

Neutrinoless Double-Beta Decay: To the Ton Scale and Beyond

Julieta Gruszko University of North Carolina at Chapel Hill Fermilab Neutrino Summer School July 8, 2021

Outline

- Why look for Majorana neutrinos?
 - The matter/anti-matter asymmetry
 - The problem of neutrino mass
- The Majorana mass mechanism
 - Dirac and Majorana mass terms
 - Type I see-saw, leptogenesis, and other options
- Nature's laboratory: neutrinoless double-beta decay
 - Nuclear physics and double-beta decay
 - The rate of $0\nu\beta\beta$, sensitivity, and discovery
 - Building low-background experiments
- Current experiments and future prospects

Why Look for Majorana Neutrinos?

Early Universe

Matter

Antimatter

4

10,000,000,001

10,000,000,000

Creating Matter: The Sakharov Conditions

- In 1967, Sakharov proposed 3 conditions required for baryon-generating interactions that would generate an asymmetry:
 - 1) Baryon number violation
 - 2) C and CP violation
 - 3) Interactions out of thermal equilibrium
 - The paper is only 3 pages, available here: <u>http://jetpletters.ru/cgi-</u> <u>bin/articles/download.cgi/1643/article_25089.pdf</u>
- B and L aren't separately conserved in the SM: B-L is
 - If your theory can generate lepton number violation, that can be converted into baryon number violation
 - See the 1986 paper, by M. Fukugita & T. Yanagida, here: <u>https://doi.org/10.1016/0370-2693(86)91126-3</u>

The Solar Neutrino Problem and Neutrino Mass

Fusion in the sun produces a lot $(7x10^{10} v/cm^2/s)$ of v_e

Let's measure them!

$$v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e$$

Every few weeks, filter to find the atoms created by ~1.5 captures per day

The Davis experiment, at Homestake Mine (now SURF)

Decades of follow-up experiments showed that neutrinos were changing from one type to another

Neutrinos must have mass

What do you mean by mass?

Beta Decay Kinematics

- Watch many (10¹¹ per second) beta decays
- Detect only the highest-energy decays (1 of every 5x10¹²) decays)
- Measure the shape of the spectrum endpoint
- Measures m_{β} directly, no model-dependence
- Current best limit: $m_{\beta} < 1.1 \text{ eV}$ (KATRIN experiment, 2019)

Cosmological Limits

- In the early universe, neutrinos have a characteristic "free streaming scale" (how far they go before scattering)
- $L_{fs} \propto \sqrt{m_{\upsilon}}$
- Neutrinos inhibit structure formation below L_{fs}
- Lowest limits combine data from many sources– Planck CMB, BAO, Type la supernovae, galaxy surveys, weak lensing measurements, etc.
- $\Sigma m < 120-230$ meV, Planck best fit is to $\Sigma m = -50$ meV
- New result using SDSS: Σm = 110 meV

Neutrino Mass

	Technique	Sensitivity	Current limit
	Neutrino Oscillations	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	IO: Σm > 98 meV NO: Σm > 59 meV
	Cosmological modeling of Astrophysical Observations	$\sum m_i$ + light dof	Σm < 120 – 230 meV, depending on data sets used Planck best fit: Σm = -50 meV
	Beta Decay Kinematics	$\sum \left U_{ei} \right ^2 m_i^2$	Σm < 3000 meV
		neutrinos	$d \bullet s \bullet b \bullet$
No matter which mass you mean, the mass of neutrinos is small!		e • mev	$u \bullet c \bullet t \bullet$ $\mu \bullet \tau \bullet$ $Gev FeV$

The Majorana Mass Mechanism

Helicity and Chirality

• Helicity describes the alignment of spin and momentum:

For massless particles, eigenvalues are ±1

> For massive particles, reference-frame dependent

- Chirality is fundamental, it describes the field's transformation under γ^5 :
 - \succ Define chiral spinors (ψ_R , ψ_L) as the eigenfunctions of γ^5 with eigenvalues (1, -1):

 $\psi_{L,R} = \frac{1}{2}(1 \mp \gamma^5)\psi$ for particles, opposite sign for antiparticles

