Beyond the Standard Model Physics with Neutrinos

Kevin Kelly, Fermilab

Neutrino University, 29th July, 2021

Fermilab

kkelly12@fnal.gov, @kjkelly_physics

Outline

Outline

"SM" vs. "BSM" in Neutrino Physics

Outline

"SM" vs. "BSM" in Neutrino Physics BSM in studying Neutrino Oscillations

() ut ine

"SM" vs. "BSM" in Neutrino Physics

BSM in studying Neutrino Oscillations

BSM Searches at Neutrino Experiments

Neutrinos have mass.

Neutrinos have mass.

The Standard Model, as formulated, has no mechanism for generating neutrino masses.

Neutrinos have mass.

The Standard Model, as formulated, has no mechanism for generating neutrino masses.

New physics (fields and/or interactions) are required to explain this.

Anomalous neutrino "disappearance" in several sectors: atmospheric, solar, reactor...

Anomalous neutrino "disappearance" in several sectors: atmospheric, solar, reactor...

Anomalous neutrino "disappearance" in several sectors: atmospheric, solar, reactor...

Anomalous neutrino "disappearance" in several sectors: atmospheric, solar, reactor...

Only satisfactory explanation of this and other data: neutrinos have (distinct) masses and mix.

Where are we now?

Oscillations Refresher

baseline length divided by neutrino energy.

Experiments have been/will be performed for a variety of baselines and energies.

Requirements for Oscillations: Mixing and Mass Differences

Mixing between mass and flavor eigenstates: 3x3 unitary matrix (PMNS Matrix)

Requirements for Oscillations: Mixing and Mass Differences

Mixing between mass and flavor eigenstates: 3x3 unitary matrix (PMNS Matrix)

Differences between masses: relative phase acquired between different eigenstates during propagation.

 Because oscillations to date always involve ultrarelativistic neutrinos, we can only access their mass-squared differences.

Current Mixing Angle Knowledge

Masses/Mass ordering

* Combination of solar experiments / reactor antineutrino experiments measure $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$

* Atmospheric/long-baseline muon disappearance/ short-baseline reactor experiments measure $\Delta m_{31}^2 \equiv |m_3^2 - m_1^2|$

Masses/Mass ordering

 One way to determine the mass ordering: measure electron neutrino appearance after muon neutrinos propagate through matter

* Combination of solar experiments / reactor antineutrino experiments measure $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$

* Atmospheric/long-baseline muon disappearance/ short-baseline reactor experiments measure $\Delta m_{31}^2 \equiv \left| m_3^2 - m_1^2 \right|$

Matter effects in Neutrino Oscillations

Matter effects in Neutrino Oscillations

- For a fixed baseline length and neutrino energy, fix the mixing angles and mass-squared splittings to their best-fit values.
- Black line: generated by varying the CP-violating phase for vacuum oscillations.

Matter effects in Neutrino Oscillations

- For a fixed baseline length and neutrino energy, fix the mixing angles and mass-squared splittings to their best-fit values.
- Black line: generated by varying the CP-violating phase for vacuum oscillations.
- Red/blue lines: generated considering oscillations in matter assuming the inverted/normal orderings.
- For similar L/E, this separation increases for larger L and E.

0.10

Unitarity Triangles as a Probe of CP Violation

6

Ellis, KJK, Li [2004.13719]

NuFit, [2007.14792] See also Capozzi et al [2107.00532]

Unitarity Triangles as a Probe of CP Violation

6

Ellis, KJK, Li [2004.13719]

Current data: compatible with no CP violation and maximal CP violation at 95% CL.

NuFit, [2007.14792] See also Capozzi et al [2107.00532]

So, what constitutes "SM" and "BSM"?

- For neutrino physics, SM includes
- Massive neutrinos (3, with two non-zero mass-squared splittings)
- Mixing (3 well-measured mixing angles, possibility of CP violation)
- Interactions via the SM weak interactions (charged- and neutral-current)
- * Oscillations can be calculated exactly (numerically) from the above ingredients

*Note: this is a subjective distinction!

So, what constitutes "SM" and "BSM"?

- For neutrino physics, SM includes
- Massive neutrinos (3, with two non-zero mass-squared splittings)
- Mixing (3 well-measured mixing angles, possibility of CP violation)
- Interactions via the SM weak interactions (charged- and neutral-current)
- * Oscillations can be calculated exactly (numerically) from the above ingredients

BSM includes any effect beyond this, and how it can impact our measurements from laboratory/cosmological/astrophysical observations.

