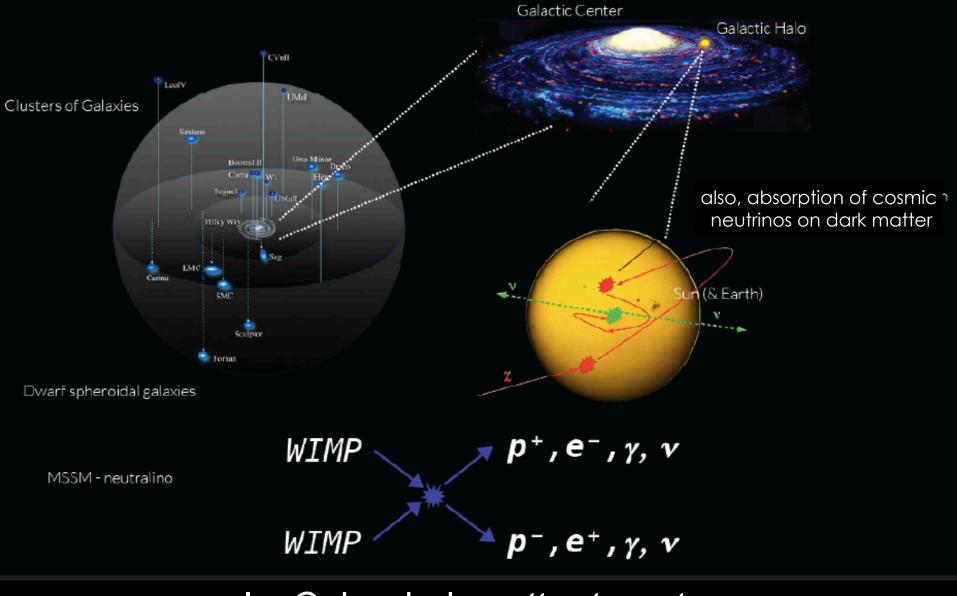

 likelihood of the multimessenger photons to be absorbed in target

$$\tau_{\gamma\gamma} = \operatorname{R}_{\operatorname{target}} \sigma_{\gamma\gamma} \operatorname{n}_{\operatorname{photons}}$$

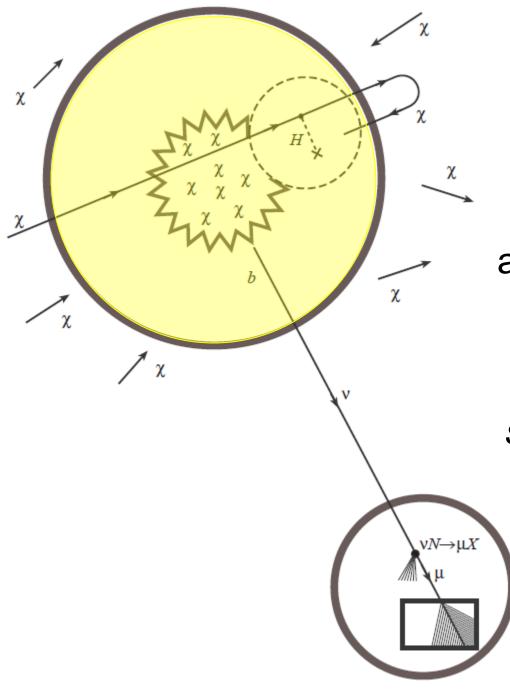

→ therefore, with  $R_{escape} \sim R_{target}$  $\tau_{\gamma\gamma} = 300 \ \frac{R_{target}}{R_{escape}} \tau_{p\gamma}$ 


- → do not expect high energy gamma rays to accompany cosmic neutrinos
- → blazar jets are out


## gamma rays in 2017 at the time the neutrino is produced ? a few ~10 GeV photons and not much else, consistent with an obscured source, not a blazar