Writing the Dirac free fermion Lagrangian in terms of the chiral fields, we get the field equations:

$$i \not \partial \psi_R = m \psi_L \qquad i \not \partial \psi_L = m \psi_R \qquad \qquad \not \partial \equiv \gamma^{\mu} \partial$$

Mass couples the left- and right-chiral fields together
 If E>>mc², helicity~chirality

Dirac Mass Term

- The neutrino could get its mass the same way other leptons do
- Add a non-interacting right-chiral neutrino field to the SM

Leads to the "hierarchy problem":

Majorana Mass Term

• Because the neutrino is neutral, we have another option:

 $\psi = \psi^{C}$ (AKA the Majorana condition)

 Then v_L^C is right-handed, and we can write a non-zero left-handed Majorana mass term:

$$L_{mass}^{L} = -\frac{1}{2} m_{M}^{L} \left(\overline{\upsilon_{L}} \upsilon_{L}^{C} + \overline{\upsilon_{L}^{C}} \upsilon_{L} \right)$$

• We can identify v_L^C with the particle we observe as the anti-neutrino:

More on Majorana Mass Terms

• One problem: left-handed term isn't renormalizable in the SM. It's not invariant under SU(2)xU(1):

$$L_{mass}^{L} = -\frac{1}{2}m_{M}^{L}\left(\overline{\upsilon_{L}}\upsilon_{L}^{C} + \overline{\upsilon_{L}^{C}}\upsilon_{L}\right)$$

- This term is allowed if you introduce new physics at high energy to cut off the infinities
- The right-handed Majorana mass term is allowed:

$$L_{mass}^{R} = -\frac{1}{2}m_{M}^{R}\left(\overline{\upsilon_{R}}\upsilon_{R}^{C} + \overline{\upsilon_{R}^{C}}\upsilon_{R}\right)$$

Dirac + Majorana Mass Terms = The See-Saw Mechanism

• If we include all the terms (Dirac, left-handed Majorana, right-handed Majorana):

$$L_{mass} = \frac{1}{2} \left(\frac{\overline{\upsilon}_L \overline{\upsilon}_R}{\upsilon_R} \right) \left(\begin{array}{cc} m_L & m_D \\ m_D & m_R \end{array} \right) \left(\begin{array}{cc} \upsilon_L^C \\ \upsilon_R \end{array} \right) + h.c.$$

- Setting m_L to 0, mass eigenvalues are

$$\lambda = \frac{m_R}{2} \pm \frac{m_R}{2} \sqrt{1 + \frac{4m_D^2}{m_R^2}}$$

• If m_R>>m_D,

$$\lambda_1 = m_R \qquad \lambda_2 = \frac{2m_D^2}{m_R}$$

Called the "see-saw mechanism":

The Type 1 See-Saw

• If m_R is of GUT scale (about 10^{15} GeV) and m_D is EW scale (about 100 GeV), mass eigenvalues are:

$$M_{v} \sim \frac{m_{D}^{2}}{m_{R}} \sim .01 \,\mathrm{eV}$$
 $M_{N} \sim m_{R} \sim 10^{15} \,\mathrm{GeV}$

• So you get a "natural" neutrino of the correct mass by introducing a new GUT-scale particle, a heavy neutrino N

- Many consider this the simplest model for Majorana neutrinos, it's used to compare experiments and measure their progress
- Could solve two problems: neutrino mass and baryogenesis!

Leptogenesis →Baryogensis and the Type-1 See-Saw

Could satisfy 2 (or 2.5) of the 3 Sakharov Conditions:

- Interactions out of thermal equilibrium heavy neutrinos would decay out of equilibrium in the early universe, and "freeze-in" asymmetry at the right time
- C and CP symmetry violation loop diagrams have extra CP violation
- The 3rd condition (baryon number violation) can be achieved via SM processes if lepton number violation is present

Other Models for Majorana Neutrinos

- Type 1 See-Saw is not the only option!
- Type 2 and 3 see-saws introduce other new particles (Higgs fields, additional heavy leptons, etc) which generate a Majorana neutrino mass
- These other models often predict new particles and lepton number violating processes at lower energy scales accessible to colliders
- See https://doi.org/10.3389/fphy.2018.00040 for a nice review

Some More Details

- The neutrino is a Majorana particle as long as it has a non-zero Majorana mass term, no matter the relative sizes of the terms (if it has both MJ and Dirac mass)
- Majorana neutrinos have two more allowed CP-violating phases

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_1}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_2}{2}} \end{bmatrix}$$

PMNS Matrix New!