* ...

- Additional light and / or heavy neutrino states
- New interactions among neutrinos or with other particles

*Note: this is a subjective distinction!

BSM with Neutrino Oscillations

What can Oscillations Teach Us?

Do neutrinos have any additional (CPviolating? flavor-changing?) interactions?

What can Oscillations Teach Us?

Are there additional light neutrinos? eV-scale or otherwise?

Do neutrinos have any additional (CPviolating? flavor-changing?) interactions?

What can Oscillations Teach Us?

Are there additional light neutrinos? eV-scale or otherwise?

How well do we know that the leptonic mixing matrix is actually unitary?

Do neutrinos have any additional (CPviolating? flavor-changing?) interactions?

What can Oscillations Teach Us?

Are there additional light neutrinos? eV-scale or otherwise?

How well do we know that the leptonic mixing matrix is actually unitary?

Do neutrinos have any additional (CPviolating? flavor-changing?) interactions?

and much, much more...

Do neutrinos have BSM Interactions?

Neutrino interactions via the SM W- and Z-bosons have been observed, but what if there are additional interactions, potentially flavor- or CP-violating?

Do neutrinos have BSM Interactions?

Neutrino interactions via the SM W- and Z-bosons have been observed, but what if there are additional interactions, potentially flavor- or CP-violating?

Impact on Neutrino Oscillations

$$H_{ij} = \frac{1}{2E_{\nu}} \text{diag} \left\{ 0, \Delta m_{12}^2, \Delta m_{13}^2 \right\} + V_{ij}$$

$$V_{ij} = U_{i\alpha}^{\dagger} V_{\alpha\beta} U_{\beta j},$$

$$V_{\alpha\beta} = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{*} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{*} & \epsilon_{\mu\tau}^{*} & \epsilon_{\tau\tau} \end{pmatrix}$$

Do neutrinos have BSM Interactions?

Neutrino interactions via the SM W- and Z-bosons have been observed, but what if there are additional interactions, potentially flavor- or CP-violating?

Impact on Neutrino Oscillations

$$H_{ij} = \frac{1}{2E_{\nu}} \text{diag} \left\{ 0, \Delta m_{12}^2, \Delta m_{13}^2 \right\} + V_{ij}$$

$$V_{ij} = U_{i\alpha}^{\dagger} V_{\alpha\beta} U_{\beta j},$$

$$V_{\alpha\beta} = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{*} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{*} & \epsilon_{\mu\tau}^{*} & \epsilon_{\tau\tau} \end{pmatrix}$$

Modifies the cross section for coherent elastic neutrino-nucleus scattering

Non-Standard Interactions (NSI)

Recent review: [1907.00991]

Mild preference for new interactions to reduce tension between T2K and NOvA results

 $\phi_{e\mu}$

Denton et al [2008.01110]

Non-Standard Interactions (NSI)

Recent review: [1907.00991]

Mild preference for new interactions to reduce tension between T2K and NOvA results

 $\phi_{e\mu}$

Denton et al [2008.01110]

Non-Standard Interactions (NSI)

Recent review: [1907.00991]

Mild preference for new interactions to reduce tension between T2K and NOvA results

Flavor-violating!

 $\phi_{e\mu}$

Denton et al [2008.01110]

How many neutrinos are there?

They have charge current (CC) and neutral current (NC) interactions

$$\mathcal{L}_{\rm SM} = -\frac{g}{\sqrt{2}} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \ell_{\alpha L} W_{\mu} - \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} \Psi_{\mu} + \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\nu}_{\alpha L} \gamma^{\mu} + \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\mu}_{\alpha L} \gamma^{\mu} + \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\mu}_{\alpha L} \gamma^{\mu} + \frac{g}{2\cos\theta_W} \sum_{\alpha = e, \,\mu, \,\tau} \overline{\mu}_{\alpha L} \gamma^{\mu} + \frac{g}{2\cos\theta_W} \sum_{$$

Number of active neutrinos

The invisible width of the Z (measured precisely at LEP) restricts the number of active neutrinos to $N_{\nu} = \frac{\Gamma_{inv}}{\Gamma_{\bar{n}\nu}} = 2.984 \pm 0.008$

Note: Additional neutrinos can be present but they cannot partake of the SM interactions and are called sterile neutrinos.