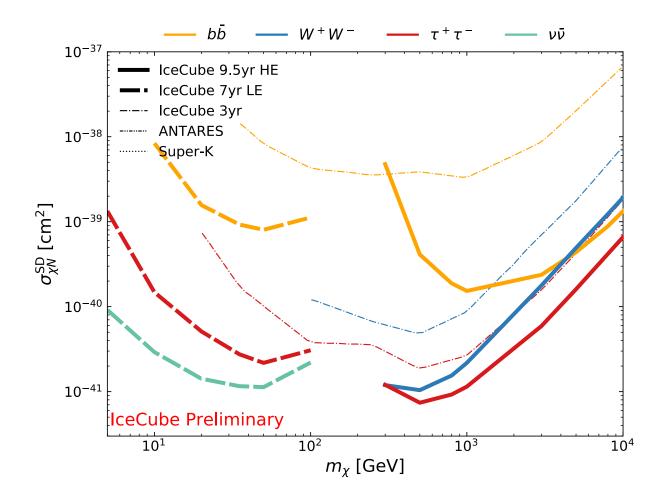


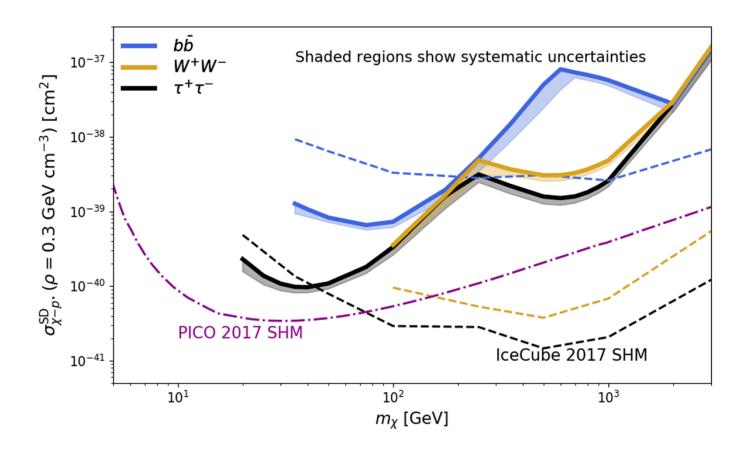

- MAGIC, HESS and VERITAS: no TeV gamma rays at the time the neutrino was produced
- MAGIC: onset of the TeV flux 5 days after IC170922
- confirmed by MASTER: the blazar switches from the "off" to "on" state 2 hours after the neutrino



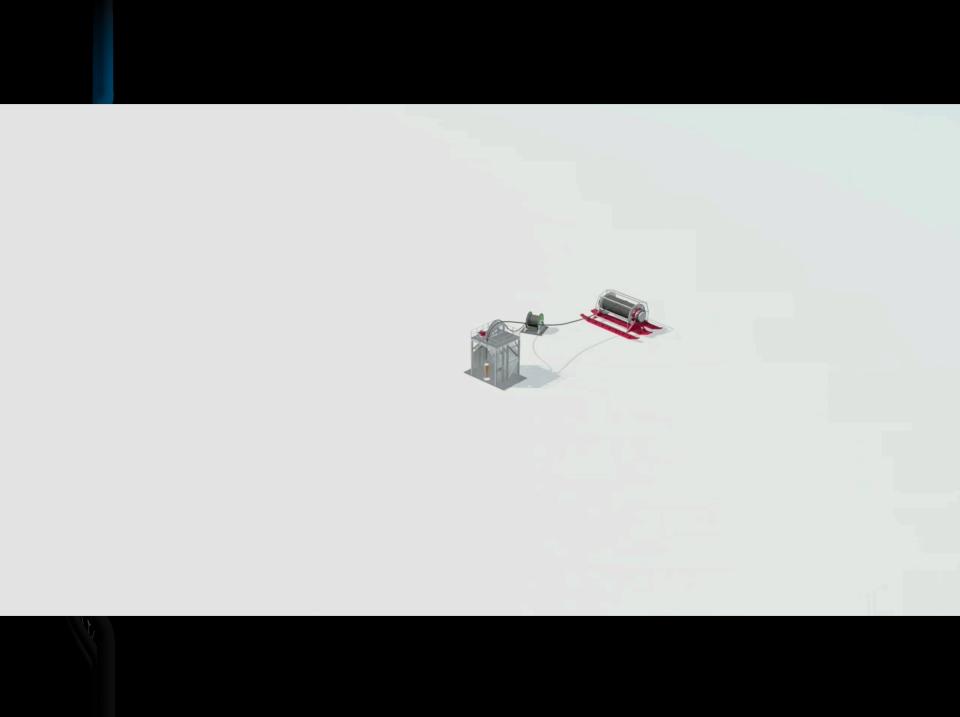






# IceCube dark matter targets




dark matter annihilation in the sun: a smoking gun

world-best limits on spin-dependent cross sections





velocity-independent limits by combining IceCube (sensitive to low velocity) and PICO (sensitive to high velocity) data