Nature's Laboratory: Neutrinoless Double-Beta Decay

Double-Beta Decay

THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

- Because of Pauli exclusion, nuclei are lower in energy if they have even numbers of protons and neutrons– they prefer to have paired spins
- For certain even-even nuclei, single beta decay is disallowed b/c of energy or momentum
- Instead, they double-beta decay, as predicted in 1935

Double-Beta Decay

- Second-order weak process, $t_{1/2} \sim 10^{19}$ to 10^{21} years
- One of the longest-lifetime process we've ever observed. Not seen until 1987!
- In the SM, two electron antineutrinos are emitted

Neutrinoless Double Beta Decay

- If neutrinos are Majorana, 0vββ could occur
- Lepton number conservation is violated
- In this case, I've drawn the exchange of a light neutrino, but you can think of that "x" as a contracted diagram of any sort (with new physics in it)

Ovββ: A Portal to BSM Physics

Model-independent implications of $0\nu\beta\beta$:

- Lepton number violation
- Neutrino-antineutrino oscillation, implying a non-zero Majorana mass term

The 0vββ Rate for Light Majorana Neutrino Exchange

 $c_{ii} = \cos \theta_{ii} s_{ii} = \sin \theta_{ii} \delta$ = Dirac CP violation, α_i = Majorana CP violation

Even under the simplest assumptions, the $0\nu\beta\beta$ rate depends on mixing angles, $\delta_{CP,}$ neutrino masses, mass hierarchy, and 2 totally unknown phases

THE UNIVERSITY

TH CAROLINA

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} M_{0\nu} |^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

Effective Majorana mass for light neutrino exchange:

$$\langle m_{etaeta}
angle = |\sum_{i=1}^{3} U_{ei}^2 m_i|$$

Phase space: difference between initial and final energy and momentum

Higher Q value, higher rate •

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

Effective Majorana mass for light neutrino exchange:

$$\langle m_{etaeta}
angle = |\sum_{i=1}^{3} U_{ei}^2 m_i|$$

 $T_{1/2}$ = what experiments measure m_{$\beta\beta$} = the physics we're trying to extract

 $\left(\frac{\langle m_{\beta\beta} \rangle}{m}\right)^2$ $(T_{1/2}^{0\nu})^{-1}$ $= G^{0\nu} |M_{0\nu}|^2$

Effective Majorana mass for light neutrino exchange:

$$\langle m_{etaeta}
angle = |\sum_{i=1}^{3}U_{ei}^{2}m_{i}|$$

Nuclear matrix element: how the nuclear decay occurs (states of nucleons, nucleus shape, etc.)

Nuclear Matrix Elements

THE UNIVERSITY f North Carolina t Chapel Hill

- Tell you how to translate between a measured rate and $m_{\beta\beta}$
- Used to compare experiments in different isotopes
- These are big nuclei. Hard to calculate!
- Some nuclei of interest can't be calculated at all in certain models.
- Spread between models is large
- Dependence on element is small
- All models leave out important physics
- Uncertainties are hard (or impossible) to quantify
- This situation is improving, but it'll take a while

The Ovββ Rate

of NORTH CAROLINA at CHAPEL HILL

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

Rate depends on mixing angles, neutrino mass, and mass hierarchy Uncertainties in

 $\langle m_{\beta\beta} \rangle = |\sum_{i=1}^{\circ} U_{ei}^2 m_i|$

0vββ and Neutrino Masses

THE UNIVERSITY f North Carolina t Chapel Hill

- In the usual picture, equal areas give the illusion of equal probability
- But m_{lightest} is shown on a log scale and can go all the way to 0
- Mass measurements don't measure m_{lightest}: eventually they will measure something nonzero!
- Switching to this view also shows that there isn't a sudden jump between IH and NH allowed rates of 0vββ
- The situation for $0\nu\beta\beta$ is not as hopeless as it may first appear!
- Other neutrino experiments (NO/IO, mass measurements, mixing angles & phases) can tell you where to expect 0vββ for a given model

As a Probability Density

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bayesian framework gives us a way to analyze discovery probability in the "light neutrino exchange" minimal model

For the details of this analysis, see: M. Agostini, G. Benato and J. A. Detwiler, Discovery probability of next-generation neutrinoless double- β decay experiments, Phys. Rev. D96 (Sep, 2017) 053001

What About the Unknown Unknowns?