 $\overline{\nu}_{\alpha L} \gamma^{\mu} \nu_{\alpha L} Z_{\mu} + \text{h.c.}$

Three neutrinos means two distinct mass-squared splittings — any additional splittings implies the existence of more states!

Enter: LSND (Liquid Scintillator Neutrino Detector)

Designed to study the neutrinos that come out of muon decay-at-rest:

https://slidetodoc.com/lecture-1-history-of-the-neutrino-r-d/

The LSND Experiment (1993-98)

Liquid scintillator — capable of observing neutron capture after an antineutrino scatters, and identifying the appearance of any electron antineutrinos.

Note — no electron **anti**neutrinos expected from this chain.

Enter: LSND (Liquid Scintillator Neutrino Detector)

at come of $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$ Note – no elr Designed to study the neutrinos that come out of muon decay-at-rest:

https://slidetodoc.com/lecture-1-history-of-the-neutrino-r-d/

The LSND Experiment (1993-98)

Liquid scintillator — capable of observing neutron capture after an antineutrino scatters, and identifying the appearance of any electron antineutrinos.

Note — no electron **anti**neutrinos expected from this chain.

A sterile neutrino for LSND (and MiniBooNE)?

Assume only two neutrinos exist, vacuum oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin$

$$n^2 (2\theta) \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}} \right)$$

A sterile neutrino for LSND (and MiniBooNE)?

Assume only two neutrinos exist, vacuum oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 (2\theta) \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

In more useful units, (can also swap meters to kilometers and MeV to GeV)

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 \left(2\theta\right) \sin^2 \theta$$

 $n^{2} \left(1.27 \frac{\Delta m^{2}}{1 \text{ eV}^{2}} \times \frac{L}{1 \text{ m}} \times \frac{1 \text{ MeV}}{E_{\nu}} \right)$

A sterile neutrino for LSND (and MiniBooNE)?

Assume only two neutrinos exist, vacuum oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 (2\theta) \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

In more useful units, (can also swap meters to kilometers and MeV to GeV)

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 (2\theta) \sin^2 \left(1.27 \frac{\Delta m^2}{1 \text{ eV}^2} \times \frac{L}{1 \text{ m}} \times \frac{1 \text{ MeV}}{E_{\nu}} \right)$$

LSND & MiniBooNE had different L, E, but similar L/E — simultaneous explanation with a common mass-squared splitting?

Latest & Greatest Results

Latest & Greatest Results

MiniBooNE, [2006.16883]

Latest & Greatest Results

Large mass splitting implies a *new* neutrino state.

MiniBooNE, [2006.16883]

 $U_{\rm PMNS} = egin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\rm CP}}\ -s_{12}c_{23}-c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23}-s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23}\ s_{12}s_{23}-c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23}-s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & c_{13}c_{23} \end{pmatrix}$

 $s_{13}e^{-i\delta_{
m CP}}$ $U_{\rm PMNS} = egin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} \ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} \ \end{pmatrix}$ $c_{13}s_{23}$ $c_{13}c_{23}$

 $\left(\begin{array}{ccccccccc}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}
\end{array}\right)$

3 mixing angles, 1 CP-violating phase

 $s_{13}e^{-i\delta_{
m CP}}$ $U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} \end{pmatrix}$ $c_{13}s_{23}$ $c_{13}c_{23}$

 $\left(\begin{array}{ccccccccc}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}
\end{array}\right)$

3 mixing angles, 1 CP-violating phase

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 \left(2\theta\right) \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$

 $s_{13}e^{-i\delta_{
m CP}}$ $U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} \end{pmatrix}$ $c_{13}s_{23}$ $c_{13}c_{23}$

 $\left(\begin{array}{ccccccccc}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}
\end{array}\right)$

3 mixing angles, 1 CP-violating phase

$$U_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

 $s_{13}e^{-i\delta_{
m CP}}$ $U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} \end{pmatrix}$ $c_{13}s_{23}$ $c_{13}c_{23}$

 $\left(\begin{array}{ccccccccc}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}
\end{array}\right)$

 $P(\nu_{\mu} \to \nu_{e}) = 4 \left| U \right|$

Appearance (MiniBooNE/LSND) requires *two* new mixing angles to be nonzero.