 Adding sterile neutrinos also changes the expected rate

THE UNIVERSITY

 The change depends on the sterile neutrino mass and its mixing

G. Huang, S. Zhou, arXiv: 1902.03839

What About the Unknown Unknowns?

S.-F. Ge, M. Linder, and S. Patra, JHEP 1510 (2015) 077

The situation changes significantly if new physics is at lower scales

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

For instance, Type-II seesawdominated LRSM

How rare is neutrinoless double beta decay?

RSIT

Half life: how long it takes for half of the atoms to decay

The age of the universe: 14 billion years = 1.4×10^{10} yrs

Two Neutrino Double Beta Decay: Half life = $\sim 10^{20}$ yrs

Neutrinoless Double Beta Decay: Half life > 10²⁶ yrs

Half life: how long it takes for half of the atoms to decay

y y y 🔵 🛑 🔘 🔘

The age of the universe: 14 billion years = $1.4x10^{10}$ yrs

Two Neutrino Double Beta Decay: Half life = ~10²⁰ yrs

Neutrinoless Double Beta Decay: Half life > 10²⁶ yrs

Avogadro's Number: 6x10²³

Don't wait for half to decay, wait for 1 to decay! If I watch 50 kg of atoms for 5 years, I'll see 1 decay for a half-life of 10²⁶ years

Detecting 0vββ

Discovery, Background, and Exposure

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Designing a Search for $0\nu\beta\beta$

THE UNIVERSITY of NORTH CAROLI at CHAPEL HILL

If I want to see 1 atom of ~10²⁵ or more decay (and be sure of what I saw), I need:

- Very high efficiency
- Very low rates of other kinds of events
- The best-possible energy resolution
- Ways to verify that my signal has the right properties

This is hard, the world is very radioactive!

Lessons from other neutrino experiments:

- Go underground
- Use a "veto detector"
- Select clean materials
- Complexity is ok, if it helps you tag signals!

Most Experiments

Signal and Backgrounds

 α backgrounds

(mostly surface events):

• Differences in range

• γ , β , and μ interact

• α, v, and n scatter off of nuclei

with electrons

and type of

interaction

~10 µm

- Event topology
- Time coincidence information
- Surface/bulk discrimination
- Veto systems
- Particle identification: distinguish nuclear and electron scatters, dE/dx, etc.
- Tag the daughter atom

44

The Experiments

- I won't have time to go through all of the ongoing experiments, there are too many! I'll cover the largest efforts.
- The materials in these slides are courtesy of the various experimental collaborations
- A portfolio review of the ton-scale efforts is underway, so there have been many very recent updates. Most are not reflected here.
- Thank you to all who all who I borrowed materials from!

A Rich Experimental Landscape

Collaboration	Isotope	Technique	mass (0νββ isotope)	Status
CANDLES	⁴⁸ Ca	305 kg CaF2 crystals - liq. scint	0.3 kg	Operating
CARVEL	⁴⁸ Ca	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D
GERDA I	⁷⁶ Ge	Ge diodes in LAr	15 kg	Complete
GERDA II	⁷⁶ Ge	Point contact Ge in active LAr	44 kg	Complete
MAJORANA DEMONSTRATOR	⁷⁶ Ge	Point contact Ge in Lead	30 kg	Operating
LEGEND 200	⁷⁶ Ge	Point contact Ge in active LAr	200 kg	Construction
LEGEND 1000	⁷⁶ Ge	Point contact Ge in active LAr	1 tonne	R&D
NEMO3	100Mo/82Se	Foils with tracking	6.9 kg/0.9 kg	Complete
SuperNEMO Demonstrator	⁸² Se	Foils with tracking	7 kg	Construction
SELENA	⁸² Se	Se CCDs	<1 kg	R&D
NvDEx	⁸² Se	SeF6 high pressure gas TPC	50 kg	R&D
AMoRE	¹⁰⁰ Mo	CaMoO4 bolometers (+ scint.)	5 kg	Construction
CUPID	¹⁰⁰ Mo	Scintillating Bolometers	250 kg	R&D
COBRA	116Cd/130Te	CdZnTe detectors	10 kg	Operating
CUORE-0	130Te	TeO ₂ Bolometer	11 kg	Complete
CUORE	¹³⁰ Te	TeO ₂ Bolometer	206 kg	Operating
SNO+	¹³⁰ Te	0.3% natTe in liquid scint.	800 kg	Construction
SNO+ Phase II	¹³⁰ Te	3% natTe in liquid scint.	8 tonnes	R&D
KamLAND-Zen 400	¹³⁶ Xe	2.7% in liquid scint.	370 kg	Complete
KamLAND-Zen 800	136Xe	2.7% in liquid scint.	750 kg	Operating
KamLAND2-ZEN	¹³⁶ Xe	2.7% in liquid scint.	~tonne	R&D
EXO-200	¹³⁶ Xe	Xe liquid TPC	160 kg	Complete
nEXO	¹³⁶ Xe	Xe liquid TPC	5 tonnes	R&D
NEXT-WHITE	¹³⁶ Xe	High pressure GXe TPC	~5 kg	Operating
NEXT-100	¹³⁶ Xe	High pressure GXe TPC	100 kg	Construction
PandaX	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
DARWIN	¹³⁶ Xe	Xe liquid TPC	3.5 tonnes	R&D
AXEL	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
DCBA	¹⁵⁰ Nd	Nd foils & tracking chambers	30 kg	R&D
R&D	Cons	truction Operating	Complete	

From J. Wilkerson

Setting Half-Life Goals for the Next Generation

- Simple light neutrino exchange model is used to set goals for future experiments
- Currently-running experiments have reached half-life sensitivities of 10²⁶ yrs
- Next generation plans to reach $m_{\beta\beta}$ =18 meV, the value needed to cover the inverted ordering region

Experimental Techniques

Most Experiments

Advantages:

- Energy resolution
- Staging

Granular Detectors

- Bolometers and semiconductors
- E.g. CUPID, LEGEND

Advantages:

- Self-shielding
- Scalability

Monolithic Detectors

- Scintillators and TPCs
- E.g. KamLAND-Zen, SNO+, THEIA, nEXO, NEXT

The LEGEND Concept

The LEGEND Concept

HPGe point-contact detectors:

- Event topology and fiducialization
- Excellent (~0.1%) energy resolution

Pulse shape discrimination (PSD) for multi-site and surface α events

Ge detector anti-coincidence

Scintillating PEN plate holder

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator

LEGEND Background and Sensitivity Goals

Staged approach with 2 major phases **LEGEND-200**:

- 200 kg in upgrade of existing GERDA infrastructure at Gran Sasso
- Background goal <0.6 cts/(FWHM t yr)
 <2x10⁻⁴ cts/(keV kg yr)
- Data start ~2021

LEGEND-1000:

- 1000 kg, staged via individual payloads (300-500 detectors)
- Background goal <0.03 cts/(FWHM t yr),<1x10⁻⁵ cts/(keV kg yr)
- Location and timeline TBD

The CUPID Concept

- Tonne-scale bolometer approach demonstrated in CUORE
- Scintillating bolometer technique demonstrated in CUPID-Mo and other experiments
- Scintillation light allows for $\boldsymbol{\alpha}$ rejection
- Mo-100 0vββ Q-value is higher in energy than most other backgrounds
- Switch from CUORE crystals to scintillating bolometers with light readout

- ► $\Delta E FWHM \sim 5 \text{ keV}$ at $Q_{\beta\beta} \sim 3034 \text{ keV}$
- alpha-particle rejection using light signal

Slides provided by CUORE, CUPID, CUPID-Mo, and CUPID-0 Collaborations

CUPID Background and Sensitivity Goals

CUPID pre-CDR: exactly what we could start building today: 10⁻⁴ counts/keV/kg/yr

CUPID reach: assume improvement at reach before construction: 2.10⁻⁵ counts/keV/kg/yr