3 mixing angles, 1 CP-violating phase

$$|U_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

Appearance requires Disappearance

 $P(\nu_{\mu} \to \nu_{e}) = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E_{\nu}}\right)$

Appearance requires Disappearance

$$P(\nu_{\mu} \to \nu_{e}) = 4 \left| U \right|$$

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right) \qquad P(\nu_e \to \nu_e) = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

 $|U_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$

Appearance requires Disappearance $P(\nu_{\mu} \to \nu_{e}) = 4 \left| U_{e} \right|$ $P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\mu}}\right)$

electron- and muon-neutrino disappearance at the same L/E.

$$|V_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

$$P(\nu_e \to \nu_e) = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_\nu}\right)$$

If LSND/MiniBooNE are coming from a new, oscillating sterile neutrino, we should see

Appearance requires Disappearance $P(\nu_{\mu} \to \nu_{e}) = 4 \left| U \right|$ $P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$

electron- and muon-neutrino disappearance at the same L/E.

So, are there signals of electron- and muon-neutrino disappearance consistent with what's observed at LSND/MiniBooNE...?

$$|V_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

$$P(\nu_e \to \nu_e) = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_\nu}\right)$$

If LSND/MiniBooNE are coming from a new, oscillating sterile neutrino, we should see

Appearance requires Disappearance $P(\nu_{\mu} \to \nu_{e}) = 4 \left| U \right|$ $P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\mu}}\right)$

If LSND/MiniBooNE are coming from a new, oscillating sterile neutrino, we should see electron- and muon-neutrino disappearance at the same L/E.

So, are there signals of electron- and muon-neutrino disappearance consistent with what's observed at LSND/MiniBooNE...? 99.73% CL 2 dof

$$|V_{e4}|^2 |U_{\mu4}|^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

$$P(\nu_e \to \nu_e) = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E_\nu}\right)$$

The Final Word? Fermilab SBN

The Final Word? Fermilab SBN

What if it's not a sterile neutrino...?

Given the tension between searches for appearance and null results for disappearance, what if LSND and / or MiniBooNE are seeing some "other" new physics?

Nice overviews of possible types of models that can explain MiniBooNE: Jordan et al, [1810.07185], Brdar et al, [2007.14411] 25

What if it's not a sterile neutrino...?

Given the tension between searches for appearance and null results for disappearance, what if LSND and / or MiniBooNE are seeing some "other" new physics?

Nice overviews of possible types of models that can explain MiniBooNE: Jordan et al, [1810.07185], Brdar et al, [2007.14411] 25

What does the next generation of experiments have to offer?

MiniBooNE

MicroBooNE

What does the next generation of experiments have to offer?

MiniBooNE

MicroBooNE

Excellent particle ID will allow next-generation experiments to test MiniBooNE anomaly explanations and search for even more new physics!

26

A sampling of new scattering to be tested...

Courtesy of Pedro Machado

Various new-physics scenarios that give rise to photon or electron/positron pairs in the SBN detectors

BSM with Neutrino Oscillations

Experiments **BSM with Neutrino Oscillations**

Experiments BSM with Neutrino Oscillations

WHITE PAPER ON NEW OPPORTUNITIES AT THE NEXT-GENERATION NEUTRINO EXPERIMENTS (Part 1: BSM Neutrino Physics and Dark Matter)

C.A. ARGÜELLES¹, A.J. AURISANO², B. BATELL³, J. BERGER³, M. BISHAI⁴, T. BOSCHI⁵, N. BYRNES⁶, A. CHATTERJEE⁶, A. CHODOS⁶, T. COAN⁷, Y. CUI⁸, A. DE GOUVÊA^{*} ⁹, P.B. DENTON⁴,
A. DE ROECK^{* 10}, W. FLANAGAN¹¹, D.V. FORERO¹², R.P. GANDRAJULA¹³, A. HATZIKOUTELIS¹⁴, M. HOSTERT¹⁵, B. JONES⁶, B.J. KAYSER¹⁶, K.J. KELLY¹⁶, D. KIM¹⁷, J. KOPP^{10,18}, A. KUBIK¹⁹, K. LANG²⁰, I. LEPETIC²¹, P.A.N. MACHADO¹⁶, C.A. MOURA²², F. OLNESS⁶, J.C. PARK²³,
S. PASCOLI¹⁵, S. PRAKASH¹², L. ROGERS⁶, I. SAFA²⁴, A. SCHNEIDER²⁴, K. SCHOLBERG²⁵, S. SHIN^{26,27}, I.M. SHOEMAKER²⁸, G. SINEV²⁵, B. SMITHERS⁶, A. SOUSA^{* 2}, Y. SUI²⁹, V. TAKHISTOV³⁰, J. THOMAS³¹, J. TODD², Y.-D. TSAI^{16,32}, Y.-T. TSAI³³, J. YU^{* 6}, AND C. ZHANG⁴