CUPID 1Ton: new, 4 times larger (in volume) cryostat, 1 ton 100Mo : 5·10⁻⁶ counts/keV/kg/yr

M. Pavan, CUPID Project Update 13 July 2020

The nEXO Concept

Slides provided by the EXO-200 and nEXO Collaborations, from D. Moore

- Large single-phase LXe TPC
- Take advantage of self-shielding, (non-binary) fiducialization, and event topology information to reduce backgrounds

nEXO Sensitivity Goals

Projected half-life sensitivity vs. livetime: $9.2 \times 10^{27} \text{ y} \text{ x}$ Sensitivity to $\langle m_{\beta\beta} \rangle$ EXO-200 Nature 510, 229 (2014) EXO-200 Phase-II PRL 120, 072701 (2018) 10^{-1}

- Assumes $g_A = g_A^{free} = -1.27$

- Bands indicate the envelope of various NME calculations: EDF: T.R. Rodríguez and G. Martínez-Pinedo, PRL 105, 252503 (2010) ISM: J. Menendez et al., Nucl Phys A 818, 139 (2009) IBM-2: J. Barea, J. Kotila, and F. Iachello, PRC 91, 034304 (2015) QRPA: F. Šimkovic et al., PRC 87 045501 (2013) SkyrmeQRPA: M.T. Mustonen and J. Engel PRC 87 064302 (2013)

The NEXT Concept

Slides courtesy of the NEXT Collaboration, from R. Guenette

High-pressure gas Xenon time projection chamber:

- High pressure reduces volume for a given mass
- Energy resolution is intrinsically better in gas
- Extensive event topology information, fiducialization, and particle ID

Bolotnikov and Ramsey. "The spectroscopic properties of high-pressure xenon."NIM A 396.3 (1997): 360-370

NEXT Sensitivity Goals

NEXT Collaboration, arXiv:2005.06467

Barium Tagging: A Potential Path to NO

 $^{136}Xe \rightarrow {}^{136}Ba^{++} + 2e^{-}$

"Tagging" Ba daughter has potential to eliminate all but 2v66 backgrounds M. Moe, Phys. Rev. C 44, R931 (1991)

In nEXO, eliminating other backgrounds could give up to 4x higher sensitivity

- NEXT and nEXO Collaborations are making progress on a variety of techniques
- Considered a possible upgrade path for the tonne-scale TPC experiments

In NEXT, higher efficiency with Ba tagging and eliminating other backgrounds could provide up to a factor of 6 higher sensitivity

Could extend sensitivity (further) into the normal ordering region!

Slides courtesy of the NEXT and nEXO Collaborations, from B. Fairbank ⁵⁹

The Liquid Scintillator Concept: SNO+ and KLZ

- Self-shielding, fiducialization
- Interior materials can be made extremely pure
- Pursuing R&D for additional event topology and particle ID
- Multi-purpose detector

A -

V V V

÷

Inner Balloon (3.08 m diameter)

Measurement with and without isotope is possible

Sensitivity of Future Liquid Scintillator Experiments

- Upgrades to KLZ and SNO+ will reach $T_{1/2} > 10^{27}$
- Theia concept could reach $m_{\beta\beta} < 10 \text{ meV}$

Eur. Phys. J. C (2020) 80:416

Light yield (N_{hits}/MeV)

The Future of 0vββ Searches

- The coming generation of 0vββ experiments will fully explore the inverted hierarchy region
- Corresponds to searching for new physics at the 10's -100's of TeV scale!
- R&D is underway to reach $m_{\beta\beta} \sim \mathcal{O}(1 \text{meV})$
- Discovery could come at any time!

Agostini, Benato, Detwiler, Menendez, Vissani, paper in prep.

Conclusion

- Discovering 0vββ could lead to major insights into some of the biggest remaining mysteries of the Standard Model: neutrino mass and the matter/anti-matter asymmetry
- Searching for 0vββ requires big experiments with ultra-low backgrounds
- Many experimental efforts are underway, and more are hoping to begin soon
- Discovery could come at any time!

Questions?