[1907.08311]

BSM Prospects with Neutrino Experiments

Millicharged Particles

Harnik et al, [1902.03246] See also Magill et al, [1806.03310]

BSM Prospects with Neutrino Experiments

Millicharged Particles

Harnik et al, [1902.03246] See also Magill et al, [1806.03310]

BSM Prospects with Neutrino Experiments

Millicharged Particles

Harnik et al, [1902.03246] See also Magill et al, [1806.03310]

MiniBooNE-DM Collaboration, [1807.06137]

Harnik et al, [1902.03246]

If this is the main interaction between dark matter and the standard model, then * in the early universe, DM can freeze-out to its present-day abundance (WIMP miracle) via

- this process.
- DM pairs, generating an over-abundance of neutrinos coming from those regions.

Best place to look for this? Large neutrino detectors!

* in the present day, regions of space that are over-dense with DM can lead to annihilation of

DM mass

 10^{-19} 10^{-20} 10^{-21} $(s)_{c}$ 10⁻²² $(ab)_{d}$ 10⁻²³ $\heartsuit{\rm SK}$ Atm. \mathbf{SK} (Olivares SK Borexin et al.) ♡DUNE 10^{-24} \heartsuit KamLAND HK (Bell et al.) 10^{-25} $\tilde{\heartsuit}$ SK- $\bar{\nu}_c$ 10^{-26} Thermal Relic Abundance 10^{-2} 10^{-1} 10^{0} 10^{1} Argüelles et al, [1912.09486]

Strength of neutrino/ DM interaction

DM mass

 10^{-19} 10^{-20} 10^{-21} $\widehat{\left(\begin{array}{c} s \\ c \\ m \end{array} \right)}^{22}$ 10^{-22} $\widehat{\left(\begin{array}{c} a \\ o \\ \omega \end{array} \right)}^{23}$ $\heartsuit{\rm SK}$ Atm. \mathbf{SK} (Olivares SK Borexin et al.) ♡DUNE 10^{-24} } \heartsuit KamLAND HK (Bell et al.) 10^{-25} $\bar{\heartsuit}$ SK- $\bar{\nu}_e$ 10^{-26} Thermal Relic Abundance 10^{-2} 10^{-1} 10^{0} 10^{1} Argüelles et al, [1912.09486]

Strength of neutrino/ **DM** interaction

DM mass

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions. 2) Mesons undergo rare decays into dark sector mediators that are long-lived.Some fraction of them travel in the forward direction.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions. 2) Mesons undergo rare decays into dark sector mediators that are long-lived.Some fraction of them travel in the forward direction. 3) Dark Sector particles decay inside the neutrino detector, leaving a striking signature.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions. 2) Mesons undergo rare decays into dark sector mediators that are long-lived.Some fraction of them travel in the forward direction. 3) Dark Sector particles decay inside the neutrino detector, leaving a striking signature.

The DUNE Near Detector Complex

The DUNE Near Detector Complex

DUNE Collaboration, [2103.13910]

- Various detector components can

Example: Heavy Neutral Leptons

Production Modes Considered:

 $\pi^{\pm} \to \mu^{\pm} N$ $K^{\pm} \to \mu^{\pm} N$ $K^{\pm} \to \pi^{0} \mu^{\pm} N$ $D^{\pm} \to \pi^{0} \mu^{\pm} N$ $D^{\pm}_{(s)} \to \mu^{\pm} N$

Example: Heavy Neutral Leptons

Production Modes Considered: $\pi^{\pm} \to \mu^{\pm} N$ $K^{\pm} \to \mu^{\pm} N$ $K^{\pm} \to \pi^0 \mu^{\pm} N$ $D^{\pm} \to \pi^0 \mu^{\pm} N$ $D^{\pm}_{(s)} \to \mu^{\pm} N$

Signals of rare decays

- Portal particles can decay inside of the gaseous argon detector and produce a signal that is difficult for the neutrino source to mimic.
- This includes sets of charged leptons, pions, etc.
- Low backgrounds in gaseous argon provide an ideal site to search for the rare decays.

Background \propto Mass

Existing Constraints: Muon-Coupled HNL

DUNE Sensitivity: Muon-Coupled HNL

Berryman, de Gouvêa, Fox, Kayser, KJK, Raaf, [1912.07622]

Going Beyond Discovery?

- Significant parameter space where next-generation experiments can discover these Heavy Neutral Leptons.
- If discovered, then what?
- Search for Lepton Number Violation!

More on HNLs at DUNE? Ballett et al [1905.00284], Coloma et al [2007.03701], Breitbach et al [2102.03383] 39

Going Beyond Discovery?

- Significant parameter space where next-generation experiments can discover these Heavy Neutral Leptons.
- If discovered, then what?
- Search for Lepton Number Violation!

Is Lepton Number Conserved?

More on HNLs at DUNE? Ballett et al [1905.00284], Coloma et al [2007.03701], Breitbach et al [2102.03383] 39

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

 K^+

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc.

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc. If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc.

If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc.

If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

If the HNL is a Majorana fermion, then it can decay into the oppositecharge final state with equal probability

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc.

If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

If the HNL is a Majorana fermion, then it can decay into the oppositecharge final state with equal probability

See if its decays conserve/violate Lepton Number

Assume a "pure" beam:

Only positively-charged kaons decaying — negatively-charged ones are not produced, deflected, or absorbed, etc.

If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

If the HNL is a Majorana fermion, then it can decay into the oppositecharge final state with equal probability

Measure the ratio of these final states in your detector (assuming you can identify the charges/ particles on an event-by-event basis)

No Production Source is Perfect

Toy Example: Identify Every Decay Perfectly

Berryman, de Gouvêa, Fox, Kayser, KJK, Raaf, [1912.07622]

Broader Picture: Muon-Coupled HNL

Broader Picture: Muon-Coupled HNL

Broader Picture: Muon-Coupled HNL

Berryman, de Gouvêa, Fox, Kayser, KJK, Raaf, [1912.07622]

Axions & Axion-Like-Particles: Distinct Phenomenology

KJK, Kumar, and Liu [2011.05995]: "Heavy Axion"

Production via mixing with SM mesons or gluon/gluon fusion.

Decay into pairs of (high energy) photons/ hadrons.

Axions & Axion-Like-Particles: Distinct Phenomenology

Brdar et al [2011.07054]: "Axion-Like Particle"

KJK, Kumar, and Liu [2011.05995]: "Heavy Axion"

Production via mixing with SM mesons or gluon/gluon fusion.

Decay into pairs of (high energy) photons/ hadrons.

Production via *decays* of SM mesons or Primakoff scattering.

Decay into pairs of photons or Primakoff scattering off targets in detector.

Heavy Axion Search

Production: either via mixing with SM mesons or gluongluon fusion. Peaks here are due to resonant mixing.

Axion decay constant

Detector Signature: A pair of high-energy photons or hadrons with a relatively small opening angle.

Energy spectrum depends strongly on the lifetime of the Axion.

47

Heavy Axion Sensitivity

* We're making great stride towards understanding neutrinos and how leptons mix within the three-neutrino framework, but there's still the possibility that further BSM physics exists.

 We're making great stride towards understanding neutrinos and how leptons mix within the three-neutrino framework, but there's still the possibility that further BSM physics exists.

 This includes new physics that impacts oscillations — sterile neutrinos, non-standard neutrino interactions, etc.

- possibility that further BSM physics exists.
- This includes new physics that impacts oscillations sterile neutrinos, non-standard neutrino interactions, etc.
- at neutrino facilities as well.

* We're making great stride towards understanding neutrinos and how leptons mix within the three-neutrino framework, but there's still the

* Motivated by anomalies, "non-oscillation" new physics can be sought

- possibility that further BSM physics exists.
- This includes new physics that impacts oscillations sterile neutrinos, non-standard neutrino interactions, etc.
- at neutrino facilities as well.
- that the future has to offer!

* We're making great stride towards understanding neutrinos and how leptons mix within the three-neutrino framework, but there's still the

* Motivated by anomalies, "non-oscillation" new physics can be sought

* Key in these new-physics searches is the great detector capabilities

- possibility that further BSM physics exists.
- This includes new physics that impacts oscillations sterile neutrinos, non-standard neutrino interactions, etc.
- at neutrino facilities as well.
- that the future has to offer!

* We're making great stride towards understanding neutrinos and how leptons mix within the three-neutrino framework, but there's still the

* Motivated by anomalies, "non-oscillation" new physics can be sought

* Key in these new-physics searches is the great detector capabilities

